
Advanced course in machine learning
582744

Lecture 11

Arto Klami



The rest of the course

Still two lectures: Deep learning continues on Thursday, and the
next Tuesday lecture is re-cap and instructions for preparing for the
exam

The 7th set of exercises w ould be due May 10th, a day before the
exam... I will also release some extra problems for compensating
missed exercises

The decision made during the lecture: The deadline will be
postponed by a week



Deep learning

Deep learning refers to any machine learning solution that is
“deep”, but typically it is understood as neural networks that have
high number of layers

The intuitive reasoning is roughly that deep networks extract
progressively higher-level distributed representations, so that the
final supervised problem is easier to solve

Important for applications where the raw data features are not very
informative (pixel values vs words)

Shallow models sometimes used to describe all other models



Deep learning

INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

LeNet5 (LeCun et al. 1998)



Deep learning

GoogLeNet



Image recognition

Instead of fully connected MLPs we typically want to encode
knowledge about the problem domain into the network

One standard example is image recognition, where we know the
input vector is actually a two-dimensional array where neighboring
pixels are related

The standard model for this is convolutional neural network, which
means any network that uses convolutions as part of the model



Convolution

Convolution is the integral of the product of two function where
one is reversed and shifted:

(f ∗ g)(t) =

∫ ∞
−∞

f (τ)g(t − τ)dτ

Discrete convolution with g(·) having finite support is simply

(f ∗ g)[t] =
m∑

m=−t
f [t −m]g [m]

which computes for all f [t] a weighted average of its surrounding

Two-dimensional extension applies a local filter and computes its
output for each pixel



Convolutional neural networks

The first layer of a neural network computes convolution over the
image

In other terms: Each unit looks at a local reseptive field and
averages the inputs using the weights corresponding to some filter

The weights for each unit are identical, so they correspond to
applying the same filter for each area of the image

Translation invariance: We can detect the same pattern irrespective
of where it is (though it is recognized by a different unit)

The layer naturally has several such filters; their number is called
the depth of the convolutional layer



Convolutional neural networks

Pooling or subsampling: Reduce the dimensionality of the
convolutional layer by

I Average pooling: Compute the average of 2x2 or 4x4
neighborhoods of the convolutional layer

I Max pooling: Take the max of the same neighborhood – this
if often used in practice

Reduces the number of parameters, provides further translation
invariance

The combination of convolution and subsampling motivated by
simple and complex cells in visual cortex



Convolutional neural networks

The model can have several nested combinations of convolution
and pooling, possibly having some ReLU layers in between as well

Also one-dimensional convolutions are meaningfull: Weighted
averages of text or other strings

Practical trick for optimization: Generate additional training
images by distorting the original ones; helps making the solution
invariant to small distortions

Generating a deep learning model to classify images would be
considerably harder if not taking the structure into account
(permutation-invariant models have worse accuracy)



Deep learning in image recognition

You can play around with the interactive demo at
http://cs.stanford.edu/people/karpathy/convnetjs/

demo/cifar10.html

CIFAR-100 image classification benchmark: Top deep learning
methods around 75% accuracy and majority of the top results are
post-2015. The best other method at 61% – similar story for all
image benchmarks

During the past few years the top solutions often had 10-30 layers,
but e.g. the ImageNet 2015 winner went up to 150

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html


Training deep MLPs

LeNet5 already from 1998 – why did the deep learning hype start
only some years ago?

Training deep networks is difficult:

I The “vanishing gradient problem”: The derivatives wrt to the
lower layers often tend to zero

I Only the last layers capture meaningful representations: One
hidden layer is enough for universal approximation so the
networks have local optima for which the lower levels need not
do anything

I High number of parameters means slow computation

I A lot of data is needed to gain advantage of a more complex
model



Training deep MLPs

So what has changed?

I Faster hardware, especially GPU computation: Neural
networks consists of huge number of simple calculations,
which is exactly what GPUs were designed to do – now we
just operate on units instead of pixels of a visual rendering

I Good large data sets: ImageNet, CIFAR, Google internal data,
etc.

I Better optimization methods (in fact, largely SGD),
initialization and regularization (dropout), batch-normalization

I Good software platforms, automatic differentiation

I Layer-wise generative pre-training, long-term connections



Dropout

Unconventional but efficient regularization technique:

I While learning the model, we randomly exclude some subset
of units (with percentage p ≈ 0.5 for each unit) for processing
each training sample

I At test time we use all units

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Dropout

setting that do not use dropout or unsupervised pretraining achieve an error of about
1.60% (Simard et al., 2003). With dropout the error reduces to 1.35%. Replacing logistic
units with rectified linear units (ReLUs) (Jarrett et al., 2009) further reduces the error to
1.25%. Adding max-norm regularization again reduces it to 1.06%. Increasing the size of
the network leads to better results. A neural net with 2 layers and 8192 units per layer
gets down to 0.95% error. Note that this network has more than 65 million parameters and
is being trained on a data set of size 60,000. Training a network of this size to give good
generalization error is very hard with standard regularization methods and early stopping.
Dropout, on the other hand, prevents overfitting, even in this case. It does not even need
early stopping. Goodfellow et al. (2013) showed that results can be further improved to
0.94% by replacing ReLU units with maxout units. All dropout nets use p = 0.5 for hidden
units and p = 0.8 for input units. More experimental details can be found in Appendix B.1.

Dropout nets pretrained with stacks of RBMs and Deep Boltzmann Machines also give
improvements as shown in Table 2. DBM—pretrained dropout nets achieve a test error of
0.79% which is the best performance ever reported for the permutation invariant setting.
We note that it possible to obtain better results by using 2-D spatial information and
augmenting the training set with distorted versions of images from the standard training
set. We demonstrate the e↵ectiveness of dropout in that setting on more interesting data
sets.

With dropout

Without dropout

@R

@
@R

Figure 4: Test error for di↵erent architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.

In order to test the robustness of
dropout, classification experiments were
done with networks of many di↵erent ar-
chitectures keeping all hyperparameters, in-
cluding p, fixed. Figure 4 shows the test
error rates obtained for these di↵erent ar-
chitectures as training progresses. The
same architectures trained with and with-
out dropout have drastically di↵erent test
errors as seen as by the two separate clus-
ters of trajectories. Dropout gives a huge
improvement across all architectures, with-
out using hyperparameters that were tuned
specifically for each architecture.

6.1.2 Street View House Numbers

The Street View House Numbers (SVHN)
Data Set (Netzer et al., 2011) consists of
color images of house numbers collected by
Google Street View. Figure 5a shows some examples of images from this data set. The
part of the data set that we use in our experiments consists of 32⇥ 32 color images roughly
centered on a digit in a house number. The task is to identify that digit.

For this data set, we applied dropout to convolutional neural networks (LeCun et al.,
1989). The best architecture that we found has three convolutional layers followed by 2
fully connected hidden layers. All hidden units were ReLUs. Each convolutional layer was

1937

Picture from Srivastava et al. JMLR 2014



Dropout

Various motivations:

I It makes the network an ensemble: We learn 2n networks of n
nodes

I Each unit has to learn to work with any randomly chosen
subset of other units

I Avoids co-adaptation

I Increases sparsity

I Additional noise for the hidden units

I Marginalizing the noise out for simple networks shows
relationship to classical regularization: For linear regression it
matches ridge regression



Batch normalization

Imagine a linear network of single unit per layer: y = w1w2w3w4x

We can arbitrarily scale w1 and w2 as long as their product
remains the same – we do not want to spend precious computation
trying to do this

Batch normalization replaces the outputs H of a hidden layer by

H− µ

σ
,

where the mean and variance as estimated based on the current
mini-batch used for SGD

This transformation is encoded into the network, so that we
backpropagate through it – the gradients cannot propose any
changes that would only re-scale or translate the outputs



Computational graphs

TensorFlow, Theano and Torch provide another layer of
computational abtraction, representing neural networks as
computational graphs

Programming a deep learning model consists of specifying the
computational nodes and their reletionships

Learning procedures of computing a gradient or updating the
weights are simply another set of computational instructions

I Automatic differentiation

I State-of-the-art optimization algorithms

I Parallel computation, GPU support

I Existing implementations for typical models

Note: The same tools work for many other ML models too!



TensorFlow example

x = tf.placeholder(tf.float32, [None, 784])

y_ = tf.placeholder(tf.float32, [None, 10])

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x, W) + b)

cross_entropy = -tf.reduce_sum(y_*tf.log(y))

train_step = tf.train.GradientDescentOptimizer(0.01)

.minimize(cross_entropy)



TensorFlow example

init = tf.initialize_all_variables()

sess = tf.Session()

sess.run(init)

for i in range(1000):

batch_xs, batch_ys = mnist.train.next_batch(100)

sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})



Modern practices for deep feedforward nets

I Use enough data and GPU computation (via TensorFlow or a
similar tool)

I Rectified linear units the default choice for hidden layers

I Convolutions + max pooling for images and other spatial data

I The structure: Pretty much still trial and error; need not even
be a chain of layers (skip connections); parameter sharing

I Backpropagation with SGD and momentum, adaptive
step-length

I Dropout regularization, probably combined with l2 or
max-norm regularization

I Use batch normalization



Adversarial training

Szegdy et al. (2014) found out that deep learning models for image
classification can be fooled by constructing adversarial inputs

If the scale of the perturbation that looks like random noise is
small enough compared to the scale of the original pixel values,
humans would not notice a difference, but flexible enough classifier
will change its decision

Find input x′ so that it visually looks exactly like x but has
different class prediction – we can use gradient-based optimization
wrt to x instead of the weights to force the output to any class



Inceptionism

The same trick can be used to make deep networks “dream”: Use
noise as input for the network and then modify the input until it
corresponds to a given class label

Images from

http://googleresearch.blogspot.fi/2015/06/inceptionism-going-deeper-into-neural.html



Recurrent neural networks

Until now we only considered feedforward links in the network,
which correspond to directed acyclic graphs (DAG)

Any network with cycles is called recurrent neural network (RNN)

RNNs have memory – they somehow represent the previous
training samples implicitly in the activations – and are good for
sequential data

Can be thought of as infinitely deep feedforward network, unrolled
as copies of itself

Picture from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Recurrent neural networks

Training by backpropagation through time, which is simply
backpropagation for the unrolled network

Makes all the problems related to backpropagation much more
severe – especially vulnerable to effects of the inputs for outputs
far in the future



Long short term memory (LSTM)
LSTM is one practical RNN model which explicitly remembers the
past values

I The forgetting gate determines how much of the previous cell
state is forgotten by multiplying with [0, 1]

I The input gate determines which values we should modify,
and a separate tanh-based layer indicates the new values

I The new cell state is obtained by summing these up, and the
output is then another non-linear function of the state and
input

Picture from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Unsupervised deep learning

The previous examples all considered supervised learning, but
neural networks and deep learning match well also unsupervised
tasks

Some interesting connections between unsupervised and supervised
too:

I Unsupervised techniques can be used for initialization or
pre-training of supervised models

I Models intended for unsupervised use are sometimes trained
in supervised fasion – if we learnt features that are good at
classifying images then perhaps they are a good representation
for the imaages



Autoencoders

Remember the PCA formulation as lower-dimensional projection
that has low re-construction error

It is a special case of more general concept of autoencoder, a
network that learns how to best re-construct the inputs

The information needs to flow through a bottleneck of some sort –
otherwise we could just copy the inputs as such

For PCA the bottleneck if the rank constraint (number of
dimensions retained) – if it matches the dimensionality then we
indeed reach zero re-construction error



Autoencoders

Any neural network trained using the inputs as outputs is an
autoencoder

Often the first part of the network that compresses the inputs
somehow is called encoder and the second part is decoder, whereas
the narrowest part of the representation is the code – this matches
the compression terminology



Denoising autoencoders

A neat trick is to train autoencoders so that we feed in noisy
versions of the vectors but still use the originals as outputs

The network learns to de-noise the noisy inputs and often solves
the original autoencoding task more accurately as well

With denoising autoencoders we can actually use codes that are
larger than the input



Sequence-to-sequence autoencoders

What if we use recurrent networks as encoders and decoders?

The input and output are sequences of arbitrary length (running
text etc) but the representation is of fixed dimensionality

State-of-the-art machine translation is done largely this way,
though the output is in another language



Layer-wise pretraining

One starting point for the deep learning hype was introduction of
the concept ...

If we cannot train a deep model directly, perhaps training each
layer alone would help

Stacked RBMs, pre-training for supervised models

Generative training followed by supervised fine-tuning

Neat idea, but not really used nowadays – the supervised training
algorithm are good enough to work out of the box for good enough
initialization



Supervised representation learning

Supervised deep networks often learn interesting internal
representations for the hidden layers

We can use those as “unsupervised” feature extraction for other
tasks

Overfeat is a pre-trained image classifier; if you need vectorial
representations for images – for any purpose – you can just pick
the last hidden layer of that network

Even better representations obtained if we use richer supervision;
deep learning is especially suitable for multi-task learning




