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Neural networks

Class of methods loosely motivated by how the brain might work.
A more practical definition is that they are non-linear models built
from large number of simple modules

We have already seen some neural networks: Self-organizing maps
and Radial basis function models

We will spend most of the time discussing the canonical neural
nwtwork model, multilayer perceptron (MLP), also called
feedforward neural network

Neural networks are specific models for unsupervised or supervised
learning, here treated separately in part because of the current
deep learning hype
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Each unit (or neuron) takes as input a weighted sum of the outputs
of the previous layer and passes it through some activation function

The layers between the inputs and outputs are hidden layers (or
latent variables as we would call them outside MLPs)



Activation functions

I Heaviside step-function: |u|
I Sigmoid or tanh: s(u) = (1 + e−u)−1, tanh(u) = 2s(2u)− 1

I Rectified linear (ReLU): max(0, u)

The first used as historical motivation for how actual neurons
might work – they “fire” when the input is large enough

Sigmoids are simply convex and smooth approximations for that,
and the rectified linear unit is what people often use nowadays
since it does not require second-order information for fast learning



Why non-linearity?

Denote the activation function for the hidden level by g(u) and for
the output player by h(u)

One output of the example MLP is h(wT
k z) = h(wT

k g(Vx)), which
is actually an adaptive basis function model – each neuron at the
hidden level is one basis function

If h(u) = g(u) = I (u) then the above becomes wT
k Vx, which is

equivalent to νTx for ν = VTwk – the output is linear and hence
nothing was gained by adding the hidden layer



Flexibility

Universal approximation theory says MLPs can approximate any
suitably smooth function with arbitrary precision, assuming
non-linear activiation functions

This holds already for MLPs with single hidden layer

Sketch of the proof for univariate inputs and outputs: Use plenty
of hidden nodes with slightly different biases to create pairs of
hidden nodes that carve out a small piece of the input

Pretty much all adaptive basis function models satisfy this...



Why several layers?

If already one hidden layer is enough, why bother using more?

It is often considerably easier to learn the function with more layers
– we can think of the layers as progressive feature extractors (and
can even train the networks layer by layer)

Might require less parameters in total and hence reduce overfitting

http://playground.tensorflow.org

http://playground.tensorflow.org


The output layer

The output layer is simply some generalized linear model, and
hence linear regression, logistic regression, etc are MLPs with no
hidden layers

We can think of MLPs as adaptive basis function models where all
of the earlier layers generate the basis

The activation function of the output is determined by the task,
and hence typically is different than the activation function for the
hidden layers

To implement multiclass classification, we need mutual inhibition
arcs between the output nodes



Probabilistic formulation

Most losses correspond to some probability density over the labels,
and hence probabilistic interpretation of MLP is clear

Learning by maximum likelihood or by maximum a posterior if
specifying priors for the weights

Hence: Neural networks (and deep learning in general) are simply
specific family of probabilistic models, with considerable attention
dedicated to finding the ML estimate of highly non-convex loss



Learning MLPs

Learning a MLP requires both fixing its structure (the number of
the layers, the activation functions, the number of nodes in the
layers, ...) and learning the weights

We consider first the latter, and return to the (harder) problem of
determining the structure afterwards

The weights we naturally learnt by minimizing some loss function
using gradients



Backpropagation algorithm

The challenge is that we only have targets for the last layer, so we
need to propagate the gradients back through the network

In the end this is merely an exercise in the chain rule of derivation,
yet it took until mid-eighties for people to formulate it despite the
model dating back to the sixties

Consider a case with just one hidden layer:

a = Vx, z = g(a),

b = Wz, y = h(b)

i indexes inputs, j indexes hidden units and k indexes outputs; Vji

links xi to zj ; Wkj links zj to yk



Backpropagation

Consider first the gradient wrt to the output layer weights
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For squared loss we use h(bk) = I (bk) and get the derivative
ŷk − h(bk) = ŷk − yk



Backpropagation

Binary classification:

I L = −ŷ log y − (1− ŷ) log(1− y)

I Sigmoid activation h(b) = (1 + e−b)−1

I Derivative ŷ − h(b) = ŷ − y (Exercise 2)

For a wide range of losses we can find the canonical link function
that results in ∂L

∂bk
= ŷk − yk ≡ δk

This is largely what generalized linear models (the concept we
skipped) are about, but here it is enough to know it holds for the
above cases

The whole gradient wrt to the output layer weights is hence simply
the error weighted by the activations of the hidden layer

∇wL = δkz,



Backpropagation

How about the weights for the hidden layer?
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To compute the first term we need to sum over the outputs that
depend on aj
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Backpropagation

In the end we hence get
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Compare this to the output layer
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to see they are equal – the latter just uses an error signal that was
propagated back using the weights W multiplied with the gradient
of the activation function



What if we have more layers?

For a MLP with two hidden layers the derivatives wrt to the input
weights go through two nested summations, since we need to cover
all routes to the outputs

The key idea of backpropagation is that we do not need to do this
explicitly. Instead, we can just propagate the error signal back and
then act if the latter layers did not exist.

In other words, the equations above generalize for arbitrarily deep
networks by induction



Backpropagation

Practical computation combines forward and backward passes:

I Forward pass: Each unit multiplies the inputs at the previous
layer by the weights and passes the value through the
activation function

I Backward pass: Each unit multiplies the errors coming from
the next layer by the weights and further multplies by the
gradient of the activation function

Stochastic gradients easy – the derivation above was anyway for a
single sample. Second-order techniques also possible, but more
cumbersome

In practice we use automatic differentiation to compute the
gradients; they anyway consists of sums of gradients of elementary
functions



Initialization of MLPs

Random weights are okay, but need to be small enough so that the
units initially operate roughly in the linear region of the activation
functions

Can also scale wrt to the number of incoming and outcoming links,
so that the variance of both the forward and backward passes is
roughly retained at each layer

Remember from Exercise 2 that for the logistic function the
gradient almost vanishes when the input is very large (or very
small) – we want to avoid that at least in the beginning



Regularization of MLPs

MLPs are flexible models and hence prone to overfitting

Regularization by

I Early stopping – if we initialize with small weights the model
is linear in the beginning and becomes more complex during
the iteration

I Weight decay – l2 regularization on the weights; specific name
for historical reasons

I Weight sharing – reduce number of parameters by forcing
some nodes to use the same weights, or by encouraging them
to be similar by shared prior

I Weight pruning – replace small weights with zeroes to
approximate l0 regularization, or just use l1 prior

We will later discuss specific modern regularization techniques



History of neural networks

I Mathematical model for neurons by McCulloch&Pitts (1943)

I Perceptron algorithm by Rosenblatt (1957)

I Minsky&Papert (1969): Perceptrons (with no hidden layers)
only solve linearly separable cases

I Rumelhart&Hinton&Williams (1986) invented
backpropagation

I LeCun et al. (1989): LeNet – a practical MLP that solved an
interesting problem (we will come back to this next lecture

I SVMs (1992) were as accurate but with convex loss functions,
stealing the stage

I Layer-wise training (2002) slowly restarted the interest in
neural networks, with strong hype since 2010 or so – this is
largely because we can now solve harder optimization problems
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