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Problem of blind source separation

There is a number of “source signals”:

Due to some external circumstances, only linear mixtures ofthe source

signals are observed.

Estimate (separate) original signals!



Principal component analysis does not recover original signals

A solution is possible

Use information onstatistical independenceto recover:



Independent Component Analysis
(Hérault and Jutten, 1984-1991)

• Observed random variablesxi are modelled as linear sums of

hidden variables:

xi =
m

∑
j=1

ai js j, i = 1...n (1)

• Mathematical formulation of blind source separation problem

• A form of factor analysis

• Matrix of ai j is constant (factor loadings), called “mixing matrix”.

• Thesi are hidden random factors called “independent components”, or

“source signals”

• Problem: Estimate bothai j ands j, observing onlyxi.



When can the ICA model be estimated?

• Must assume:

– Thesi are mutually statistically independent

– Thesi arenongaussian (non-normal)

– (Optional:) Number of independent components is equal to number

of observed variables

• Then: mixing matrix and components can be identified (Comon,1994)

A very surprising result!



Reminder: Principal component analysis

• Basic idea: find directions∑i wixi of maximum variance

• We must constrain the norm ofw: ∑i w2
i = 1, otherwise solution is that

wi are infinite.

• For more than one component, find direction of max var orthogonal to

components previously found.

• Classic factor analysis has essentially same idea as in PCA:

explain maximal variance with limited number of components



Comparison of ICA, factor analysis and principal componentanalysis

• ICA is nongaussian FA with no separate noise or specific factors.

So many components used that all variance is explained by them.

• No factor rotation left unknownbecause of identifiability result

• In contrast to FA and PCA, components really give the original source

signals or underlying hidden variables

• Catch: only works when components are nongaussian

– Many “psychological” hidden variables (e.g. “intelligence”) may be

(practically) gaussian because sum of many independent variables

(central limit theorem).

– But signals measured by sensors are usually quite nongaussian



Some examples of nongaussianity

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−8 −6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8



Why classic methods cannot find original components or sources

• In PCA and FA: find componentsyi which are uncorrelated

cov(yi,y j) = E{yiy j}−E{yi}E{y j} = 0 (2)

and maximize explained variance (or variance of components)

• Such methods need only the covariances, cov(xi,x j)

• However, there are many different component sets that are

uncorrelated, because

– The number of covariances is≈ n2/2 due to symmetry

– So, we cannot solve then2 factor loadings, not enough information!

(“More equations than variables”)

• This is why PCA and FA cannot find the underlying components (in

general)



Nongaussianity, combined with independence, gives more information

• For independent variables we have

E{h1(y1)h2(y2)}−E{h1(y1)}E{h2(y2)} = 0. (3)

• For nongaussian variables, nonlinear covariances give more
information than just covariances.

• This is not true for multivariate gaussian distribution

– Distribution is completely determined by covariances (andmeans)

– Uncorrelated gaussian variables are independent, and their

– distribution (standardized) is same in all directions (seebelow)

⇒ ICA model cannot be estimated for gaussian data.

• In practice, simpler to look at properties of linear combinations∑i wixi.
PCA maximizes variance of∑i wixi, can we do something better?
Yes, see below.



Illustration

Two components with uniform distributions:

Original components, observed mixtures, PCA, ICA

PCA does not find original coordinates, ICA does!



Illustration of problem with gaussian distributions

Original components, observed mixtures, PCA

Distribution after PCA is the same as distribution before mixing!

“Factor rotation problem” in classic FA



Basic intuitive principle of ICA estimation

• Inspired the Central Limit Theorem:

– Average of many independent random variables will have a

distribution that is close(r) to gaussian

– In the limit of an infinite number of random variables, the

distribution tends to gaussian

• Consider a linear combination∑i wixi = ∑i qisi

• Because of theorem,∑i qisi should be more gaussian thansi.

• Maximizing the nongaussianity of ∑i wixi, we can findsi.

• Also known as projection pursuit.

• Cf. principal component analysis: maximize variance of∑i wixi.



Illustration of changes in nongaussianity
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Development of ICA algorithms

• Nongaussianity measure: Essential ingredient

– Kurtosis: global consistency, but nonrobust.

– Differential entropy / likelihood:

statistically justified, but difficult to compute.

– Rough approximations of entropy: good compromise.

• Optimization methods

– Gradient methods (natural gradient, “infomax”)

– Fast fixed-point algorithm, FastICA (Hyvärinen, 1999)

– one-by-one estimation vs. estimation of all



Combining ICA with FA/PCA

• In practice, it is useful to combine ICA with classic PCA or FA

– First, find asmallnumber of factors with PCA or FA

– Then, perform ICA on those factors

• ICA is then a method offactor rotation

• Very different from varimax etc. which do not use statistical structure,

and cannot find original components (in most cases)

• Reduces noise in signals, reduces computation

• (Simplifies algorithms because we can constrain mixing matrix to be

orthogonal.)



Preprocessing of data

• Prefiltering possible: ICA model still holds with the same matrix A

x̃i(t) = f (t)∗ xi(t) = ∑
τ

f (τ)xi(t − τ) (4)

⇒ (5)

x̃i(t) = ∑
j

ai j s̃ j(t) (6)

One can try to find a frequency band in which the source signalsare as

independent and nongaussian as possible

• (And: Dimension reduction by PCA)



Reliability analysis

• Algorithmic reliability: Are there local minima? (seea) below)

• Statistical reliability: Is the result just accidental?

Can be analyzed by bootstrap but this changes local minimab)

• We have developed a packageIcasso that uses computationally

intensive methods to visualize and analyze these:
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Applications



Application to MEG (Vigário et al, 1998)
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Independent components of “spontaneous” MEG(Vigário et al, 1998)

IC1

IC2

IC3

IC4

IC5

IC6

IC7

IC8

IC9

10 s



ICA in modelling visual cortex

= s1· + s2· + · · ·+ sk·

• Why are the receptive fields in visual cortex the way they are?

• Statistical-ecological approach

– What is important in a real environment?

– Natural images have statistical regularities, “explain” receptive

fields by statistical properties of natural images

– ICA gives the“best” features natural images



ICA / sparse coding of natural images
(Olshausen and Field, 1996; Bell and Sejnowski, 1997)

Features similar to receptive fields of simple cells in V1



More theory



ICA of brain images

• Assume we observe several brain images

– at different time points, or

– under different imaging conditions

• ICA expresses observed images as linear sums of “source images”:

= an1

= a21

= a11  +a12 ... +a1n

• Reverses the roles of observations and variables



Complication (1): Noisy ICA

• Assume there is (gaussian) sensor noise

xi = ∑
j

ai js j +ni (7)

• Very difficult problem in general

• But trivial if noise covariance is the same as signal covariance:

x = A(s+A−1n) = As̃ (8)

the transformed components are independent!

• Or: if noise can be modelled by some components ins.

• In practice maybe the best thing to do:reduce noise by time filtering

and/or PCAand use ordinary (noise-free) ICA algorithms.



Complication (2): different numbers of components and variables

• In the theoretical analysis, we assume the numbers are equal

• In practice, often we have more variables than components

– simple solution (1): reduce dimension by PCA

– simple solution (2): estimate only thek “first” components

• Another very difficult case: Less variables than independent

components



Nongaussianity measures: kurtosis

• Problem: how to measure nongaussianity?

• Definition:

kurt(x) = E{x4}−3(E{x2})2 (9)

• if variance constrained to unity, essentially 4th moment.

• Simple algebraic properties because it’s a cumulant:

kurt(s1 + s2) = kurt(s1)+ kurt(s2) (10)

kurt(αs1) = α4 kurt(s1) (11)

• zero for gaussian RV, non-zero for most nongaussian RV’s.

• positive vs. negative kurtosis have typical forms of pdf.

• absolute value a classic measure of nongaussianity



Left: Laplacian pdf, positive kurt (“supergaussian”).

Right: Uniform pdf, negative kurt (“subgaussian”).
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Why kurtosis is not optimal

• Sensitive to outliers:

Consider a sample of 1000 values with unit var, and one value equal to

10.

Kurtosis equals at least 104/1000−3 = 7.

• For supergaussian variables, statistical performance notoptimal even

without outliers.

• Other measures of nongaussianity should be considered.



Differential entropy as nongaussianity measure

• Generalization of ordinary discrete Shannon entropy:

H(x) = E{− logp(x)} (12)

• for fixed variance, maximized by gaussian distribution.

• often normalized to give negentropy

J(x) = H(xgauss)−H(x) (13)

• Good statistical properties, but computationally difficult.



Approximation of negentropy

• Approximations of negentropy(Hyvärinen, 1998):

JG(x) = (E{G(x)}−E{G(xgauss)})
2 (14)

whereG is a nonquadratic function.

• Generalization of (square of) kurtosis (which isG(x) = x4).

• A good compromise?

– statistical properties not bad (for suitable choice of G)

– computationally simple

• Further possibility: Skewness (for nonsymmetric ICs)



Conclusions

• ICA is very simple as a model:
linear nongaussian latent variables model.

• Solves factor rotation and blind source separation problems,
if data (components) are nongaussian

• Estimate by maximizing nongaussianity of components.

• Radically different from PCA both in theory and practice.

• Can be applied almost in any field where we have continuous-valued
variables, e.g.

– electro/magnetoencephalograms

– functional magnetic resonance imaging

– modelling of vision

– gene expression data


