DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PuBLicATIONS C
REPORT C-2003-NN

Pilarcos prototype II

Markku Viahaaho, Juha-Pekka Haataja, Janne Metso, Timo Suoranta,

Egil Silfver, Lea Kutvonen

UNIVERSITY OF HELSINKI
FINLAND

Contact information
Postal address:
Department of Computer Science
P.O.Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki
Finland
Email address: postmaster@cs.Helsinki.FI (Internet)
URL: http://www.cs.Helsinki.FI/
Telephone: +358 9 1911

Telefax: 4358 9 191 44441

Computing Reviews (1998) Classification: C.2.4
Helsinki 2003

DEPARTMENT OF COMPUTER SCIENCE
SERIES OF PUBLICATIONS C
REPORT C-2003-NN

Pilarcos prototype 11

Markku Vahaaho, Juha-Pekka Haataja, Janne Metso, Timo Suoranta,
Egil Silfver, Lea Kutvonen

UNIVERSITY OF HELSINKI
FINLAND

Pilarcos prototype 11

Markku Vadhdaho, Juha-Pekka Haataja, Janne Metso, Timo Suoranta, Egil Silfver, Lea
Kutvonen

Department of Computer Science
P.O. Box 26, FIN-00014 University of Helsinki, Finland
Lea.Kutvonen@cs.Helsinki.FI

Technical report, Series of Publications C, Report C-2003-NN
Helsinki, January 2003, iv + 83 pages

Abstract

The rise of globalisation makes inter-organisational cooperation an essential requirements
for current IT systems. On the software engineering arena, use of component technologies
is encouraged by production and maintenance cost reductions. Distributed system research
seeks improved functionality and cost reductions by more enhanced middleware solutions.
Under these pressures, new middleware is expected to provide dynamic and automatically
controlled facilities for inter-organisational cooperation.

Pilarcos project develops mechanisms for automatic management of large-scale, inter-
organisational applications based on federation contracts. Federation contracts defines
the business process in use between the partners, the selection rules for members in the
federation, and the current members of the federation together with meta-information
about their technical properties.

This document presents the new prototype implementation of the main Pilarcos services
and sample applications. The new prototype and this document explore and demonstrate
the following features of the Pilarcos architecture:

using explicit architecture descriptions for federation management;

automated multiple-service lookup;

automated federation contract negotiation;

federations across different technology domains (CCM and EJB); and

using policy management facilities for putting federation contracts into effect at each
involved domain.

Besides the implementations of the new middleware services (federation manager, Pilarcos
trader, type repository, and factories), the results of performance measurements on the
prototype software are reported.

Computing Reviews (1998) Categories and Subject Descriptors:
C.2.4 Computer-communication networks: Distributed Systems

General Terms:
Design, Documentation, Experimentation

Additional Key Words and Phrases:
Software system architectures, federated systems

Contents

Introduction

Overview of the prototype

2.1 New middleware functionality
2.2 Pilarcos middleware serviceso L oo
2.3 Demonstration application Lo 0oL,
2.4 Other required software elements
2.5 Prototypelayout L

Concepts

3.1 Policies and policy frameworks L.
3.2 Interfaces of federated applications
3.3 Service type - . . - . .o e
3.4 Architecture oL
3.5 Service and federation contractso
3.6 Policy contexts

Application level services

4.1 Application development with Pilarcos infrastructure

4.2 Application programming interface (API)
4.2.1 Up-call API for federation management
4.2.2 Down-call API for federation management
4.2.3 Connector APT
424 APIusagescenario

4.3 Common management interfaces of applications

4.4 Application services in the prototypeo Lo,
4.4.1 Collaboration sequences of prototyped applications

4.5 Application dependent support elementso L.

Infrastructure services

5.1 Policy repository L
5.1.1 Imterfaces e
5.1.2 Functionality
5.1.3 Future enhancements L.

5.2 Federation manager. Lo
5.2.1 Imterfaces
5.2.2 Federation contracts
5.2.3 Population process L oL

iii

11
11
12
13
14
15
16

18
18
19
20
20
20
21
22
23
24
28

iv CONTENTS

5.2.4 Federation establishment 33

5.2.5 Federation termination 35

5.3 Factories and connectors Lo e 35

5.3.1 Service Factory o 36

5.3.2 Connectors0 e e e e 37

5.3.3 Application and adapter selection 38

5.3.4 Direct and in-direct referencing o 0oL 39

5.3.6 Life-cyclescenarios oo 40

5.4 Typerepositoryo L 44

5.4.1 Imterfaces 44

5.4.2 Datastructures e 44

5.4.3 Registering policy framework type 45

5.4.4 Registering servicetypeo 45

5.4.5 Registering architectureo 45

5.4.6 Other functionality in provided interface 47

5.4.7 Future development 47

5.5 Pilarcos trader e 47

55.1 Design e 48

5.5.2 Imterfaces 49

5.5.3 Compatibility requirements 49

5.5.4 Search algorithmo o oL 49

5.5.5 Data structures o 52

5.5.6 Futurework 52

6 Performance measurements 53

6.1 Pilarcos trader performanceo Lo oo, 53

6.1.1 Measurement parameters 53

6.1.2 Measurement environmento L 54

6.1.3 Resultsand analysis 54

6.2 Prototype performance Lo Lo oL 57

6.2.1 Measurement parameterso 57

6.2.2 Measurement environmento Lol 57

6.2.3 Resultsand analysis L oo 58

7 Conclusion 64
Appendices

A Selected IDL definitions 68

Al Common e e e e e e e 68

A.2 Federation manager, service factory, and federated application 71

A3 Policy repository L. 76

A4 Typerepository Ll e 7

AL Trader e e e 79

A.6 Public tourist service e 80

A.7 Public payment service oL 81

A.8 Publichotel service e 82

A9 Comnnector e e e e 83

Chapter 1

Introduction

Current information processing needs of companies require inter-organisational coopera-
tion. New middleware is expected to provide dynamic and automatically controlled fa-
cilities for inter-organisational cooperation. Current middleware solutions already provide
reasonable support for managing the technological heterogeneity of operating systems and
network solutions and for adapting to dynamic changes in available resources. However, in a
multi-organisational environment, decisions on provision of application-level service, on op-
erational policies, on platform architectures, and on communication protocols can be done
independently from other systems. Further difficulties encountered by inter-organisational
applications include the need to adapt to the constant change in potential partners and
the independently driven development of services in each of these systems.

These challenges should be addressed by improved middleware support. Facilities are
needed for expressing service requirements, and for describing alternative conversation
patterns between services. Furthermore, facilities are needed for negotiating joint rules on
new cooperation relationships.

Therefore, new middleware should provide facilities for capturing the workflow, search-
ing for available members for the workflow, and ensuring that a suggested set of members
is able to interoperate both semantically and technically.

The Pilarcos project develops mechanisms for automatic management of large-scale,
inter-organisational applications. Running an inter-organisational application is consid-
ered as a federation that is managed using an explicit federation contract. The contract
essentially includes

e a description of the business process as an architecture description,
e selection rules for members in the federation, and

e references to the current members of the federation and metainformation about their
technical properties.

At each domain, there are local servers that are able to

e search and locate potential members for a federation,

e negotiate and establish a federation contract,

start and configure local services to act as members of the federation, and

jointly establish communication between peer members in the federation across do-
main boundaries.

2 Introduction

Pilarcos middleware provides application programmers with pervasive, platform-inde-
pendent tools to manage federations. However, the use of the functions remains explicit.
Providing federation management facilities in a middleware has the benefit of releasing pro-
grammers from re-implementing these facilities repeatedly in applications. Furthermore,
inter-organisational interoperation can only be achieved through standard solutions and in
this case, via standardising new middleware services and metainformation elements.

Separating design of business architecture descriptions and implementation of com-
ponents improves the software engineering process in general. The natural lifetimes of
these elements differ, as well as the skills required for the provision of them. The Pilarcos
middleware service allows workers to concentrate on their component logic and provides
business architectures and technology mappings as ready-made solutions, as instructed by
the currently popular production line concept [5].

Providing tools for automating the administration of service composition reduces sys-
tem maintenance cost. Because the federations directly support changes in membership,
there is good support for adaptation to changes in the business situation and also to changes
in the technical availability of services. The design incorporates into the same management
model both private business within the organisation and external cooperations with varied
and potentially contradictory requirements.

The Pilarcos project has had two phases. In the first phase, a middleware model
based on the use of explicit architecture descriptions and dynamic federations was created.
Also, in the first phase, a proof-of-concept prototype was developed and its performance
evaluated.

In the second phase, a new prototype implementation of the main Pilarcos services and
sample applications have been written. The new prototype and this document explore and
demonstrate the following features of the Pilarcos architecture:

e using explicit architecture descriptions for federation management

automated multiple-service lookup

automated federation contract negotiation

federations across different technology domains

e using policy management facilities for putting federation contracts into effect at each
domain.

The focus of the second prototype has been on the interoperability between domains
using different middleware technologies (CCM [16, 17] and EJB [20, 21]). In addition,
essential changes have been made on federation coordination services.

The rest of this document is structured as follows. Chapter 2 gives an overview of
the prototype. After the main ideas have been introduced, the overall structure and main
components are described briefly. Management of federations is also discussed. After this,
the document goes into more technical detail.

The most important concepts and data structures are discussed in Chapter 3. Chapter 4
presents the example application scenario used, the Tourist Information Service, and how
the application components are constructed. Descriptions of the application programming
interfaces (APIs) to Pilarcos infrastructure services are also included. Chapter 5 describes
the Pilarcos infrastructure services: the Pilarcos trader, the type repository, the policy
repository, different factories, and the federation manager. The benchmarking results of
the prototype are presented and analysed in Chapter 6. Chapter 7 concludes the document.

Chapter 2

Overview of the prototype

Pilarcos prototype software includes middleware services for managing federations, services
and bindings, and in addition, an experimental application scenario. The implementation
environment of these software elements is heterogeneous, consisting of CORBA Component
Model (CCM) and Enterprise Java Beans (EJB) platforms.

This section first introduces the new middleware functionalities suggested by the Pi-
larcos architecture also addressing the meta-information manipulated by the middleware
services involved. The software elements of Pilarcos prototype are briefly introduced and
the configuration and allocation of services is shown.

2.1 New middleware functionality

Inter-organisational cooperation creates a situation where a business process involves com-
ponents that have independent administrations. This independence means for example,
that the time of availability of a service is not commonly known and that decisions that
effect the interactions related to the service can take place without the agreement of all
cooperating partners. Also, independent technology decisions in each organisation may
cause mediation needs without much warning.

So far, the method of adapting to the above mentioned problems have been man-
ual management of software. When a cooperation partner changes versions or products
for communication platform or provided services, corresponding changes or invention of
adapting wrappers urgently takes place.

One of the major goals in Pilarcos project series is to provide facilities for automating
much of this adaptation work. From this goal, two issues arise. First, how to express who
the cooperating partners are and what their responsibilities are. Second, how to automate
the checking of conformance and how to combine elements into a running system at each
organisation. In addition, there must be a way to express both organisational and technical
domains.

For the definition of partners and responsibilities, we have chosen to use business ar-
chitecture descriptions. A business architecture is defined by a set of roles, interactions
between roles and a set of policies. The business architecture description does not fix the
identities of the participating systems. Instead, roles are associated with service type that
defines the the class of service required. Members for the federation are selected based on
service offers that describe the component’s service type, technology requirements, conver-
sation protocols expected, operational policies, cost, location, etc. Policies in a business

4 Overview of the prototype

architecture have two targets. First, a policy rule can be set to govern the behaviour of
a component in a role. For example, different information retrieval strategies can be pre-
ferred depending whether there is need to save space or time in a search. This kind of
expectation can be passed on to a component via a role related policy. Second, a policy rule
can be set to govern interactions in the federation. The business architecture can model
alternative interaction sequences and the policy value can be used to define the desired
selection of these.

For creating a federation services are needed for discovering the services currently made
available from each organisation. In addition, services are needed for checking the con-
formance of a component to a federation. For this, details of the conversation needed for
using a specific service, and details of the information exchange protocols used for these
conversations are required. For the necessary meta-information to be available, informa-
tion providing facilities are needed. For example, tools are needed for designers to enter
descriptions of services and the runtime environment to register services when they are
installed or started. Furthermore, a variety of adaptors for different kind of mediation
needs is needed, to be automatically used where necessary.

For structuring and organising management tasks, the Pilarcos approach uses two types
of domains: administrative domains and technology domains. An administrative domain
can be for example an organisation, a company or a department with authority to do
independent operational decisions about the way it runs its business. Organisation-wide
policy management allows IT-system administrators to reflect operational policies — such
as restrictions to cooperation partners, payment related conversation styles and time of
availability of offered services — consistently onto all applications of the organisation in an
automated manner. Service descriptors, service management rules, and policies are defined
at the administrative domain level in technology-independent terms.

Component management rise the need of separation between technology domains. For
each technology, there are various facilities for deployment, instantiation and termination
of components. A technology domain is here limited within an administrative domain
for simplicity. At each technology domain, service descriptors and service management
rules are mapped onto technical engineering solutions. Naturally, these mappings follow a
pattern common to all administrative domains.

Another goal for the Pilarcos architecture is that components can be involved in mul-
tiple federations simultaneously. An organisation cooperating with many partners has the
problem of having contradictory communication requirements from its partners. However,
it is often the case that no task in itself involves all partners at the time. The components
are expected to follow policy rules stated in the local policy repository. As a private set of
policy rules can be applied for instances of services, instances with mutually contradictory
policies can be running simultaneously without problem. Federation contracts are an in-
tegral part of component management mechanisms, because the relevant information they
contain is stored into the policy repository. Consequently, simultaneous federations can be
contradictory with each other, making it possible to simultaneously adapt to the needs of
different cooperation partners.

The essential federation management functions required from the new middleware in-
clude

e definition of policies for components within an organisation,

e establishing federations, and

2.2 Pilarcos middleware services 5

e terminating federations.
From these, federation establishment is of special interest. It comprises of
e selection of architecture for the federation,

o selection of members for the federation, involving check of conformance of behaviour
and interfaces for the potential members against the requirements of the business
architecture and each others, and

e selecting joint policy for the federation.

Once the federation contract has been established, the federation itself can be made
functional. This means locally mapping the contract to local technical solutions in order
to be able to start services and bind them together.

2.2 Pilarcos middleware services

The prototype middleware includes implementations of an architecture description-based
trading service for looking up services in the network, federation management services
for automated federation negotiation and establishment, and simplified application and
channel instantiation services. The goal was to build a rather complete proof-of-concept
implementation of the main Pilarcos components, and to explore interoperability between
middleware platforms in practice.

Federation manager handles federations with other organisations. Federation manager
implements the federation establishment protocol, in which one federation manager is
chosen as the coordinator for the entire federation. The federation manager also stores
federation contracts, and presents APIs for using the Pilarcos services to the applications.

The federation managers are responsible of running the protocol for negotiating, main-
taining and re-negotiating federation contracts. For federation managers, the essential
information element is of type federation offer. It is a combination of compatible service
offers, one for each role in a specific business architecture. The federation establishment
protocol is initiated by a client request. As a first step, a service offer that describes the
client itself is positioned into a federation offer element. The Pilarcos trader then populates
the rest of the roles. As a result, several suggested federation offers are returned for the
client to choose from.

Pilarcos trading service creates federation contract offers for an entire community. It
also acts as a directory of service offers as service providers export their offers to the trader.

The enhanced Pilarcos trader provides two main operations: exporting a service offer
for a specific service type (export), and populating a business architecture with mutu-
ally compatible service offers (populate). The former operation could be used with an
administrative tool by a service provider. The latter operation is used by the Pilarcos
federation manager on behalf of the application wishing to establish a federation. The
populate operation takes an incomplete federation offer as a parameter, and returns one
or more completed federation offers. No separate constraint parameter is used; instead,
the incomplete federation offer typically contains a pre-filled service offer for the popu-
lating role itself, defining its policies for the federation. Thus, the population process is
completely symmetrical: any role that has been left empty in the incomplete federation
offer is populated by the Pilarcos trader. This makes it easy to do partial re-populations
for failure recovery or adaptation purposes.

6 Overview of the prototype

Type repository supplies the trading service with type information about service types,
architecture descriptions and service interfaces. This information is needed for testing
whether a component is a suitable member in a federation.

The Pilarcos middleware design includes an enhanced version of ODP type repository [7]
for holding relationship information between generic types (service types, binding types,
interface types) that are technology-independent and used for matching purposes.

Policy repository holds a hierarchy of policy contexts within the organisation. These
contexts contain administrative, application-specific and federation-specific policies that
constrain the behaviour of applications and infrastructure services, all in a unified structure.

Pilarcos middleware expects that components can be managed by policies, much like
in policy-based management systems (e.g. [14]). Administrators can create and set policies
for component groups. Furthermore, federation contracts are stored into the policy repos-
itory and thus federation contracts become an integral part of component management
mechanisms.

Service management is a generic interface implemented by the service factory facility.
It is used for instantiating application components using services from technology-specific
factories, the application homes.

Channel management is a generic interface implemented by the service factory facility.
It is used for creating and configuring adapters for communication between technologically
differing domains.

The Pilarcos middleware services reflect the administrative and technology domains and
the need to cooperate across the domain boundaries. There are collaborative middleware
services with a running agent at each administrative domain for negotiating federations
and advertising available services. These agents take care of making requests to their peers
at other domains, as there is no authority to otherwise invoke management actions at a
foreign domain [10]. The requests carry contracts to pass relevant meta-information that
identifies what should be done and how. On the other hand, there are local management
facilities running at each technology domain for managing components. In addition, at
each administrative domain there are agents responsible of mapping abstract federation
contract information into a form usable at technology domains.

2.3 Demonstration application

The Pilarcos prototype software includes application services for a demonstration federa-
tion. In this section, an overview of that application is given.

The case is built around an idea of a portal service, the Tourist Info, which provides
travellers access to vertical tourist services like travel information, hotel bookings, and
weather services. It is assumed that neither the portal service nor the vertical services are
free, and the traveller has some electronic payment instrument (e.g. credit card) available.

The prototype implements two business communities: tourist info community and hotel
info community. Tourist info community contains three domains each with their own
role (tourist info client, tourist info service, payment service) and describes the business
community related to providing the portal service. Hotel info community also contains
three domains each with their own role (hotel info client, hotel info service, payment
service) and describes the business community related to providing the only implemented
vertical service (hotel bookings). Tourist info client and hotel info client represent the users
of corresponding services whereas tourist info service and hotel info service represent the
providers of the services. Payment service represents a trusted third party used to mediate

2.3 Demonstration application 7

Business community seen by the Tourist Info Service

Business community seen by the Tourist Info Client Business community seen by the Hotel Info Service
e d

Tourist Info Client Hotel Info Service

fm—mm———— =

Tourist Info || | Hotel |nfoi
Service ' Client |

Payment Service Payment Service

Figure 2.1: Business entities and communities in the Tourist Info Service case.

the transfer of funds between the other entities in the community. Figure 2.1 shows the
business entities and the communities formed by them.
The federation structure is defined by an architecture description, which captures

e a set of roles,
e bindings between the roles representing their interactions, and

e assignment rules (property requirements) for the roles.

Client role Server role
Tourist Info architecture

Touristinfo-
Service

Touristinfo-
Client

PaymentMediator role

Payment—
Service

Figure 2.2: Tourist information service architecture illustrated.

Figure 2.2 illustrates the Tourist Information Service architecture description. Roles
are drawn as circles; each role has an associated service type, drawn as a square, with
interfaces to other parties. In the prototype, the architecture description is used for look-
ing up compatible service providers as well as for establishing a federation — including
communication channels — between the participating systems. Section 3.4 contains a more
detailed description of architecture descriptions in the current prototype.

8 Overview of the prototype

The process of using the Pilarcos trader to find suitable service offers for empty roles in
the architecture is called populating the architecture. The Pilarcos trader verifies the com-
patibility of the individual service offers, and returns complete federation contract offers.
Having populated an architecture, the client can then proceed to establish a federation on
the basis of one of the offers with the help of the federation manager. In this process, a
final federation contract is formed; this contract includes application-specific policies as
well as technical interoperability data. Note that an application may participate in sev-
eral federated communities at the same time, possibly in different roles, and that these
communities are logically completely separate from each other.

2.4 Other required software elements

Bindings between components require that the peer components have compatible interfaces.
In Pilarcos, we are concerned of semantical compatibility as described in this section,
and allow adaptation to take place between interfaces. The adaptation elements can be
automatically inserted in to the communication route described in Section 5.3.3.

Selecting components for the application involves tests for component conformity. Con-
formity of components covers questions such as interface type matching, component be-
haviour compatibility and contract breaches, and expected binding semantics, to mention
a few. (A literature overview on the topic can be found by Spanish colleagues [25].) In a
multi-organisational environment, components involved in a federation cannot inherit prop-
erties that would ensure interoperability between components. Therefore, several levels of
interoperability problems must be solved based on explicit meta-information exchange.

First, the participants should have matching views of the logical business process they
are involved in and matching policy decisions where alternative cobehaviour models are
possible. For example, in a tourist service application, where clients can make hotel reser-
vations through a tourist office, there might be alternative payment methods, such as
pre-paid vouchers for hotels or credit card payment after the visit, embedded as alterna-
tive behaviours into a shared application logic.

Second, there should be matching views of the computational communication solution
involving the participants. For example, a payment interaction can be computationally
implemented by a sequence of protocol messages between buyer, seller and bank, and each
party should have similar assumptions about the message formats and ordering; if not,
some bridge solutions should be used between the parties for creating a coherent view.

Finally, there should be matching views of the engineering of the communication me-
diating solutions. For example, each party expects the transport protocol to preserve
message sequences or support transaction transparency; if that is not the case at some
domain, additional services can be used to intercept and upgrade the transport service.

Adapters are small elements that are able to do transformations. A transformation
can be either syntactic or semantic in nature. a proxy reference or a remarshalling of
a message. Adapters are implemented as components in the current prototype. In the
prototype, adapters are essentially technology-bridging entities, and limited to technical
transformations.

The federated binding mechanism configures an adapter into a binding when the inter-
faces are semantically similar, and a relationship between them is known and supported
by an adapter.

Adapters need to be implemented as independent elements and stored into repositories
for general use. Methods or tools for adapter implementation has not been studied in this

2.5 Prototype layout 9

project. Related research on the topic is described for example by SOFA project [1].

We assume that practical needs and market forces push for an efficient set of adapters
to appear. However, the number of adapters will be fairly large and constantly evolving,
thus making their management automatic once they have been created.

2.5 Prototype layout

In concrete terms, the Pilarcos prototype consists of Pilarcos infrastructure service com-
ponents and Tourist Information Service application components that take advantage of
the Pilarcos services. Infrastructure services and most of the application components
have been implemented on two new CORBA Component Model platforms, the Java-based
OpenCCM [18] and the C++-based MicoCCM [15]. In addition, one of the application
domains is built on Enterprise JavaBeans technology, running on the JBoss application
server [9]. Seamless interoperability between the three platforms has been a major focus
in prototype development.

Figure 2.3 illustrates the main Pilarcos infrastructure components and their relations
in a generic setting. The organisational domain borders separate the organisations running
the client application, the server application, and the global trading and type repository
services.

As can be seen from Figure 2.3, the communication between the so-called client and
server domains takes place on three levels. The lowest level is the federation management
level. On this level, messages (technically IIOP messages carrying operation calls) related
to federation negotiation and establishment are exchanged between federation managers.
Communication channels (in the prototype, IIOP connections) between applications are
established on the channel management level, which is currently implemented as a naming
service lookup. Finally, at the topmost level applications communicate with the help of
adapters that bridge technological differences between the domains, automatically installed
by Pilarcos services.

Pilarcos prototype is developed on heterogeneous environment. A significant part of
Pilarcos software is based on CORBA Component Model and Enterprise Java Beans spec-
ifications. Within those specifications several implementation options are available with
varying licensing, programming language and interoperability properties.

In general the Pilarcos prototype is open source, written in Java and C++, and run on
GNU/Linux using Intel x86 compatible PCs. The Pilarcos prototype can be run on other
operating systems and hardware environments as long as they have the proper CCM and
EJB implementations available.

technology domain border

organisational domain border

E 7777777777777777777777777777777777777 : i e
09 ! \l/ : . : : y |
c ‘ lication calls :
@ component | _ | Client-side application 4> P : ' Server-side gpplication | _ | component
rO homes components 3 i § components homes
w A resolving in-direct interface references oo A
bes A Lo oo T g = e I Technolo ifi A
o ‘ Connector API 3 i = Naming ySerSp\ﬁ%e -
3 : i :
Py ;
o e ‘ St adapters : """"""""") } """"" adapters -t b
o :
5] ¢ 1 #
Y . .)
i r— resolving federated interface references. | Federaion e pr—
h — | | RTT i aming | TR -
Service ; Service
8] -~ Federation Manager | federation management »| FederationManager [
= Factory ! 20 ‘ ! 0 Factory
= i
8 ¢ i #
[47] i . .
) Policy Repository T T Policy Repository
= e —— Tl
% | Globa B
S T Type Repository [
e} —_T Tl
: T
Q
g _ Pilarcos
3 Trader
o
=]
%)
=]
[l
n

01

adAy0301d o173 Jo MoI1ATOA()

Chapter 3

Concepts

This chapter describes concepts that are frequently used later in this document. First,
policies and policy frameworks are introduced in the way they are used in the Pilarcos
prototype. Later sections build on top of these fundamental elements describing more
complex structures. Service types describe the characteristics of a single service. Architec-
ture descriptions define the structure of a federation composed of individual services, and
the agreed state of a federation is captured by service and federation contracts. All this is
managed with policy contexts.

For reference, Section A.1 in Appendix A includes the IDL definitions for the data
structures described here.

3.1 Policies and policy frameworks

In the Pilarcos model, federation policies are used to describe service properties and be-
haviour. Federation policies, or just policies for short, are also coded as name-value pairs.
Although policies may carry both business policies and technical property information, the
Pilarcos infrastructure makes no distinction between the different kinds of policies.
Related policies are collected together as policy frameworks. Because a policy frame-
work, together with a description of its semantics, defines an ontology for policies, policy
frameworks are subject to publication and standardisation. The structure of a policy
framework is defined by its policy framework type, which is a named set of policy types. A
policy type defines the name and, in our implementation, the OMG IDL type of the policy.
An example pseudocode definition of a policy framework type looks as follows:

policy framework type TouristInfoPolicies {

doubleRange price; // cost of service
string area; // city

stringSet paymentPolicy; // pre/postpayment
stringSet offeredServices; // e.g. hotel service

stringSet supportedTerminals; // e.g. PC, PDA
}

Policy framework types are registered to the global type repository (Section 5.4), and
are used in policy contexts and service types. To allow multiple logically different policy
frameworks that share the same type to be used, a policy framework is formally defined as
a named instance of a policy framework type.

Comparison of policy frameworks, which must be of the same type, is done by compar-
ing the individual policies within the frameworks. Policies with equal values are defined to

12 Concepts

be compatible.

The Pilarcos services also recognise special policy value types that make it possible to
use simple constraints as policies. Currently, special types are defined for expressing simple
closed intervals of integers and real numbers, for example [1, 5], and string set constraints.
These types of policies are compatible if their intersections are non-empty.

A string set constraint policy consists of a constraint type and a set of string values.
For example, a string set constraint policy of the form protocol = one_of {“IIOP-1.1"
“II0P-1.2", “RMI-1.0"} requires that exactly one of the listed protocols must be used as
the final protocol. Three constraint types can be used. In increasing order of strength,
they are

e some_of, which requires that one or more of the strings be present in the final policy;
e one_of, which requires the final policy to contain exactly one of the strings; and
e exactly, which requires that the final policy must contain exactly the original strings.

All constraint types are exclusive: they prohibit additional values.

The intersection of two string set constraint policies is a string set constraint policy
whose constraint type is the stronger of the original types, and whose set of strings is
the intersection of the original sets. For example, the intersection of some_of {A,B,C}
and one_of {B,C,D} becomes one_of {B,C}. In the case of an exactly policy, the
intersection is empty unless the intersection of the string sets is equal to the string set of
the exactly policy. Note that it would be possible to have other types than strings as
values with the same rules; strings were chosen for simplicity.

String sets include a possibility to specify different weights for different items. The
weights are expressed as doubles in the range [0, 1]. Intervals have preferred values that ex-
press the most wanted value within the interval. The trader uses the weights and preferred
values when choosing final policy values for federation offers, picking the most commonly
preferred alternative.

Intervals and string set constraints are sufficient for expressing most common con-
straints, and yet are simple enough for efficient calculation. Most importantly, they have
the property that calculating their intersections is an associative and commutative opera-
tion, which allows the Pilarcos trader to perform the calculations in any order and optimise
the search process.

3.2 Interfaces of federated applications

The Pilarcos model has two layers of interface types: abstract and concrete. An abstract
interface type represents a logical functionality, defined by an either formal or informal
description; a concrete interface type defines the actual operations supported in a concrete
interface definition language, such as OMG IDL. A single abstract interface can be im-
plemented as multiple concrete interfaces. The distinction is similar to that between the
computational and engineering viewpoints in the ODP Reference Model [8].

Abstract interface types are platform independent; concrete types are platform specific.
This two-layered model is necessary to support federation of sovereign systems [11, 6.2],
which may use differing implementation technologies. Interfaces are considered compatible
if their concrete types are the same, or if an interceptor (adapter or bridge) is available
for differing types. Interface types, interceptors and their relations are registered in the

3.3 Service type 13

type repository, which provides type matching operations. The prototype implementations
of the Pilarcos services code concrete interface types as strings, and the type repository
simply compares them for equality.

The use of abstract service types is designed to directly support more complex inter-
operability tests, especially semantic matching or protocol based matching. A variety of
existing research elsewhere can be combined in Pilarcos context [25]. Currently only plat-
form related differences or simple application interface differences can be controlled. Also,
type repository administrator tools are missing.

3.3 Service type

A service type definition consists of a set of required and provided abstract interfaces,
and a set of policy frameworks attached to the interfaces. Defining required interfaces in
addition to provided interfaces makes service types abstract, composable components [22].

Figure 3.1 is a condensed pseudocode example of the tourist service type; types are
written with capitalised initial letters. Compare this with Figure 2.2.

service type: TouristService

{
provides interface: TouristServicelnterface tourist_service_i;
requires interface: BillingInterface billing_i;
policy framework: TouristServicePolicies tourist_service_pf
attached to interface: tourist_service_i;
policy framework: PaymentPolicies payment_service_pf
attached to interface: billing i;
}
service type: PaymentService
{
provides interface: BillingInterface billing_i;
provides interface: PaymentInterface payment_i;
policy framework: PaymentPolicies payment_service_pf
attached to interface: billing_i, payment_i;
}

Figure 3.1: Pseudocode example of service type definitions.

The policy frameworks attached to an interface parameterise the behaviour associated
with the interface. It is possible for a single policy framework to be attached to more than
one interface, which implies that the policies are shared. In the tourist service example, the
payment service has a shared policy framework for both the billing and payment interfaces.
This ensures that the payment service, the biller, and the payer have compatible payment
policies.

Service types are registered to the global type repository (Section 5.4). The service
type attempts to define the external (abstract) interfaces of the service completely, so
that a service provider can implement a service independently on the basis of the service
type description. Service offers exported to the Pilarcos trader implement some registered
service type. Note that in Pilarcos, even a client application that does not provide any

14 Concepts

services has its own service type. The reason for this symmetry is that each role in an
architecture description must have an associated service type (Section 3.4).

3.4 Architecture

In Pilarcos, an architecture, or an architecture description, is a template model of a feder-
ated community and is used for automated service lookup (using the Pilarcos trader) and
federation. The architecture description defines what services the community is composed
of, and how they should be connected together. See below for a pseudocode example of an
architecture description.

architecture TouristInfoArchitecture {
role client {
service type TouristInfoClient;

}

role server {
service type TouristInfoService;

}

role paymentMediator {
service type PaymentService;

}

binding (client.hotelInfol, server.hotelInfol);
binding (client.paymentI, paymentMediator.paymentI);
binding (server.billingl, paymentMediator.billinglI);

In the prototype, an architecture consists of a set of roles and a set of bindings between
the roles. A role is defined simply as a name with an associated service type, which must be
registered in the type repository. Currently, bindings are always one-to-one, and connect
the interfaces of two service types in two roles together.

client server
Pay| [Tou \ o Py / Tou Pay
/ payment_mediator \
T Pay -

Figure 3.2: Connected policy frameworks in the example architecture.

When interfaces of two roles are connected by a binding, policy frameworks of the same
type attached to the interfaces are also implicitly connected. For service offers for the roles

3.5 Service and federation contracts 15

to be compatible, their connected policy frameworks must then also be compatible. The
compatibility requirement can even extend over several roles via service types that have
shared policy frameworks, in the tourist service example payment policies are shared by
all roles. For an illustration of this, see Figure 3.2.

Architectures are registered to the global type repository; service types used in roles
must have been registered previously. The architecture description to be used is dictated
by the client, which sets the appropriate fields in its role context (Section 3.6) before
populating. Because the architecture is used only for federation establishment, service
providers need not be aware of it at all. The infrastructure handles federation establishment
completely transparently.

3.5 Service and federation contracts

The service contract structure is used to hold both service offers as well as finished con-
tracts. The service contract represents a concrete service of some service type, and consists
of interface references and policy values for the policy frameworks of the service type. In
addition to the interface references, which serve to connect federated applications to each
other, the service contract also contains an interface reference to the federation manager
(Section 5.2). This reference is the initial contact point where a federated service is avail-
able.

The federation contract structure is used to hold both federation (contract) offers as
well as final federation contracts. A federation contract is a collection of service contracts,
one per each role in the related architecture.

A federation offer describes an entire community, whose structure is defined by its busi-
ness architecture definition. It consists of one service offer for each role in the architecture.
If one or more service offers are missing, the federation offer is incomplete, otherwise it is
complete.

- By . 0.* L* —
| Policy framework type T Service type | Role |i| Binding
[B N 1 « 1% 0.*
1.
1+ [Abstract interface type | 14 L
Policy type 1 Architecture [e——
1 is of type is of type 1
0.%
is of type [Concrete interface type |
0. 0. L 0.

Service contract [Federation contract

Figure 3.3: UML class diagram of Pilarcos policy concepts.

In other words, a federation contract represents a partially or completely populated
architecture. The Pilarcos trader takes in a partially filled federation contract and finds
candidates for the empty roles (Section 5.5). After a federation is established, the final fed-
eration contract is held by the federation manager (Section 5.2.4) acting as the coordinator,
and replicated into other federation managers.

16 Concepts

3.6 Policy contexts

Policy contexts are used as a structuring technique in policy management throughout the
Pilarcos system. Management of application behaviour, service offers and federations is
done by means of an integrated hierarchy of policy contexts, maintained by a central policy
repository.

More concretely, a policy contezt is the set of policies (policy values) related to a context
within an organisation. For example, each instance of a federated application has its own
policy context. Policy contexts are arranged hierarchically, so that the policy contexts
in the higher levels restrict the policies in contexts below them. The root of the policy
context tree would ordinarily be the organisational policy context; below that, there can
be several levels of contexts, with contexts related to individual federations as leafs.

The policy repository of the organisation maintains the hierarchy of policy contexts.
Unlike federation contracts, policy contexts are directly visible to application programmers.
Applications are obliged to follow the policies defined in the current context, otherwise a
breach of contract occurs. However, in most cases, applications need not directly manage
policy contexts; this is done by the Pilarcos infrastructure services, which create and modify
contexts using the interface offered by the policy repository.

The prototype has four levels of policy contexts: application (instance) contexts, ser-
vice (type) contexts, (service) offer contexts, and federation contexts, as illustrated in
Figure 3.4.

|App|ication contextl

|Service context| |Service context|

|Offer context| |Offer contexd]

|Federaticm context| |Federaticm context| |Federation contextl

Figure 3.4: Policy context hierarchy in the prototype.

Each application instance has a unique application context, created by the service fac-
tory at instantiation time. In principle, the application context holds the policies govern-
ing the behaviour of the application. As its children, an application context has service
conterts, one per service type. Service contexts are similarly created at application instan-
tiation, and hold current default policies for service offers of each type.

On the server side, an offer context is created as a child of a service context when a
service offer is exported to the Pilarcos trader. In the prototype, this happens during the
deployment process. The created offer context contains a copy of the policies in the service
offer.

On the client side, an application creates an offer context for populating a business
architecture. In the population process, the offer context represents the service offer of the
populator. Initially, the offer context receives policy values from its parent service context;
the application may optionally change them before issuing the population request.

3.6 Policy contexts 17

Finally, a new federation contezt is created per federation or federation offer. On the
server side, a federation context is created when a new federation is established. On the
client side, the federation offers received from the population process are represented to
the application as federation contexts. The application may then select one or more of
them for establishing a federation and discard the rest.

In the policy repository, new policy contexts are given unique identifiers (policy context
ID’s) by which they are referenced. Since the identifiers are unique within an organisation,
they are used in the prototype also for identifying application instances and federations.

The policy frameworks of a policy context are defined by its policy context type. Each
level in the policy context hierarchy has a different policy context type. However, policy
context types have not been implemented in the prototype: for now, the service type
(Section 3.3) acts as the policy context type. Therefore application contexts, which have
no associated service type, cannot currently hold any policies; they act merely as identifiers
for application instances.

Chapter 4

Application level services

This section discusses application development in Pilarcos environment. The key points
of the supported software development and management processes are discussed, and the
provided API for component programmers is introduced. The application services imple-
mented for the Pilarcos prototype illustrate the use of these facilities.

4.1 Application development with Pilarcos infrastructure

An inter-organisational application is not developed by a single software engineering team.
Instead, it uses services developed and managed separately at independently administered
sites.

The establishment of a federation requires the following processes to have taken place

e definition and publication of business architecture specifications
e definition and publication of service type specifications

e implementation and deployment of application components

e implementation and deployment of adapter components

These processes are performed by different kind of personnel, either within a software
providing company or consortia (like OMG) that sets de facto directives for cooperation.
Business architectures can be specified by people focusing on business processes and com-
mercial rules, company requirements, and the goals of cooperation. Type specifications and
verification of their similarities require technical skills of interface and service definition,
and knowledge about the requirements of the markets and business architectures. Also a
view of development trends is beneficial. Publication and deployment tasks naturally fall
on system administrators at each company. Implementations can be produced either by
the companies themselves or bought as independent packages.

In the Pilarcos project, only a simple text based interface for publishing business ar-
chitecture specifications is available. The style of description language can be seen in the
application described in Section 2. However, the business process description languages and
tools are of increasing interest. For example, Microsoft’s XLANG specification [23] con-
siders business processes as contracts between two or more parties, defining the behaviour
of each party. Moreover, the business process definition shows how the individual service
descriptions are combined, using a map that defines the connections between the ports

4.2 Application programming interface (API) 19

of the services involved. IBM’s WSFL (Web Services Flow Language) approach defines a
public interface that allows business processes to advertise themselves as Web services [13].
The recent BPEL (Business Process Execution Language) specification captures features
of both WSFL and XLANG [24]. Also UML has been uggested as an appropriate nota-
tion for ODP Enterprise language [?]; Enterprise language is the base of Pilarcos business
architecture definitions.

In the Pilarcos project, no new software production tools are provided. However, we
see the recent development of OMG MDA (model driven architecture) [19] tool chain a
complementing approach. Here, a component is to be understood loosely a service im-
plementation encapsulated in such a way that platform services are able to manage its
life-cycle (deployment, instantiation, termination, activation and deactivation). Although
Pilarcos project has used component based platforms (OpenCCM, MicoCCM, JBoss) for
experimenting and prototyping, the Pilarcos architecture does not require component tech-
niques to be used.

In the following subsections, the viewpoint taken is that of component implementor.
The application component programmer has middleware level functions available for

e federation management (populating a business architecture, creating or terminating
a federation, joining or leaving a federation) and

e policy management on the component itself (setting policy values that are allowed
by the existing policy requirements).

The Pilarcos infrastructure is considered to provide a set of business architecture de-
scriptions and service type specifications for programmers. Furthermore, the infrastructure
is expected to provide policy management facilities.

4.2 Application programming interface (API)

Federations are managed at runtime by federation management services. Applications
have access to the federation management functionality via common APIs which hide the
complexities involved and promotes application portability. The application developer API
is divided into three logical wholes

e Up-call API for federation management
e Down-call API for federation management
e Connector API for connection establishment

Each API is implemented as one or more interfaces. In this context interface means a
logical entity which is realised either as an IDL-interface or a Java-interface in the proto-
type.

In the prototype the up-call API is implemented by each application component, the
down-call API is implemented by the federation manager infrastructure component, and
the connector API is implemented as a set of Java-classes which can be seen as a "connector
library".

20 Application level services

4.2.1 Up-call API for federation management

The up-call API consists of one interface FederatedApplicationInterface. Every appli-
cation wishing to take part in federations must implement this interface.

The federated application interface contains operations for notifying applications of
federation establishments and terminations. The notifications inform an application that
it is invited to join a federation or that it has been removed from a federation. The exact
behaviour resulting from the notifications depends on the application.

A single application always has exactly one federated application interface. If the
application consists of multiple components (i.e. is a multi-component assembly) only one
of the components implements the up-call API. How the notifications are processed within
the assembly is application specific and hidden from the infrastructure.

4.2.2 Down-call API for federation management

The down-call API consists of three interfaces, PolicyInterface, FederationInterface,
and ChannellInterface.

PolicyInterface provides operations for policy context management and is used when-
ever an application wants to create new policy contexts or manipulate the contents of an
existing one. Policylnterface provides generic operations for policy context manipulation
as well as more specific "helper" operations for manipulating/accessing specific kinds of
policy contexts for example service, offer, and federation contexts.

FederationInterface provides operations for federation management and is used
whenever an application wants to create/join/leave federations. It provides operations for
creating new run-time communities and establishing and terminating federations amongst
those communities.

ChannelInterface acts as a contact point for retrieving interface references residing in
federation contracts as well as initiating adapter instantiation processes. Channel interface
is usually not directly used by application or adapter components but they use a technology
specific "wrapper" called a connector.

4.2.3 Connector API

Connector API is used when resolving technology specific object references related to some
established federation. The connector API contains one logical function getConnection for
receiving object references. Connector API (i.e. getConnection-operation) is implemented
separately for each supported technology. So far connectors for CORBA and RMI style
object references are implemented. Client can choose which connector to use. In the pro-
totype the EJB applications and adapters use RMI-connector API and CCM applications
use CORBA-connector API.

There exists different versions of the getConnection function in the API. Which one
of them is used depends on what information the API user has available. If, for example,
a client application programmer has established a federation and needs to connect to one
of the servers it used the version which is able to find the correct server reference from
the federation contract and possibly instantiate adapters to the communication channel
transparently. This is the default case.

The other versions are typically used in more specific situations like when an adapter
or some special kind of application wants to establish inter-domain communication link to
a pre-configured local server with no federations involved.

4.2 Application programming interface (API) 21

When used the function is given the set of parameters matching the signature used
(federation context id, interface name and type in the default case) and it returns a tech-
nology specific object reference to the caller. In CORBA environment this implies re-
turning an object of type org.omg.CORBA.Object and in RMI environment this implies
returning an object of type java.rmi.Remote. The application or adapter in responsible
for narrowing/casting these generic references to the correct technology specific type (e.g.
PaymentInterface). This process could further be simplified by generating simple interface
specific helper operations to the application components.

4.2.4 API usage scenario

A typical community creation and federation establishment scenario has the following
phases from the API user point of view:

1. Application uses policy interface to create a service offer context for a specific service
type. The infrastructure creates the corresponding context with "default" values and
returns the id of the context to the application.

2. If the application has special needs it has the possibility to use the policy interface
at this point for manipulating the policy values in the offer context.

3. Application uses federation interface to request infrastructure to populate a com-
munity according to the policy values in the offer context. Application is returned
a sequence of federation context id’s ordered according to applications preferences.
There is one federation context id per populated community instance (i.e. federa-
tion).

4. At this point, application has the opportunity to retrieve and evaluate the contents
of each federation context in order to decide which context(s) suite its needs. In case
the application does not have any special needs it usually just selects the first id in
the sequence.

5. Application then uses federation interface to establish federation(s) according to se-
lected federation context(s). During the federation establishment procedure all the
applications invited to the federation receive a federation establishment notification
through the up-call API.

6. After successful federation establishment the application is able to use the services
available through the federation. In order to use the services it retrieves the tech-
nology specific object references through which the services are accessed. If the
application wants to use, for example, tourist info service then it uses connector API
to resolve the interface of type TouristInfoInterface, named touristInfo in the
service type used by the client. The application is returned an object reference which
is bound to the tourist info service of the identified federation. During connection
establishment all needed adapters are transparently configured into the communica-
tion channel. Whether a reference to a local adapter or to a remote server is returned
is transparent to the client. After receiving the reference the client narrows/casts the
received object reference to the type used in the program code and makes service
requests using it.

22 Application level services

4.3 Common management interfaces of applications

Applications willing to take part in federations must implement the interfaces common to
all federated applications.

Each federated application component must implement the operations in the up-call
APT as well as implement the common configurable attributes (at the moment only appli-
cation context id). In addition each application must have access to the down-call API and
connector API. How this access is provided is implementation specific. In the prototype the
access is provided via receptacle connections in CCM environment and via custom-made
receptacles in the EJB environment.

The most effective approach would have been to implement the API as programming
language specific library but this would have required a great deal more implementation
effort than implementing the API using a standard middleware.

CCM Application Assembly

——————————————————————————————————————

Application Component Application Component
(CCM) (CCw™)

Application Component

(CCM™)
PolicyInterface FederatedApplicationinterface ApplicationContextlD
Federationl nterface (attribute)

ChannelInterface

Figure 4.1: Common interfaces of all CCM-based federated applications.

Figure 4.1 visualises the common management interfaces of all CCM-based applications.
It also visualises an application assembly which is the deployment and instantiation unit
seen by the Pilarcos infrastructure. One assembly may contain several application com-
ponents but the federated management interfaces need only be implemented per assembly
basis not per component basis.

Since the infrastructure services are built using CCM, every non-CCM application
must be provided with technology specific API adaptation layer. In the prototype this
adaptation layer is implemented as application level adapters just as every other adapter.
These API adapters are implemented as independent deployment units (i.e. assemblies).
Figure 4.2 visualises the common interfaces of all EJB-based applications. Adapters are
further discussed in section 4.4

It should be taken into account that the generic instantiation infrastructure is not
fully implemented in the current prototype. For example the concept of assembly is, at
the moment, more or less an abstract concept with no fully functional counterpart in the
concrete implementation.

4.4 Application services in the prototype 23

EJB Application Assembly

Application Component Application Component
(E3B) (EJB)

Application Component
(EJB)

Assemblies
A R N ,f 7777777777777 \
| : | |
. | Downcall AP | 1| Upcall API |
| Adapter(s) e Adapter |
! |
| (EJB) ! | (CCw™) |
‘\ J; ! ‘\ JD _ 7</‘
PolicyInterface FederatedA pplicationinterface ApplicationContextlD
Federationlnterface (attribute)

ChannelInterface

Figure 4.2: Common interfaces of all EJB-based federated applications.

4.4 Application services in the prototype

In order to facilitate prototyping of Pilarcos architecture a proper application scenario was
needed. The tourist service -case was designed to provide complex enough environment to
support the development of Pilarcos infrastructure services. The case does not specify a
complete tourist service and must not be considered as such.

The tourist service -case specifies two business communities and four management
domains. The four management domains are tourist client, tourist service, payment service,
and hotel service.

The tourist client and payment server were both implemented as a single CORBA com-
ponent. Tourist server was implemented as two CORBA components (tourist application
and hotel client) residing in the same domain and locally connected together. Hotel server
was implemented as two locally connected Enterprise Java Beans, one for service session
management and one for making hotel queries and reservations. The concept "locally"
meaning a non-federated intra-domain connection like normal CORBA or RMI connec-
tion.

Since components residing in the hotel info domain are EJBs and all other components
are CORBA components there are two inter-domain adaptation points in the prototype.
One between hotel info client and hotel info service and one between hotel info service and
payment service. These adaptation points were implemented as two adapter components.
CCM to EJB adaptation point was implemented as a CORBA component and EJB to CCM
adaptation point was implemented as an Enterprise Java Bean. All CORBA components
were implemented as (stateful) session components and all EJBs were implemented as

24 Application level services

TouristServer Hotel Server

HotelClientApplication | ! _| HotelinfoAdapter HotelReservationApplication | |

‘ (ccm) (E3B)
TouristClient |
i) !
! ClientApplication |+ 3 TouristinfoApplication HotelInfoApplication

! (CC™m) (ccm) ! e (E3B)

| BillingAdapter |
| (E3B) |

,,,,,,,,,,,,,,,,,,,,,,,,

PaymentApplication ! PaymentApplication
! (ccm) | | (ccm)

PaymentServer PaymentServer

Figure 4.3: Application components (and adapters) in each community of the Tourist
Info Service-case.

stateless session beans.
Figure 4.3 shows all application components and application adapters implemented in
the prototype as well as their inter-domain communication relations.

4.4.1 Collaboration sequences of prototyped applications

In each of the two business communities the basic interaction scenario is almost identical.
The client starts a service session and receives necessary service interfaces and possibly
a pre-payment bill. Client then pays the pre-payment bill (if needed) and proceeds to
service usage phase. When service usage phase is finished client retrieves and pays the
post payment bills and ends the service session.

From the tourist info clients point of view the application interactions can be divided
into four separate phases:

e Phase I - Start Session

e Phase II - Get Information

e Phase III - Make Reservation
e Phase IV - End Session

Each phase consists of several interactions involving components from both tourist info
and hotel info communities. The following part of the section gives a detailed overview of
each phase.

Phase I - Start Session

Client starts the service usage by initiating a service session to tourist info service. Service
session is an application state which roughly equals to the situation resulting from a login
procedure. As a result of the start session phase the client receives object references to the

4.4 Application services in the prototype 25

components implementing the actual service provisioning logic. In addition client receives
pre-payment bills which must be paid before proceeding to actual service usage.

Phase | — Start Session

TouristInfo| 4 1 gtartsession | Hotel Info
Client Client
| M3
1.4 getBi _
+o payBl " Somite.
Payment .
Service 1.2 getBilllID
b /

Figure 4.4: Application interactions in Start Session -phase.

Service session is logically independent of the federation concept but in the prototype
one federation may only have one simultaneous service session. This restriction was made
for ease of implementation. It does not affect the development of the Pilarcos infrastructure
services in any way but it simplifies the application components.

Start Session -phase consists of five interactions:

1. Tourist client starts a service session to tourist info server

2. Tourist server generates a pre-payment bill and stores it to payment server. It receives
bill id from the payment service.

3. Tourist server gets reference to needed local subcomponents and returns their object
references and the pre-payment bill to the client.

4. Tourist client fetches the pre-payment bill from the payment server and verifies that
it is not corrupted in any way.

5. Tourist client pays the verified pre-payment bill.

Figure 4.4 shows the application collaborations.

Phase II - Get Information

After a service session is started and pre-payment bill is paid the client can proceed to
information gathering. The client makes queries in order to find a suitable hotel. Before
processing the queries the tourist info server must verify that the client has properly started
a service session and that all pre-payment bills are paid.

If everything seems to be in order then tourist info service processes the client query,
possibly contacting several hotel services, starting service sessions to them and then query-
ing information from them. After receiving the information from the hotel services it
combines the results to a coherent whole for the client.

Get Information -phase consists of six interactions:

1. Tourist client asks for hotel information from the hotel client which is the subcom-
ponent implementing the contact point to the hotel service.

26 Application level services

Phase Il — Get Information

[Tourist Info 2.1 getinformation Hotel Info) r2.6. getinformation HOte,ID\SSISi%;\{%Lon)
Client Client [~~_2.4. startSession T
y2.2. 125
Tourist Info Hotel Info
Service Service
ggyyggtm
N\ AN J

Figure 4.5: Application interactions in Get Information -phase.

2. Hotel client asks tourist server to verify whether the pre-payment bill is paid for this
service session.

3. Tourist server contacts payment server and asks whether the tourist client has paid
the bill and returns the information back to hotel client.

4. If prepayment bill has been properly paid then the hotel client proceeds to starting
a service session to all relevant hotel services.

5. Hotel service gets reference to needed subcomponents and returns their object refer-
ences to the hotel client. Hotel service does not require any kind of pre-payment for
querying information.

6. After receiving the references the hotel client makes queries for hotel information,
combines the results and returns the combined query to the tourist client.

Figure 4.5 shows the application collaborations.

Phase III - Make Reservation

When the tourist info client has received and processed all received hotel information it
contacts tourist info service and asks for a hotel reservation. Tourist info service forwards
the request to the correct hotel info service. Hotel info service generates a bill for the
reservation and sends it to the payment service. After receiving the bill id from the
payment service the tourist info service fetches the payment data of the reservation from
the hotel info service. It then generates its own bill which is a copy of the hotel info bill
plus the added fee that the tourist info service bills for itself. This bill is registered to the
payment service in the tourist info community.

After paying for the reservation the tourist info client assumes that the hotel is reserved.
Actually the hotel reservation is in a pre-committed phase. Tourist client has paid for the
tourist info service but the tourist info service has not yet paid for the hotel info service.
The tourist info service will pay all the bills of the reserved hotels (there may be several
reservations in one service session) and bills from other possible business transactions at
a later stage in the End Session -phase. It is only then that the reservations become fully
committed from the hotel service provider view.

Make Reservation -phase consists of eleven interactions:

4.4 Application services in the prototype 27

10.

11.

Phase |11 — Make Reservation
4 . N [. _
Tourist Info 3.1 makeReservatio Hotel Info 3.2 makeReservatlol HOte,IASSISi%Q{%hon
Client | 3.9. getPaymentDaﬂ_C"}L,\\ 3.5. getPaymentData T

3.10. getBill Tourist Info <96t8I|| Hotel Info

Service

3.11. payaBill Service
Payment 3.8. getBillID PaymentAetBilllD

Service Service
k AN J

Figure 4.6: Application interactions in Make Reservation -phase.

. Tourist client asks hotel client to perform a hotel reservation.
. Hotel client proceeds in making the reservation to hotel reservation application.

. Hotel reservation application asks hotel service application to generate a bill for the

reservation.

Hotel service application sends the bill to the payment service and receives a corre-
sponding bill id.

. Execution comes back to hotel client which fetches from the hotel reservation appli-

cation the payment data identifying the reservations made.

. Hotel client uses the bill id in the payment data to fetch the reservation bill from the

payment service and generates its own post-payment bill which is a copy of the hotel
reservation bill added with some additional fee.

Hotel client asks the tourist service to send the generated bill to payment service.

. Tourist service sends the generated bill to payment service and receives a bill id.

. Execution comes back to tourist client which asks for the hotel reservation related

payment data.

Tourist client uses the bill id in the payment data to fetch the bill from the payment
service.

Tourist client pays the hotel reservation bill to payment service.

Figure 4.6 shows the application collaborations.

Phase IV - End Session

After tourist info client has finished with all reservations it tries to close the service session
to the tourist info service.

After checking from the payment service that all bills of the tourist info client are
properly paid the tourist info service proceeds in paying the bills of every sub-service
tourist info client has used. It then tries to end the service sessions to all the sub-services.

28 Application level services

Phase IV — End Session

e aYE N
Tourist Info Hotel Info . Hotel Reservation
Client 4.1. endSession Client NT 4.5. endSession Application

/1\ 4.3. /1\ 4.7.
Tourist Info 4.4. payBill Hotel Info
/ Service Service
Payment 4.2. isBillPaid Payment/e.isBillPaid
Service Service
N\ AN J

Figure 4.7: Application interactions in End Session -phase.

Sub-services, like the hotel info service, checks whether all the bills related to the service
session have been paid and if yes then finally commits the business interactions.
End Session -phase consists of seven interactions:

1. After paying the hotel reservation bill, tourist client asks tourist service to end the
service session.

2. Tourist service checks from payment service whether all the clients bills are paid.

3. If client has paid all its bills the tourist service informs hotel client about the ending
of the service session.

4. Hotel client pays all the hotel reservation bills related to ending the service session.

5. After paying the hotel reservation bills the hotel client asks the hotel service to end
the hotel service session.

6. Hotel service checks whether hotel client has paid all the hotel reservation bills.

7. If all bills are properly paid the hotel service notifies the hotel reservation application
about the ending of the service session.

Figure 4.7 describes the application collaborations.

4.5 Application dependent support elements

The most important application dependent support elements are the adapters. Adapters
can be divided into ’vertical’ API adapters and ’horizontal’ application communication
adapters. All adapters are implemented as application level services regardless of their
intended usage. Technically adapters and applications do not differ from each other. The
only difference is that applications must implement the federated management interfaces
required from a federated application. There exists no fundamental differences between
client- and server-side adapters either.

Adapter adapts one or several interfaces of its native technology to one or several
interfaces of the target technology. For example CCM-based adapters adapt from CCM-
technology domain to some other technology domain like EJB-domain. In addition to

4.5 Application dependent support elements 29

Example Adapter Assembly

O RMI:Examplelnterface:1.0

Adapter Component X
(EIB)
O

! | Adapter ComponentY | |
| (EJB) |
| Q 1

Adapter Component Z
(EJB)

CORBA-Client

J; IDL:Examplelnterface:1.0

Figure 4.8: Example of multi-component EJB to CCM adapter.

adaptations between technology domains, semantic or syntactic adaptation can be done
within one technology domain.

Adapters are combined into adapter assemblies. Adapter assemblies represent one
logical adaptation ’whole’ and may contain several adapters components. The idea is to
construct adaptation units for a specific purpose, combine them into an assembly with a
unique name, and use this assembly as a selection, deployment, and life-cycle management
unit. The assembly may contain technology adapters, semantical adapters, syntactical
adapters and so on. The important thing is that the assembly is managed as a single unit
by the infrastructure.

Figure 4.8 visualises an example adaptation unit which contains an EJB to CCM
adapter in addition with additional adaptation component for arbitrary syntactic and
semantic adaptations. All adapters implemented in the prototype consist of single adapter
component, however.

Chapter 5

Infrastructure services

In this section, the new Pilarcos middleware services are discussed in detail. The func-
tionality and interactions of Pilarcos trader, type repository, policy repository, federation
manager and various factories are described. The text focuses on the current prototype
implementation.

5.1 Policy repository

Policy repository is the component that stores policies of the organisation centrally in a
hierarchy of policy contexts (Section 3.6). It provides interfaces for managing and looking
up policies, and ensures the integrity of the policy context hierarchy. This section covers
the interfaces and the functionality offered by the policy repository implementation, and
briefly discusses possible future enhancements.

5.1.1 Interfaces

In the prototype, the policy repository provides just one interface: the policy context
management interface. The interface is used directly only by the federation manager.
Other components, including federated applications, use a similar interface offered by the
federation manager, which delegates the operations to the policy repository.

The policy context management interface provides functionality for managing policy
contexts within a hierarchy. Policy contexts are referenced by unique policy context iden-
tifiers, which are issued by the policy repository for new contexts. Operations are provided
for creating policy contexts, traversing the policy context tree, reading and changing policy
values and deleting policy contexts.

5.1.2 Functionality

The prototype version of the policy repository maintains the policy context trees of the
organisation, of which there may be several — one per application, since policy context
levels above the application level have not been implemented. The policy repository guar-
antees the uniqueness of policy context identifiers and the validity of the policy context
trees even in the presence of concurrent modifications.

Ensuring the compatibility of lower level policies to the upper level policies in the hier-
archy has not been implemented. Therefore, the current policy repository implementation
cannot detect inconsistencies or violations of policies within a policy context tree.

5.2 Federation manager 31

5.1.3 Future enhancements

As mentioned in Section 3.6, policy context types are not implemented. They are essential
for implementing policy integrity checking and supporting a single organisation-wide policy
context tree. A possible design for policy context types is sketched out below.

The type of the policy context defines the policy frameworks of the policy context. In
likeness to service types (Section 3.3), the policy frameworks within a policy context type
definition are named uniquely.

Every distinct level in the policy context hierarchy needs to have its own policy context
type; in some cases, even policy contexts on the same level can have different policy context
types. The policies within a policy framework of a policy context are constrained by all
policy frameworks of the same name in its ancestor contexts. For example, the policies in
a policy framework named foo in the root policy context would place constraints on all
of the organisation’s policy frameworks named foo. (Of course, the link between policy
frameworks could be realised by other means than name equality, to0o.)

The above structure needs to be augmented with a mechanism within the policy repos-
itory that checks policy integrity within the tree on updates. Obviously, such a mechanism
needs to perform well even with frequent updates, and thus poses a design and implemen-
tation challenge.

In addition to introducing policy context types, integrity checking and a unified policy
context tree, the implementation technique for the policy contexts should be rethought.
From applications’ point of view, a clean way would be to make policy contexts real
CORBA objects. This poses its own implementation difficulties, the least of which is
not adaptation of interfaces in a heterogeneous environment. Additionally, it would be
unnecessarily expensive to have all accesses to policy contexts to be remote. Some kind of
local proxy objects would be needed.

5.2 Federation manager

The federation manager is the central component in the Pilarcos middleware architecture.
Each administrative domain has a federation manager that negotiates federations with
federation managers in other domains, and coordinates federation establishment within its
own domain.

Within a federation, the federation manager in the client (initiator) domain acts as
the federation coordinator. It mediates federation negotiations and keeps a primary copy
of the federation contract. Replicas of the contract are also kept by the other federation
managers, so that any of them can take over the coordinator role in case of failure. (In the
prototype, changing the federation coordinator has not yet been implemented.)

5.2.1 Interfaces

The federation manager provides and uses several interfaces as shown in Figure 5.1. Appli-
cation components access the Pilarcos infrastructure services only through the application
programming interfaces (APIs) provided by the federation manager. These APIs, shown
uppermost in the figure, were discussed in Section 4.2. This arrangement simplifies imple-
mentation in technologically heterogeneous environments, since only one adapter between
an application component and the Pilarcos infrastructure needs to be used. The federa-
tion manager also provides more friendly interfaces for applications than the raw Pilarcos

32 Infrastructure services

services, which are not designed to be used directly by applications.

The FederationManagement interface is used for communication between federation
managers, and contains operations for establishing and terminating federations. The
FederatedNaming interface provides a federation-aware naming service that is used to
resolve interface references between domains. These are the only communication points
used between Pilarcos middleware services in different administrative domains.

ServiceManagement and ChannelManagement are provided by the local service factory,
and used by the federation manager for service and channel instantiation. The federation
manager also uses the local policy repository via the PolicyContextManagement interfaces.
The Lookup and TypeRegistration interfaces are used to access the Pilarcos trader and the
type repository, respectively, for populating architectures and enquiring type information.

) _— lication
Federationinterface Qi - FederatedApplication ~ —~ ?grgponents
application
components i
mPone Policylnterface Qi —(ServiceManagement

—= Service Factory
4< Channel Management

Channelinterface ()| Federation Manager
4< PolicyContextManagement —= Policy Repository

other
, — FederationManagement —
FM's 4< Lookup —= Pilarcos Trader

?dviggniaeccigrr)é‘) FederatedNaming () ———(TypeRegistration —= Type Repository

Figure 5.1: Interfaces provided and used by the federation manager.

5.2.2 Federation contracts

The federation manager essentially manages federation contracts (Section 3.5). Federation
contracts are constructed by the Pilarcos trader (Section 5.5.6), and become final contracts
after they are accepted in all federation managers participating in the federation. Between
administrative domains, federation contract identifiers are used to identify federations,
since the Pilarcos trader guarantees them to be unique.

Application components, however, do not directly see federation contracts. Instead,
they use policy contexts (Section 3.6) and the APIs provided by the federation manager
for populating architectures, establishing federations and resolving interface references.
The federation manager constructs the initial incomplete federation offer for populating,
and maintains a mapping between federation contracts and federation contexts thereafter,
hiding contracts from the applications altogether.

5.2.3 Population process

The population process is initiated by a client application by creating an offer policy
context and issuing a population request to the federation manager, as described in Sec-
tion 4.2.4. The federation manager creates an initial, incomplete federation offer by filling
in the client’s service offer, which is constructed on the basis of the policies in the offer
policy context. The federation manager then issues a population request to the Pilarcos
trader, asking it to fill in the empty roles in the federation offer. After receiving federa-
tion contracts (that is, complete federation offers) from the trader, the federation manager

5.2 Federation manager 33

creates federation policy contexts corresponding to the contracts, and hands the contexts
back to the application. This process is illustrated in Figure 5.2.

Application Federation Manager Policy Repository Pilarcos Trader
T I T T
L | 1 1
m | |
create offer pO'le context create p0||cy context | |
> |
- _policycontextid_ _ _ | [-=-=-=-=-~= poligy contextid _ _ _ _ _ _ _ - :
populate(policy context id)_ retrieve policy context(id) :
. |
- - - - - - — - policy context _ _ _ _ _ _ _ _ - |
|
|
|
|

I create federation contract draft
populate(federation contract draft)

federation contract[] |_|
B e e —l-———_—_———

Icreate federation policy contexts

store all policy contexts

‘_ _p_olgy_cc_JnEe)it @[l_ U B PSR policy contextid _ _ _ _ _ _ _ _ a

Figure 5.2: Population process in the federation manager.

5.2.4 Federation establishment

In the Pilarcos infrastructure, the local service factory (Section 5.3.1) instantiates and
destroys instances of application components according to their life-cycle policies. The
federation manager issues an instantiation request for an application to the service factory
when a new federation is established; this request is identified by a “cookie”. The cookie
is used later for the reverse operation when the federation is terminated. The federation
manager does not know how many instances of an application component exist at a time.
A cookie may be associated with a new application component or not, depending on the
life-cycle policy.

A client application initiates federation establishment by issuing a create-federation
request to the local federation manager, with a federation context as a parameter. An
overview of the federation establishment process in the client (initiator) domain is shown
in Figure 5.3. For symmetry, the federation manager requests the service factory for an
instance of the client application, although it already exists, and receives a cookie for it.
An association between the cookie, the federation contract and the federation context is
made in the data structures of the federation manager as well as the service factory. After
this, the federation manager begins negotiation with remote federation managers by issuing
federation establishment requests to them. The federation manager in the client domain
automatically becomes the federation coordinator.

The negotiation, which at present includes only one request that may be denied or
accepted, proceeds concurrently with all parties. The negotiation is an atomic operation,
since if any participant denies or does not respond, the federation cannot be established.
For efficiency, two-phase commit is not used, so the federation coordinator must send

34 Infrastructure services

I
Application | Federation Manager | | Service Factory | Policy Repositor, | Federation Manager u
T T

| create federation(federation ¢ontext id) ! !
> retrieve policy context(federation context id) !

N " T d
|« _ federation policy context _ __ _ _ ___ _ ___ L

T
!
!
|
!
!
|
!
!
|
!
!
|

Figure 5.3: Federation establishment on client side.

explicit rollback requests if the negotiation fails. Even then, the protocol may fail if the
federation coordinator fails.

When the federation managers in server-side domains receive the federation establish-
ment request, they start the local establishment process, as illustrated in Figure 5.4. The
process begins with an application instantiation request to the local service factory. A
federation policy context is then created for the federation. The service factory compares
the federation contract with the currently running application instance, and instantiates
adapters if needed. Adapters, too, can have different life-cycle policies, which are heeded
by the service factory. Finally, the federation manager notifies the application about the
new federation through the up-call notification API.

The federation creation request from the client application returns only after the fed-
eration establishment has been successfully completed, or it has failed.

Federation Manager Service Factory Application Policy Repository
1 1 1

| |

instantiate service L |
|

I
I
I
I
I
is application runnilng? :
I
I
|

establish federation l
—

Y

«create»

-
create application/service/offer policy contexts

<(:Pokie & reference to application | |g- = = = = = = = = .:. _________ m

createServerBinding(s) (cookie)!

!

I
references to adapters LJ] [if needed] instantigte server adapters

establish federation (federation policy contextid)

Figure 5.4: Federation establishment on server side.

5.3 Factories and connectors 35

5.2.5 Federation termination

Any application that participates in a federation may issue a request to leave the federation
to the federation manager. In the prototype, this causes federation termination requests
to be issued to all other federation managers concurrently. On receiving it, each federation
manager notifies the local application component about the termination through the up-
call API. After this, the federation managers request the local service factories to remove
the application instance and associated adapters, which are identified by the cookie.

5.3 Factories and connectors

Factory services are responsible for managing the life-cycle of federated applications and
their support elements (e.g. adapters). Connectors implement the connector API and
are responsible for establishing inter-domain connections with the support from factory
services.

Life-cycle of federated applications can be divided into five phases

1. Application instantiation

e Server-side application is instantiated either at its deployment time or at run-
time during federation establishment. This depends on the life-cycle policy
selected (’conservative’ for pre-instantiation vs. ’federation’ for runtime instan-
tiation). If server-side application is instantiated at deployment time it only
needs to be reconfigured at federation establishment time.

e Client-side application is instantiated at its deployment time when someone
needs to use it.

2. Adapter instantiation

e Server-side adapters are instantiated at federation establishment time if the
technology or interfaces provided by the server application differ from those in
the agreed federation contract. If this is the case then an assembly containing
one or more adapter components is instantiated and bound to server applica-
tion. If the adapters are capable of handling many-to-many connections it is
possible to have only one instance of an adapter capable of adapting multiple
applications. In this case the instantiation just means connecting the server
application to the existing adapter.

¢ Client-side adapters are instantiated on-demand at service usage time. After
federation establishment the client application can use the connector API to
receive object references it needs to use. If the interface used by the client
differs from the one agreed in the federation contract this results in automatic
instantiation of a proper adapter assembly. Like with server-side adapters the
process of selection and instantiation of a client-side adapter may result in a
new adapter instance or just reconfiguration of an existing adapter.

3. Inter-domain connection establishment

e After needed client-side adapters are instantiated the connector proceeds with
the inter-domain connection establishment. At minimum, the connection estab-
lishment means making a lookup to the federation-aware naming service located

36 Infrastructure services

in the server domain. If direct binding is used then the federation-aware nam-
ing service returns the object reference to be used by the client. If in-direct
binding is in use the reference returned by the federation-aware naming service
is in-direct and contains a <name, technology specific naming service> pair. In
this case another lookup from the technology specific naming service is needed.

4. Adapter deletion

e Server-side adapters are deleted at federation termination time. If the adapter
life-cycle policy is such it exceeds the federation life-cycle then the deletion
means only re-configuring the adapter.

e (lient-side adapters are deleted at federation termination time similarly to
server-side adapters. If the adapter life-cycle policy is such that exceeds the
federation life-cycle then deletion means re-configuring the adapter exactly like
in the server-side case.

5. Application deletion

e Server-side applications are deleted either at federation termination time or by
an administrative decision. This depends on the applications life-cycle policy.

e (lient-side applications are always deleted by an administrative decision. Their
life-cycle is independent of the federation life-cycle.

5.3.1 Service Factory

Factories are used for instantiating application and adapter components. In Pilarcos ar-
chitecture there exists two generic life-cycle management interfaces ServiceManagement
and ChannelManagement. Service management interface is used to manage the life-cycle of
instances of service applications. It provides operations for instantiating, configuring and
deleting the application components. Channel management interface is used to manage
the life-cycle of client- and server-side bindings (i.e. managing the life-cycle of adapters).
It provides operations for instantiating and deleting adapter components.

The management interfaces are implemented in one monolithic factory component
called ServiceFactory. Service factory provides the generic service and channel man-
agement interfaces and can be used in all management domains in the prototype. The
service factory implementation is generic in the context of the Pilarcos prototype but to
make it truly generic in all contexts would require full specification of generic assembly
descriptors. Defining them is left for future development. Whether it would be better to
implement the channel and service management interfaces in separate channel and service
factory components is also left for future consideration. Service factory utilises platform
specific factories (like component homes) to instantiate the components in different tech-
nology domains like EJB and CCM.

Service factory is normally used during federation establishment procedure by feder-
ation manager to instantiate services on-demand. Service factory can also be used to
instantiate service components before federation establishment time or, for example, fed-
erative clients.

It should be noted that the concepts of (service) instance and (service) instantiation
have separate meanings for a service factory. Instance is a concrete runtime object cre-
ated as a result of an instantiation. Instances of applications are identified with unique

5.3 Factories and connectors 37

application policy context id’s. Instantiation, however, may not always produce a new
concrete instance. Instantiation results in a logical instantiation object which is identified
by a cookie generated by the factory. The logical instantiation object may be bound to an
existing application instance or a new application instance can be created for it.

When a new adapter is created it is bound to the logical instantiation object and implic-
itly to an application object. If adapter has a conservative life-cycle policy then “adapter
creation” just means binding some existing adapter instance to the logical instantiation
object.

When a service is deleted the logical instantiation object is destroyed but whether the
concrete application and adapter instances bound to it are destroyed depends on their
life-cycle policies.

Interfaces

As mentioned above the service factory provides two management interfaces. One for
application and one for binding life-cycle management. In addition to them it provides a
configuration interface called FactoryConfiguration. Factory configuration interface is
used, for example, to configure the available assemblies and locations of naming services
to the service factory.

Palicylnterface Federationlnterface
(attribute) (attribute)
ServiceFactory
(CCM)

! ! !

FactoryConfiguration ServiceManagement ChannelManagement

Figure 5.5: External dependencies of service factory.

In addition to providing the interfaces, service factory also provides two attributes
PolicyInterface and FederationInterface. They are used for storing the references of
the down-call API-interfaces to the service factory. Service factory connects these refer-
ences to the application components at their instantiation time.

Figure 5.5 visualises the external dependencies of the service factory.

5.3.2 Connectors

Connector is a client side entity which is used by applications and adapters to resolve fed-
erated interface references into technology specific object references. Connector is typically
used by applications after federation contract has been negotiated and application wants
to resolve the object references of the servers it needs to connect to. The connector uses
the channel interface API to create client side bindings. If adapters are created as part of
the client side binding they also use a connector to perform the intra-domain connection
establishment.

A connector is implemented separately for each platform used (e.g. CORBA, RMI)
since it needs to be able to resolve object references in technology specific format.

38 Infrastructure services

Implementation

Connector is implemented as a Java-class providing a static operation getConnection.
Operation getConnection is used when resolving object references from foreign domains.
There are several overloaded versions of this operations which take in different parameters.

CORBA.Connector FederatedNaming RMI.Connector FederatedNaming
(Java—class) . (Java—class) C
* CORBA.Object getConnection(...) CONaming * java.rmi.Remote getConnection(...) INDI
org.omg. . rmi.
g.omg Jectg —C j g

Figure 5.6: External dependencies of connector.

Since connection factories are technology specific the getConnection operations signa-
tures vary between platforms. For example CORBA connector returns CORBA references
whereas RMI connector returns RMI references.

Figure 5.6 visualises the external dependencies of the connector.

5.3.3 Application and adapter selection

Applications and adapters can be selected and their life-cycle managed at runtime. This
requires information and related algorithms in the infrastructure.

In the current Pilarcos prototype the problem of selection and instantiation is resolved
with the introduction of instantiation units, assemblies, and by defining what their rela-
tionship is to the federation contract.

Service Offer Application

Component

|
|
- - Implemented by assembly |
* ServiceType: ExampleSerwce—%;
* OfferlD : ExampleOffer =
|
|
|
|
|

* Mapped to assembly

*

ExampleA pplicationAssembly:1.0

Figure 5.7: An example of a simple application selection mapping.

Both applications and adapters are logically grouped to assemblies. Before a service
provider exports a service offer to the Pilarcos trader it maps a specific application assembly
to this service offer and registers the relationship to service factory. Whenever a request
to establish a new federation arrives to the domain the service factory knows from this
relationship which assembly needs to be instantiated and/or configured to provide the
service.

Figure 5.7 shows an example of how applications are mapped to service offers.

As far as the adapters are concerned the situation is a bit more complicated. What
adapters fundamentally do is that they make adaptations between two different realisations
of one interface type.

Each realisation of an interface type is given a unique name. An adapter assembly must
be mapped for every ’realisation-realisation’ pair that needs adaptation. The adapter as-
sembly can be constructed from several independent adapter components and same adapter

5.3 Factories and connectors 39

InterfaceType = "Examplelnterface”

,,,,,,,,,,,,,,,,,

ExampleAdapter:1.0 || _ | IDL:Examplelnterface:1.0
(EJB) | (IDL)

RMI:Exampleinterface:1.0 |
(Java)

ExampleAdapterAssembly:1.0

Implied mapping
Client Server Adapter

RMI:Examplelnterface:1.0 IDL:Examplelnterface:1.0 ExampleAdapterAssembly:1.0

Figure 5.8: An example of a simple adapter to service offer mapping.

components can be used in different assemblies. The service offers of each service provider
and service requester contain the identifiers of the interface type realisations they are using
in their domain. This enables the life-cycle management services to compare the realisa-
tion used by the client and the realisation used by the server in each binding and, in
case they differ select, instantiate and/or configure a proper adapter assembly in to the
communication channel.

Figure 5.8 shows an example of how adapters are mapped to service offers.

5.3.4 Direct and in-direct referencing

In order to support object reference transportation across technology boundaries a generic,
technology-independent, reference is needed. Most convenient way to do this would be to
have a generic object reference format to and from which other formats could be mapped.

In the prototype there exists two types of object references, CORBA inter-operable ob-
ject references (IORs) and RMI remote references but there exists no common format which
these references can be mapped to. This forces us to use an in-direct referencing approach
where an object reference is first stored to a naming service supporting its referencing
style (e.g. COSNaming and JNDI) and then the the address (URL) of the naming service
and the name inside it are stored into an in-direct object reference. The in-direct object
reference consists of two strings and can be passed to all technology domains supporting
strings.

The in-direct object referencing is not, however, performance effective. For this rea-
son another referencing approach, direct referencing, is also supported. Direct-referencing
can be used if the object referencing format agreed in the federation contract is a 'native’
format. In the existing prototype the federation management services are in CORBA tech-
nology domain so whenever servers are referenced with CORBA IORs the direct referencing
scheme can be used. Otherwise in-direct referencing must be utilised.

At the server side either an in-direct or a direct reference is created when federation
is established. This depends on whether a 'native’ or 'non-native’ technology has been

40 Infrastructure services

agreed in the contract. The federation contract contains the reference to the federation-
aware naming service where the created reference is stored and information whether a direct
or in-direct naming scheme is used. Client-side connector is able to find out at connection
establishment time whether to run an in-direct or direct establishment protocol.

If direct protocol is effective the client connector resolves a native (which in this case is
CORBA) reference from the federation-aware naming service and if an in-direct protocol
is effective then the client connector first resolves the in-direct reference, contacts the
technology specific naming service and resolves the concrete object reference using the
information in the in-direct reference.

The dynamic nature of service instantiation system causes the fact that the additional
in-direction resulting from the use of federation-aware naming service cannot be further
optimised. This would only be possible if pre-instantiated services with no adaptation
were the only ones allowed. In this case the reference to server could be created before
federation establishment time and stored to trader at service offer export time (like is
situation with conventional trading). If more dynamic behaviour is to be supported one
in-direction round is inevitable.

5.3.5 Life-cycle scenarios

In order to illustrate the behaviour of the infrastructure components during the different
phases of the application and binding life-cycle a few exemplary scenarios are provided.
Scenarios show examples of client- and server-side application instantiation, client- and
server-side adapter instantiation and inter-domain connection establishment.

Client-side application instantiation scenario

Figure 5.9 shows an exemplary instantiation sequence which is further explained below

1. Service factory instantiates, configures, and connects client component(s). It uses
technology specific factories (e.g. component homes) to assist in instantiation.

Client Assembly
e N

Client Component
(EJB)
A

Client Home
(EJB)

N /
1. create & configure

Service
Factory

Figure 5.9: Client-side application instantiation scenario.

5.3 Factories and connectors 41

Server-side application instantiation scenario

Figure 5.10 shows an exemplary instantiation sequence which is further explained below

1. After establishFederation request has arrived to federation manager it asks service
factory to create the service according to federation contract.

2. Service factory instantiates, configures, and connects server component(s). It uses
technology specific factories (e.g. component homes) to assist in instantiation. If an
instance of the server is already up, the factory decides, based on the life-cycle policy
of the server, whether a new instance is needed or whether the old instance should
only be re-configured.

3. Service factory binds the object reference(s) of the server component to local naming
service (e.g. JNDI). The object reference can be bootstrapped from the naming
service if in-direct referencing is in use.

4. Service factory binds the object reference(s) of the server component to federation-
aware naming service implemented by the federation manager. If the server applica-
tion is implemented on top of the 'native’ middleware platform (which in the proto-
type is CORBA) a direct and in-direct version of the object references are stored. If
server application is implemented on top of other middleware (like RMI) then only
in-direct reference is stored (direct referencing cannot be used).

Server Assembly

O Server Component
(EJB)
A

Server Home
(EJB)

N J
2. create & configure

. 1.createService Service
Federalion [, pind / bind_direct) -
Managetf |=<——— actory

3. bind

establishFederation Naming Service
(INDI)

Figure 5.10: Server-side application instantiation scenario.

Server-side adapter instantiation scenario

Figure 5.11 shows an exemplary instantiation sequence which is further explained below

1. After server application is instantiated federation manager asks the service factory
to instantiate server-side bindings. This is done for each interface separately.

42

Infrastructure services

2. Service factory checks whether the interface realisation provided by the server appli-

cation matches the one agreed in the contract. If it does not then the service factory
instantiates, connects, and configures a proper adapter. In case a proper adapter is
already instantiated the service factory decides, based on the life-cycle policy of the
adapter, whether a new instance is needed or whether it should only re-configure the
old instance.

. Service factory binds the object reference(s) of the adapter to local naming service

(e.g. JNDI). The object reference can be bootstrapped from the naming service if
in-direct referencing is in use.

. Service factory binds the object reference(s) of the adapter to federation-aware nam-

ing service. If the adapter is implemented on top of the 'native’ middleware platform
a direct and in-direct version of the object references are stored. If adapter is imple-
mented on top of other middleware then only in-direct reference is stored.

Adapter Assembly

o Adapter Component, Server Component
(CCM™m) (EJB)
A

Adapter Home
(ccm)

- J
2. create & configure

1.createBinding .
Federation i i i Sorvice
Manoger 4, bind / bind_direct Factory
3. bind

Naming Service
(COSNaming)

Figure 5.11: Server-side adapter instantiation scenario.

Client-side adapter instantiation scenario

Figure 5.12 shows an exemplary instantiation sequence which is further explained below

1. Client application requests an object reference from the technology specific connector

it is using. The connector forwards the request to federation manager using the
channel interface in the down-call API.

. Federation manager asks service factory to create client-side binding. Service factory

compares the interface reference found in the federation contract to the interface
reference used by the client and decides whether an adapter is needed. If adapter is
not needed then service factory returns the interface reference stored in the contract.

5.3 Factories and connectors 43

3. If an adapter needs to be instantiated, the service factory instantiates, connects,
and configures a proper adapter assembly. Whether a new adapter needs to be
instantiated or an existing instance can be used depends on the life-cycle policy of
the selected adapter.

4. If the adapter is implemented with the 'native’ middleware technology the service
factory registers the object reference(s) of the adapter using the federation-aware
naming interface provided by the federation manager. This is an effective way to
make the reference available for the connector. If the adapter is implemented in
some other middleware technology an alternative method must be used and the
object reference(s) of the adapter must be bound to the technology specific naming
service (e.g. JNDI) and an in-direct reference must be registered to the federation

manager.
Adapter Assembly
s N
Client Component Adapter Component
(EJB) (EJB)
Connector API /:\
1. getinterfaceRef |
Federation Adapter Home
M (EB)
4.pind/ |0
bind_direct ¢‘ ¢ 2. createBinding /)
Naming J _
Service ﬁervnce 3. create & configure
(INDI) actory

Figure 5.12: Client-side adapter instantiation scenario.

Inter-domain connection establishment scenario

Figure 5.13 shows an exemplary connection establishment sequence which is further ex-
plained below

1. The connector starts the connection establishment algorithm by checking whether
it needs to resolve a direct or in-direct interface reference. Then it contacts remote
federation-aware naming server and retrieves the interface reference to be used. If
direct referencing is in use, the federation-aware naming service returns the tech-
nology specific object reference (e.g. CORBA reference) to the caller. If in-direct
referencing is used the federation-aware naming service returns an in-direct object
reference containing a naming service URL and a name.

2. If direct referencing is in use, this phase is skipped. If in-direct referencing is in use
the connector resolves the direct object reference from the technology specific naming
service.

3. The connector returns the object reference to adapter (or application depending on
which initiated the call) which narrows it to correct programming language type and
uses it to make service calls.

44 Infrastructure services

3. service_call

Client Component Adapter Component 5 Adapter Component, Server Component
O CCM)
(EIB) (EIB) ((EJB)
Connector API

2. resolve (if in—direct referencing used)
Naming Service

© (COSNaming)

1. resolve /
resolve_direct
o Federation
Federated Manager
Naming

Figure 5.13: Inter-domain connection establishment scenario.

5.4 Type repository

Type repository is a global component in the Pilarcos prototype, meaning that there is only
one shared type repository. According to the Pilarcos architecture plan, there would be
local type repositories in each domain, which would be federated for cooperation. However,
federation of type repositories has not been implemented.

The type repository is used for registering different kinds of types. Currently type
repository is used by Pilarcos trader and the federation manager.

Type repository stores currently three different types. These types are policy framework
type, service type and business architecture. Type repository uses three different data
structures to store registered types in main memory, one for each type.

Type repository uses the CORBA Service Type Repository service to store service types
for the CORBA trader. This because Pilarcos trader uses CORBA trader as a back end.
Pilarcos service types are transformed to CORBA service types before storing to CORBA
trader.

5.4.1 Interfaces

Type repository provides one interface to describe and register types. This interface is
mainly used by Pilarcos trader. Separate functions are provided for registering and describ-
ing each type. Type repository also uses ServiceTypeRepository-interface from CORBA
trader. Internal functionality in provided interface is described later in this section. Oper-
ations in provided interface are described in appendix A. For example Pilarcos trader uses
this interface to describe architectures it uses in population.

5.4.2 Data structures

Type repository stores three different types of data structures. These are policy framework
type, service type and architecture.

Type repository uses three internal data structures. Each structure is a map for each
type that can be registered. Structures are named ArchitectureStorage, ServiceTypeStorage
and PolicyFrameworkTypeStorage respectively.

5.4 Type repository 45

5.4.3 Registering policy framework type

Policy framework type is essentially a sequence of policy types. When a policy framework
is registered type repository checks if a policy framework type is already registered under
the same name. No other checks are performed for policy framework types.

5.4.4 Registering service type

When a service type is registered various checks is done for it. Firstly type repository
looks for service type with the same name. Secondly type repository looks for all policy
framework types used in service type. Next type repository checks that internal policy
framework type names in all interfaces is connected to a policy framework type used in
service type.

Finally Pilarcos service type is converted to CORBA service type with the following
way. Pilarcos service type is somewhat different from CORBA service type. Pilarcos
service type can have several different interfaces while CORBA service type can only have
one. Pilarcos service type also has specific policy frameworks where different policy types
are listed. CORBA service type only has properties which represent policies.

When Pilarcos service type is transformed to a CORBA service type. All interfaces in
Pilarcos service type are coded to mandatory and read-only properties in CORBA service
type. Policy frameworks in Pilarcos service type are coded also to properties. These are
currently read-only properties. They are not mandatory because Pilarcos policy types can
have special value which means that it has no value. This is coded in CORBA service type
as missing property of that specific no value policy. Property names are generated from
policy frameworks and interfaces used by Pilarcos service type.

5.4.5 Registering architecture

When architecture is registered type repository performs various checks. Firstly type
repository checks that there is not a registered architecture with the same name. Secondly
type repository looks for all service types that are used in current architecture. Thirdly
role names are verified to be unique in the architecture. Next type repository verifies all
connections from one role to other roles. Both interfaces in a connection between two roles
must exist in the correct end of connection. Each role has the same interfaces which the
service type used in the role has.

Type repository searches for policy framework graphs in registered architectures. This
search is done in the end of registration with the following algorithm. Policy framework
graph is a data structure that lists all policy frameworks in a architecture that must have
compatible values in policies. type repository parses architecture with a specific algorithm
developed for this task. Algorithm is discussed in detail in this subsection and illustrated
in Figures 5.14 and 5.15. Small arrows represent movement between roles in the figures.
Currently used interface is marked with bold and each role has its own internal names for
each policy framework type.

Algorithm is based on deep-search in a net. Search advances from a role (node in net)
one interface at a time as seen in Figure 5.14, section b. If role is connected via interface
to another role (forms an arch) this connection is used to get to another roles as seen
in Figure 5.14, sections b and d. One policy framework graph has only one kind policy
framework type members. Algorithm works like this:

46 Infrastructure services

When algorithm reaches a role it checks if it is marked. If it is not marked it is marked
as visited. This is shown in Figures 5.14 and 5.14 as strengthened borders in a role. Next
frameworks related to used interface are added to same graphs where same type frameworks
at the previous role are as seen in Figure 5.14, sections b and c.

If a reached role is marked visited, algorithm checks if frameworks related to current
interface are already a part of a graph. If framework is already in a graph, the graph
and the graph where framework in previous role are merged. Next algorithm returns to
previous role. This phase is visible in Figure 5.15, section f and h.

Each role is processed one interface at a time. If one interface has more than one
connection, all these connections are processed before advancing to next interface.

When all connections from start role are processed all policy framework graphs in the
architecture are found. Frameworks are added to graphs with index pairs: role index and
policy framework in role index. This is enough to recognise if a policy framework is a part
of one policy framework graph or not.

Role 2

Role 2

Found graphs: Found graphs:

Graph 1:
Type X
1AX

'
Graph 2:

Type Y
1BY

Found graphs:

Graph 1:
Type X
1AX
3.B.X

Graph 2:
Type Y
1B.Y
3CY

Graph 2:
Type Y
1BY
3CY

Figure 5.14: Policy framework finding algorithm in an architecture, part I

After the policy framework search type repository links the found graphs to the archi-
tecture. The linking is provided in two ways. First way is the graphs. The graphs provide
linking from the graphs to the architecture. Second way is providing linking from policy
framework types to the graphs.

Finally after linking type repository stores the architecture with the found and linked
graphs.

5.5 Pilarcos trader 47

Role2

Found graphs:

Graph 1:
Type X
1AX
3B.X

Graph 2:
TypeY
1B.Y
3CY
2BY

Role4
Role2

Found graphs:

Graph 1:
TypeX
1AX
3B.X
Graph 2:
TypeY
1BY
3CY
2BY
Graph 3:
TypeZ
3Cz
4CzZ

Role3 h) Role4

Figure 5.15: Policy framework finding algorithm in an architecture, part II

5.4.6 Other functionality in provided interface

Stored types can be described from type repository. Type repository describes types by
returning the requested type. Naturally type repository cannot describe types that are not
registered.

Type repository can also be reseted. Resetting type repository removes all registered
types from type repository. Type repository also removes all CORBA service types from
CORBA type repository which represents Pilarcos service types. Currently single types
can not be removed from Pilarcos type repository.

5.4.7 Future development

Type repository could store more data than it currently does. Pilarcos infra needs some
other data that can be stored in type repository. For example interface compatibility data
could be saved to type repository.

Some sort of service type inheritance is also a useful feature. Currently type repository
does not provide it at all. Another feature could be single type removing from type
repository. Currently type repository does not support this.

5.5 Pilarcos trader

The enhanced Pilarcos trader provides two main operations: exporting a service offer for a
specific service type (export), and populating a business architecture with mutually com-

48 Infrastructure services

patible service offers (populate). The former operation is used by an administrative tool
used by a service provider. The latter operation is used by the Pilarcos federation man-
ager on behalf of the application wishing to establish a federation. The populate operation
takes an incomplete federation offer as a parameter, and returns one or more completed
federation offers. No separate constraint parameter is used; instead, the incomplete feder-
ation offer typically contains a pre-filled service offer for the populating role itself, defining
its policies for the federation. Thus, the population process is completely symmetrical: any
role that has been left empty in the incomplete federation offer is populated by the Pilarcos
trader. This makes it easy to do partial re-populations for failure recovery or adaptation
purposes.

The Pilarcos trader implementation has two alternative modes of operation: stand-
alone or using a standard CORBA Trading Service implementation for service offer storage.
Stand-alone mode is considerably faster, since interprocess communication is avoided.

Using a CORBA Trading Service for service offer storage has a number of other advan-
tages, however. Mature implementations are available, with different options for storing
and caching service offers. Linking of CORBA traders is directly available, which enables
the Pilarcos trader to scale to larger systems. By adhering to the standard, interoperability
can be achieved, and it becomes possible to directly take advantage of the research efforts
to improve the scalability of the CORBA trading model [3, 2].

If a CORBA Trading Service is used, on exporting the Pilarcos trader converts service
offers into a form suitable for the CORBA trader and registers them there. The reverse
conversion is performed during the population process. The Pilarcos trader imports service
offers from the CORBA trader in blocks of five offers at a time to limit offer transfer
overhead, since the Pilarcos trader and the CORBA trader reside in different processes
and perhaps even on different servers.

In both operating modes, the Pilarcos trader prototype keeps the service offers in main
memory. This is typical of traders, which need to have a small response time to queries.
At the very least, the most frequently used service offers would be cached in main memory.

5.5.1 Design

The primary requirement for Pilarcos trader is to process population operations efficiently.
In a typical use scenario the potential federation offer space is huge, possibly millions of
service offer combinations. Most of the service offer combinations are unlikely to fulfil
compatibility requirements, which are Pilarcos trader’s form of constraint expressions.
Details of the compatibility requirements are given in Section 5.5.3.

Running the population process is determined by policy values of service offers, so to
achieve two goals. First, this ensures that compatibility requirements are met. Second, it
minimises work on combinations which are not compatible, making the population process
efficient. The algorithm implementing the population process is discussed in detail in
Section 5.5.4

Pilarcos trader is also fair to both exporters and importers. When service combinations
from a huge potential set are considered, the order in which the combinations are considered
is randomised. If this was not done, few service offers would be overused while others would
not be used hardly at all.

5.5 Pilarcos trader 49

5.5.2 Interfaces

Pilarcos trader functionality is exposed through two interfaces. Service providers (ex-
porters) can register and withdraw their service offers through offer registration interface.
Clients (importers) looking for partners can do so with the lookup interface.

Exporters set their policy choices in the service offer they register. Importers specify
their policy choices in the incomplete federation offer, and the specified policy values are
also used to constraint the search. No separate constraint expressions is used. Importer
may pre-fill in any desired number of roles in the incomplete federation contract. Addition-
ally the importer sets limits to the number of federation contract offers to be returned by
the Pilarcos trader and to the amount of time spent. The return value is a list of federation
contract offers that meet the compatibility requirements. To achieve fairness, the trader
randomised the search order for each query, and because of this the result of a query is
likely to be different from call to call.

5.5.3 Compatibility requirements

The compatibility requirements discussed in this section is the way to express constraints
in lookup queries in Pilarcos trader.

In the population process, the Pilarcos trader searches its database for compatible ser-
vice offer combinations. Compatibility between service offers is determined by interface and
policy compatibility of the offers. Interfaces are compared by querying the type repository
for interface compatibility. This is done only once per binding in the architecture.

Policy compatibility is directed by bindings in the architecture. When interfaces of two
roles are connected by a binding, policy frameworks of the same type attached to the inter-
faces are also implicitly connected. For service offers for the roles to be compatible, their
connected policy frameworks must then also be compatible. The compatibility requirement
can even extend over several roles via service types that have shared policy frameworks,
as in the tourist service example where payment policies are shared by all roles.

In the general case, the implicit connections between policy frameworks form undirected
graphs, called policy framework graphs, with roles as vertices and bindings as edges. Each
policy framework graph represents a policy framework implicitly shared between the roles
in the graph. When a business architecture is registered in the Pilarcos type repository,
it finds the policy framework graphs of the architecture by a simple depth-first algorithm
and stores them for later use by the Pilarcos trader.

5.5.4 Search algorithm

In the population process, the Pilarcos trader searches its database for compatible service
offer combinations. Due to the combinatorial nature of the problem, the number of possible
service offer combinations can be very large; in fact, in the general case the problem of
whether complete federation offers exist for a given architecture and a given offer database
can be proven to be NP-complete. Yet the population process should be relatively quick
to be practical. This is achieved by two means: using an optimised search algorithm and
restricting the extent of the search.

The populator can restrict the search by giving two limits: the maximum number of
federation offers to be returned, and the maximum duration for the search process within
the trader. The search terminates when either limit has been reached or the entire offer

50 Infrastructure services

database has been searched without success. In most cases, returning one or a couple of
federation offers suffices.

The search algorithm proceeds depth-first with respect to the roles of the architecture
in order to find the first complete federation offers as quickly as possible. This avoids
having to search the entire offer space. Each role has an associated service type; since the
trader indexes service offers by their service type, the candidate offers for each role can be
accessed rapidly. Pre-filled roles are handled just like other roles, except that they only
have one candidate offer.

To reduce the size of the search tree, the Pilarcos trader sorts the roles into ascending
order according to the number of candidate service offers. The search algorithm visits the
offers in the roles recursively, beginning with the first role. The interfaces and policies of
a candidate offer for the current role are compared with those of the offers selected for the
previous roles; if they are compatible, the search proceeds to the next role, otherwise the
next candidate offer for the role is tried until none are left. When a compatible offer is
found for the last role, the selected offers form a complete federation offer.

The number of interfaces per service type is typically small, so comparing them does
not pose a significant overhead. The number of policies in a service offer can be much
larger; therefore it is important to minimise the number of policy comparisons. This is
done by taking advantage of policy framework graph data provided by the type repository.

client server
client
Pay| |Tou Tou| |Pay
—_ —_ —_— —_ R S~
— |= = | AN - Tou
» payment_mediator ' Server et
» 7 \\\\
- N\|Pay
T —
, 7
\. Pay .‘/ payment_mediator _--

Figure 5.16: Graph-specific policy frameworks in the example architecture.

At the beginning of the search process, the Pilarcos trader requests both the architec-
ture definition and the accompanying policy framework graph data from the type reposi-
tory. It then allocates space for one graph-specific policy framework per each graph. For
the tourist service example, graph-specific policy frameworks are illustrated in Figure 5.16;
policy framework types are marked “Tou” and “Pay”. Policy comparisons are done by
calculating the intersections of the policies in the candidate offer with those in the graph-
specific policy frameworks. If the intersections are non-empty, the offer matches, and the
intersections are stored in the graph-specific policy frameworks. Since the algorithm is re-
cursive, each invocation has its own copy of the graph-specific frameworks, containing the
intersections of the policies in the previously selected offers. This minimises the number
of calculations needed.

Because the federation offers returned by the Pilarcos trader are to be used as basis
for federation establishment, where only the compatible subset of interval and string set

5.5 Pilarcos trader 51

Algorithm Populate(incomplete federation offer I):
1. Retrieve architecture definition and policy framework graphs of I from the type
repository.
2. Collect candidate service offers for each role R; as follows:

(a) If there is a pre-filled offer in I for R;, mark it as the only service offer for
R;; else
(b) Search the service offer database for offers of R;’s service type.

3. Sort the roles (R;...R,) into ascending order according to the number of can-
didate service offers.

4. Initialise empty list of complete federation offers L.

5. Invoke SearchRole(R;, empty federation offer, set of empty graph-specific pol-
icy frameworks).

6. Return federation offer list L.
Algorithm SearchRole(role R;, federation offer F, set of graph-specific policy frameworks P):

1. For all candidate service offers O; of role R; do:
(a) Query type repository for compatibility of O;’s interfaces with adjacent
offers in F'.
(b) If an interface is not compatible, return from the algorithm.

(c) Calculate intersections of corresponding policies in P and Oj, storing the
results back in P.

—
&

If any intersection is empty, return from the algorithm.
Add service offer O; to federation offer F'.
If R; is the last role, then:

i. Copy policy values from P to corresponding policy frameworks in the
service offers of F.

ii. Add F to federation offer list L.
otherwise:
i. Invoke SearchRole(role R;1, copy of F, copy of P).

—
[¢3]
~

~—~
lms)
~

2. Return from the algorithm.

Figure 5.17: Outline of the Pilarcos trader population algorithm.

constraint policies can be used, the Pilarcos trader replaces the original policy values with
their intersections before returning the results. In the present algorithm, when a complete
federation offer has been found, intersections of policies for it are already available and can
be written over the originals in the federation offer. The entire algorithm is outlined in
Figure 5.17.

As presented here, the search algorithm performs the least possible number of com-
parisons, and uses space only in linear proportion to the number of roles and the number
of policy framework graphs. This yields good results in practice, as will be seen in the
following section.

From a combinatorial standpoint, each newly formed federation offer should be ade-
quately different from the earlier so that the populator does not receive almost identical
offers. Furthermore, the service offer space should be covered uniformly instead of always
returning the same set of offers for identical queries. To address these aspects, the Pilarcos
trader arranges the service offers for each role randomly before starting the search. After

52 Infrastructure services

a complete federation offer has been found, the offers are again ordered randomly and the
search is begun anew. Possible duplicate federation offers are skipped. Since the federation
offer space is typically quite large, this procedure works well to provide evenly distributed
results.

Currently, all federation offers that match with the original incomplete federation offer
are returned. It would be possible to add a preference expression, as in the CORBA Trading
Service, according to which found federation offers would be sorted. Another possibility,
more in line with the Pilarcos trading model, would be to add preferences to individual
policies and sort the service offers according to them before starting the search.

The service offers traded include sets or intervals of alternative business policy values
or technical property descriptions presented as service offer properties. These sets and
intervals get narrowed down to values that are acceptable for the combination of services
in the federation. However, the selection of final policy values or technical properties need
to be unambiguous. For now, we let the Pilarcos trader choose those final values, without
any further negotiation.

5.5.5 Data structures

The way the search algorithm implements the compatibility requirements directs the use
of data structures. The data structures required to describe the architecture and policy
framework graphs are provided by type repository which is described in Section 5.4.7. The
rest of the data structures are sets and maps so that roles, service types, policy framework
graphs and service offers, and their id’s, can be efficiently cross-referenced as needed.

5.5.6 Future work

The implementation so far works efficiently and is fair. Possible future work is summarised
in the following list:

e A considerable part of the time (about half) as seen by clients is spent by the CORBA
implementations, which can be seen in 6. Removing the use of CORBA’s Any -type
might reduce the marshaling overhead.

e There are no modifiable nor dynamic policies. A proper dynamic policy system could
involve sophisticated bidding system, a subject of its own.

e To provide more scalability a linking of Pilarcos traders could be implemented.

e The full CORBA trading service interface could be implemented to the stand-alone
Pilarcos trader.

e [t might be possible to further optimise the population process by maintaining statis-
tics about role and policy compatibilities and or by researching compatibility heuris-
tics in the average case.

e Trader policies could be implemented to choose alternative preferences for trader
operations, for example tradeoff between efficient and fair operation, or how policy
values are narrowed into single values.

Chapter 6

Performance measurements

6.1 Pilarcos trader performance

The Pilarcos middleware feasibility is much dependent on the scalability of Pilarcos trading.
The measurements show that the algorithm behaves well under changes in service offer
space and business architecture complexity.

6.1.1 Measurement parameters

For performance measurements, computer-generated service offer databases and business
architectures were used with separately controllable parameters. The measurement pa-
rameters were:

Number of roles in business architecture. The generated business architectures con-
sist of roles bound together in the form of a chain, without cross bindings; however,
the form of the architecture makes no difference in the search algorithm. Each role
in the architecture has a service type of its own.

Number of service offers. Service offers were generated separately for each role in the
architecture. Their distribution was controlled by two parameters: minimum and
maximum number of service offers per role. The number of offers for the roles was
linearly interpolated between the two.

Number of policies. The total number of policies per service offer, distributed evenly
between policy frameworks. Omne half of the policies were intervals and string set
constraints, the other half was integers and boolean values.

Offer match ratio. This is the ratio of federation offers to all possible combinations of
service offers in the offer database.

Since policy frameworks are attached to interfaces, the number of interfaces per role is not
an independent parameter; adding interfaces has the same effect on performance as adding
policies.

Per data point, 20 randomised service offer databases were generated. The cut-off role
determining federation offer compatibility or incompatibility in the generated databases
was the third role.

Parameters for the baseline case were: four roles, 40 to 100 service offers per three roles
(210 total), four interfaces per role, 32 policies per service offer in four policy frameworks,

54 Performance measurements

and an offer match ratio of 30 %. This represents a rather heavy but, in our opinion,
realistic usage scenario. In most tests, the Pilarcos trader was set to return 20 federation
offers per request; however, in the results, only the time to find the first federation offer is
reported, since it is largest and the differences are small. No time limit was set.

The measurement client created an incomplete federation contract with one pre-filled
role, and called the Pilarcos trader populate operation to fill the remaining three roles.
Thus, in the baseline case, the Pilarcos trader had a total of 280 000 possible service offer
combinations to search, of which 84 000 were valid federation offers.

6.1.2 Measurement environment

The performance measurements were conducted on two 1 GHz Pentium III workstations
with 512 MB of RAM, connected by a closed 100 Mbps Ethernet LAN. The measurement
client program was run on one workstation and the Pilarcos trader on the other workstation.
For the CORBA trader we used the Java-based ORBacus trader 2.0.0 [6] running on IBM
Java2 1.4.0 in compiled mode on the same workstation as the Pilarcos trader.

Time spent in the Pilarcos trader search algorithm, time spent in the CORBA trader
and the response time seen by the measurement client were measured separately. The Pi-
larcos trader and the ORBacus trader were restarted at the beginning of each measurement
series, and were warmed up with three population requests before the actual measurements.
For each data point, 20 runs were conducted, one per generated random database. The
service offer database was emptied between each run.

6.1.3 Results and analysis

When a search limit of one federation offer was used, the population process in the baseline
case took an average of 22 milliseconds. The Pilarcos trader was in standalone mode, as
with other results except where noted otherwise. In addition, transferring the request and
the result over CORBA took an average of 30 ms, raising the total to 52 ms. The feder-
ation offer data structure is designed for readability and flexibility, not speed: it contains
several nested sequences and makes heavy use of the CORBA Any type, making mar-
shalling very performance-intensive. The marshalling delay could be significantly reduced
by using known CORBA IDL optimisation techniques. For the rest of the results, only the
time spent in the search process is presented, since the marshalling delay is constant and
predictable.

The result of varying offer match ratio from the baseline case is presented in Figure 6.1.
Both the average time and the variation grow significantly with low match ratios, but are
still tolerable even at a match ratio of 5 %. Based on these results, the practical usage
area for the Pilarcos trader is with offer match ratios at and above 5 %.

Effect of the number of service offers was also measured. With offers distributed evenly
between the roles, no significant effect on search time was seen with database sizes of up
to 2550 offers. This behaviour was expected, since the population algorithm never needs
to search the entire offer database. Instead, search time is directly proportional to the
number of requested federation offers.

In the measurement series presented in Figure 6.2, the number of policies per service
offer was varied. As expected, search time grows in linear proportion to the number of
policies. In the baseline case there were 32 policies per offer, which is a rather a high
estimate, over 64 policies would be exceptional. In this respect, the Pilarcos trader scales

6.1 Pilarcos trader performance 55

120 ‘ ‘
First federation offer, average
Minimum and maximum ---—+---
100
80

Search time (ms)
(2]
o

N
o

20”)M

0 Il Il Il Il L
0 20 40 60 80 100

Offer match ratio (percent)

Figure 6.1: Effect of offer match ratio on search time.

120 T T T
First federation offer, average
Minimum and maximum -+~
100
—~ 80
2]
£ |
2 |
£ w0 |
<
<] !
) ! 1
9 40 /
20 *
0 Il Il Il Il Il Il
0 20 40 60 80 100 120 140

Number of policies per offer

Figure 6.2: Effect of number of policies on search time.

very well. Moreover, the results could be improved significantly by reducing the amount of
copying and insertion and extraction from CORBA Any types in the policy handling code.

Figure 6.3 illustrates the effect of varying the number of roles in the business architec-
ture. Again, the dependency is linear, as expected. Based on these results, large architec-
tures with up to ten roles would be practical; most probably, for such large architectures
other aspects than the population process are more significant.

For the measurements in Figure 6.4, ORBacus trader was used as service offer database.
The search times are nearly ten-fold compared to the standalone case (Figure 6.1), with
significantly larger variation. Also, an initial cost of over 100 ms is incurred by the first

56 Performance measurements

120 : ‘
First federation offer, average
Minimum and maximum ---—+---
100
fr
—. 80 |
%]
E
()
£ 60
<
8 i
s :
& |
0 //
20 b
0 L ! ‘ ‘ ‘
4 6 8 10 12

Number of roles

Figure 6.3: Effect of number of roles on search time.

1000

First federation offer, avérage
900 Minimum and maximum ---—---

800

700

600

500

Time (ms)

400

300

200

100

0 Il Il Il Il L
0 20 40 60 80 100

Offer match ratio (percent)

Figure 6.4: Effect of offer match ratio on search time with ORBacus trader.

ORBacus trader queries. The initial cost as well as the large variation results from the
block-wise transfer of service offers from the ORBacus trader. Additional, seemingly ran-
dom fluctuations in the curve are probably caused by garbage collection in the Java process.
According to more detailed measurements, transferring service offers between the ORBa-
cus trader and the Pilarcos trader takes more than half of the ORBacus trader query time.
When a CORBA trader is used as a back-end, a significant significant speedup could be
achieved by collocating the Pilarcos trader and the CORBA trader in the same process.

However, the fact that transferring service offers is so performance-intensive also has
implications for using federated (linked) CORBA traders. In some federated cases, the

6.2 Prototype performance 57

service offers would be transferred across multiple links before reaching the Pilarcos trader,
multiplying the performance costs. The CORBA Trading Service has not been designed
for cases where the entire contents of service offers need to be transferred, and would need
to be modified to support such cases practically. As with federation offers, this could be
done with known CORBA IDL optimisation techniques, for example by replacing CORBA
Any types by a more restricted set of possible property types.

6.2 Prototype performance

Pilarcos prototype provides functionality for creating federations dynamically (this is not
possible in traditional implementations). As might be expected, provided functionality
produces some overhead to system. The primary goal of the committed measurements was
to estimate the cost of this added functionality.

6.2.1 Measurement parameters

to estimate the cost of flexibility provided by Pilarcos compared to traditional CORBA
implementation of similar demonstration case. Another goal was to provide time slicing
in different phases of Pilarcos both from clients point of view and in servers. Pilarcos
prototype was measured with the following parameters

e time usage at different phases of Pilarcos,

e number of clients,

e Pilarcos vs. traditional implementation without simulated load, and
e Pilarcos vs. traditional implementation with simulated load.

Time usage was measured to get exact costs of different phases in our implementa-
tion and to determine how much time Pilarcos infrastructure uses compared to actual
applications in our scenario. These phases include federation establishment, federation
termination, bindings between clients and servers, and application calls.

Measurements with different numbers of clients were made to simulate the behaviour
of the prototype in more real world case. Unfortunately, because of technical problems
already mentioned, these measurements we were not able to do as we would have wanted.

Benchmarking against traditional implementation with and without load were made to
estimate the cost of Pilarcos infrastructure. Measuring with load and without load were
done to see if differences between Pilarcos and traditional implementation are constant or
relative.

6.2.2 Measurement environment

Measurement environment consists of seven 1GHz Pentium IIT workstations with 512MB
RAM memory. Workstations were connected with closed 100 Mbps Ethernet. Operating
system used in workstations was CS Linux with kernel 2.4.18. Different components of
Pilarcos prototype were distributed to workstations, one per each machine. Background
clients used two machines and were evenly distributed in them. Distribution of components
are shown in Figure 6.5.

58 Performance measurements

Tourist Server

[Payment Server } [Hotel Server }

Switch |

[Background client machine 1 } [Measurement client } [Background client machine 2 }

Figure 6.5: Distribution of Pilarcos components in measurement environment.

Before measurements the system was warmed up with 3000 measurement rounds done
by client. Each measurement consisted off 8000 measurement rounds. Throughput opti-
mization flags were used for Java virtual machines. In all measurements IBM Java 1.4.1-
platform was used.

6.2.3 Results and analysis

Increasing number of clients and therefore number of federations per second response times
and processor usage were measured. Processor usage increases linearly when more federa-
tions are executed in second, as can be seen in Figure 6.6. From the figure it can clearly
be seen that HotelServer becomes the bottleneck in the prototype.

%
a0

80

70

60

a0

412 federations/ szcond

40 7,75 federations! szcond
[]8.47 federations/ s=cond
30 {T]8 .82 federations/ second

20 —

L m] N ml =l

BackgroundClient TouristSener HotelServer PaymentServer Trader

Figure 6.6: Processor usage in servers.

There are several reasons for this. Firstly HotelServer is the only domain where two
platforms are used simultaneously (OpenCCM and JBoss). This generates a large number
of context switches between processes in that domain (machine) which slows down pro-

6.2 Prototype performance 59

cessing and takes time. Secondly, all adaptation in the prototype is done in HotelServer
domain. As the adaptation is currently implemented in component-level adapters there is
a high amount of additional marshalling in the operation calls. As can be seen from Figure
6.6 HotelServer-domain is operationg close to its saturation point and is clearly holding
back other processing. Other servers are behaving predictably and could be assumed to
continue behaving similarly if federations per second value was increased.

The increase in response times seen by the client is clearly visible in Figure 6.7 when
more federations are executed in second. Response times follow the increase of processor
usage. Two of the highest values in this figure belong to createFederation and leaveFed-
eration operations. Both of these operations go through the first federation and affect
also the second federation. In these operations effectively two federations are created and
terminated in one operation visible to client.

ms
300
275 1
250
225 i
200 _ [14.12 federations/
175 | second
B 7,76 federations/
150 L second
- | []84T7 federations/
125 - second
[]6,82 federations/
100 B i second
75 -
50 ! I
i i ol
0_ Emld,oscl'ocl = W = II-—clul,:- Ilnu'wl = I'oclnsm;_
3 §Efgd § % BsE sEsbETE T G@ pEs
g BB e o B E Ei2 =z o v =

Figure 6.7: Client response times.

Further measuring should be done when the two platforms in HotelServer domain would
be running on two different computers. This should decrease the processor usage and allow
higher federations per second values.

Pilarcos prototype was also benchmarked against traditional implementation. In tra-
ditional implementation the services to be used are determined beforehand and resolved
from nameservice during startup. This way the selection of partners becomes static and

the flexibility of dynamically determining partners is lost. In addition, only one platform
is used so that no adaptation is reguired.

60 Performance measurements

For benchmarking simulated load was added to some operations. Simulated load does
not represent any actual relation to how much time the operations would take in real world.
The load was generated by calculating simple operations in a loop to prevent optimization.

Numbers in Figure 6.8 show that traditional case has only a limited advantage over
Pilarcos system. Figure 6.8 also shows that federation management operations use some-
what little time compared to application calls. Input rate in these figures is the same as
the lowest in Figure 6.6.

ms

100
a0
80
70
60
50
[pilarcos
40 Bl simulated load in pilarcos
[traditional
30 M simulated load in
traditional
20
10+
U_ w
® B = = 5 &2 By = i} =
3 % ¢s 3 D 25 2gc fegm B 4 _ ¢35
. B85 80 % & g B8R REIZ B §§ Bis

Figure 6.8: Time used in different phases seen by client with simulated load.

Creating federation and terminating it are the biggest operations when there is no
simulated load as seen in Figure 6.9. It is important to remember that when client creates
a federation actually two federations is created as the HotelClient creates instantly its own
federation to get subservices. As Figure 6.10 shows biggest single operation is creating
the HotelServer. Also in federation termination two federations is terminated because
HotelClient terminates the subservice federation. Like in federation creation, terminating
the HotelServer is the largest single operation in federation termination.

Detailed information of costs of adaptation and other operations is shown in Tables
6.1, 6.3 and 6.2. It appears that something should be done to adaptation model as it
seems to have an effect to the performance. As can be seen in Table 6.3 adapted call from
HotelServer to PaymentServer takes two milliseconds and regular call from TouristClient
to PaymentServer takes one millisecond.

Some problems occurred while benchmarking the prototype. One of these was that
only seven clients were able to run simultaneuosly when operating in separate machines
(a measurement client on one host, three background clients per machine on two hosts).
This problem was traced to OpenCCMs stubs. The problem prevented us from conducting

6.2 Prototype performance 61

ms

[CJrilarcos

10— — | BN

startSe
Resenv
ation
getPay
ment
Data
payBill
endSes
sion
leave-
Federat

malke-

Informa

1

Federat
ssion

getBill

payBill

populat
ion

create

1on

o~
cu
o

ion

Figure 6.9: Response times seen by client.

25 [Filarcos

create
Senvice’ TS
HC: populate
create
Sewice:HS
create
ServerBind
getConnection:

getConnection:
RMI

RMI

Figure 6.10: Time used in createFederation.

better scalability tests for the prototype. Unfortunately we were not able to fix these
problems due to tight schedule. The other problem was mysterious peaks in response

62 Performance measurements
Domain| Component Operation Used time (ms)
TC TouristClient populate 15
TC TouristClient createFederation 93
TC FederationManager createClient 0
TS FederationManager createService 0
TS FederationManager createServerBinding 0
TS TouristServer establishFederation 87
TS HotelClient populate 11
TS HotelClient createFederation 76
TS FederationManager createClient 0
HS FederationManager createService 51
HS FederationManager createServerBinding 8
HS HotellnfoAdapter getConnection:RMI 4
HS HotellnfoAdapter getConnection:RMI 4
PS FederationManager createService 1
PS FederationManager createServerBinding 0

Table 6.1: Time used in different operations during createFederation
Domain| Component Operation Used time (ms)
TC TouristClient leaveFederation 33
TS TouristServer terminateFederation 28
TS HotelClient leaveFederation 27
HS FederationManager terminateFederation 22
HS FederationManager removeService & Bindings 16
PS FederationManager terminateFederation 2
PS FederationManager removeService & Bindings 1
TS FederationManager removeService & Bindings 0
TC FederationManager removeService & Bindings 0

Table 6.2: Time used in different operations during leaveFederation

times during benchmarking. These peaks were found in both our prototype and in simple
ping-program and on both Java platforms we used (IBM and Sun). These results indicate
that the problem is in platforms used.

6.2 Prototype performance

63

Domain| Component Operation Used
time
(ms)
TC TouristClient getConnection TouristInfo 2
TC TouristClient getConnection Payment 2
TC TouristClient startSession 7
TS TouristServer getConnection Billing 5
TS TouristServer getBillID 2
TC TouristClient getBill 2
TC TouristClient payBill 1
TC TouristClient getInformation 18
TS HotelClient getInformation 6
TS TouristServer isBillPaid 2
TS HotelClient getConnection Hotellnfo 2
TS HotelClient startSession 6
TC TouristClient makeReservation 33
TS HotelClient makeReservation 26
HS HotelRegistrationApp | makeReservation 19
HS HotelRegApp getConnection:RMI_Billing | 16
HS HotelRegApp getBillID 1
TS HotelClient getPaymentData 4
TS HotelClient getConnection:Payment 2
TS HotelClient getBill 2
TC TouristServer getBillID 2
TC TouristClient getPaymentData 2
TC TouristClient getBill 2
TC TouristClient payBill 0
TC TouristClient endSession 15
TS TouristService isBillPaid 2
TS TouristService invalidateBill 2
TS HotelClient payBill 2
TS HotelClient endSession 7
HS HotellnfoApplication | isBillPaid 2
HS HotellnfoApp invalidateBill 1

Table 6.3: Time used in different operations during application calls

Chapter 7

Conclusion

This document gives an implementation oriented view of the Pilarcos middleware services,
together with the performance measurements collected.
The major elements of the architecture are

e Pilarcos trader that is responsible of populating business architectures with compat-
ible service offers,

e federation managers that run federation establishment and termination protocols,
and

e federated binding mechanism for coordinating the creation and configuration of
adapters and exchange of addresses in a heterogeneous environment.

The middleware services were implemented on the MicoCCM and OpenCCM CORBA
Component Model (CCM) platforms. The application components were implemented on
OpenCCM and the JBoss EJB application server. During the prototyping efforts it was
discovered that the CCM offers a powerful and flexible component programming model,
but the CCM platforms are not mature yet. In contrast, the the JBoss platform was
discovered to be of very high standard, and can be recommended for production use [4].

It is clear that without Pilarcos middleware the application components could not
establish federations in such a flexible way. Inter-organisational interoperation can only be
achieved through standard solutions and in this case, via standardising new middleware
services and meta-information elements. Currently, most service-oriented architectures
built with Web services middleware, in Java environments or with CORBA support (plain
or with components) concentrate on service discovery in client-server type of situations.
Most middleware solutions have facilities for composing services into larger elements to
be provided for inter-organisational use. Services are considered as a set of independent
resources in the global network, as building blocks, from which an application programmer
is responsible to construct a new added-value service. Most middleware solutions solve
the interoperability problems by either trusting a shared language context (Java Virtual
Machine) and transfer of code, or trusting a shared protocol environment (CORBA, Web
services). In Pilarcos, interoperability tests use explicit information on the shared platform
facilities, thus making it possible to use different technologies side-by-side as long individual
federations find common communication facilities.

The Pilarcos model provides on multilateral contracts. A business architecture can be
considered as an external work-flow template that describes potential choreographies be-
tween independent parties. Fach potential party provides a local work-flow that fulfils its

65

published service contract. The local work-flows are hidden and no specific requirements
for their running environment is specified. The Pilarcos middleware acts as a matchmaker
for the parties, and then specialises the shared external work-flow according to the mem-
bership, corresponding business policies and technical facilities. The design deliberately
differs from the common goal for distributed work-flow systems by not granting access and
visibility to partner’s information processing system.

The measurement results from the Pilarcos prototype show that the population process
and federation establishment phase can be made scalable and the basic cost tolerable for
the intended use. Pilarcos middleware is designed with dynamically changing cooperation
schemes in mind. Such schemes appear for instance as virtual enterprises that provide a
new service constructed by minor services run at member organisations computing facil-
ities. Although there is a noticeable cost at establishing the federation, the duration of
the federation is not only for single interactions but for a lengthier user session or more
naturally, for the lifetime of the virtual enterprise.

The Pilarcos middleware is not restricted to any specific application area. The Pilarcos
middleware is designed with service-oriented architectures in mind, capturing discovery of
services and ensuring interoperability between them [12]. Although Pilarcos project has
used component based platforms (OpenCCM, MicoCCM, JBoss) for experimenting and
prototyping, the Pilarcos architecture does not require component techniques to be used.

However, there are two types of environment into which Pilarcos model is not suited.
The open nature of Pilarcos model is such that highly secure systems cannot be supported:
trust building mechanisms can be incorporated, but still, critical systems should use more
static and closed solutions. The nature of Pilarcos middleware overhead cost is such that
it is not suitable for example for hard real-time systems or systems where response times
are not allowed to vary a lot.

Especially beneficial the Pilarcos model can be for SMEs (Small and Medium Size
Enterprises). The SMEs gain and keep their competitive position best by networking
with companies that provide complementary services. Current integration solutions are
founded on a single authority directing business models and their technical development,
thus benefiting only very large companies.

For future, there are several interesting development areas for the Pilarcos middleware.
First, for the Pilarcos services to be more usable, the current prototype should be trans-
formed to be accessible by protocols in the Web Services family. Second, for the Pilarcos
trader to really answer the needs of globalisation and the number of service offers involved,
two different federation schemes can be tested; one where federation takes place at the
Pilarcos trader level, and one where federation takes place at the underlying OMG trader
level. Third, future enhancements on the business architectures increase flexibility and
adaptability of federations. We intend to expand business architectures with epochs and
cardinalities of roles. An epoch is an interval during which services provided by a feder-
ation stay identical and the set of roles involved is unchanged. A change in services or
roles starts a new epoch. In addition, extensions are needed so that federations can be
made to overlap or form hierarchies without application components to be involved in the
administration.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

18]

[9]
[10]

[11]

[12]

BALEK, D. Connectors in Software Architectures. PhD Thesis, Charles University,
Czech Republic, 2002.

BeELaiD, D., Provenzano, N., AND TacoNeT, C. Dynamic man-
agement of CORBA trader federation. In 4th USENIX Conference of
Object-Oriented Technologies and Systems (COOTS) (Santa Fe, New Mex-
ico, 1998). Also http://www.usenix.org/publications/library/proceedings/
coots98/full_paphers/belaid/belaid.pdf.

CRASKE, G., TARl, Z., AND KuMAR, K. R. DOK-trader: A CORBA persistent
trader with query routing facilities. In International Symposium on Distributed Objects
and Applications (1999), pp. 230-240. Also http://rmit.edu.au/"zahirt/Papers/
doa99.pdf.

HaAATAJA, J.-P., METSO, J., SUORANTA, T., AND VAHAAHO, M. Platform experi-
ences. Tech. rep., Jan. 2003. C-2003-NN.

HerzuM, P., AND SiMMs, O. Business Component Factory. Wiley Computer Pub-
lishing, 1999.

IONA TECHNOLOGIES. ORBacus Trader, version 2.0.0, 2001. http://www.iona.
com/products/orbacus/trader.htm.

ISO/IEC JTCL1. Information Technology — Open Systems Interconnection, Data
Management and Open Distributed Processing. ODP Type Repository Function.
1S14746.

ISO/IEC JTC1. Information Technology — Open Systems Interconnection, Data
Management and Open Distributed Processing. Reference Model for Open Distributed
Processing. 1510746 1-4.

JBoss web site. http://www.jboss.org.

KuTtvoNEN, L. Management of Application Federations. In International IFIP
Working Conference on Distributed Applications and Interoperable Systems (DAIS’97)
(Cottbus, Germany, Sept. 1997), H. Konig, K. Geihs, and T. Preuss, Eds., Chapmann
& Hall, pp. 33 — 46.

KUTVvONEN, L. Trading services in open distributed environments. PhD thesis, De-
partment of Computer Science, University of Helsinki, 1998.

KuTtvoNEN, L. Automated management of interorganisational applciations. In
EDOC2002 (2002).

66

BIBLIOGRAPHY 67

[13] LEYMANN, F. Web services flow language (wsfl 1.0). Tech. rep., 2001. http://www-4.
ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

[14] Lupu, E., AND SLOMAN, M. A policy based role object model. In Proceedings of the
Ist International Enterprise Distributed Object Computing Conference (EDOC’97),
Gold Coast, Queensland, Australia (October 1997), pp. 36-47.

[15] Mico web site. http://wuw.mico.org.

[16] OBJECT MANAGEMENT GROUP. CORBA Component Model - Volume 1. Framing-
ham, MA, USA, 1999. OMG Document orbos/99-07-01.

[17] OBJECT MANAGEMENT GROUP. CORBA Component Model v3.0. Framingham, MA,
USA, 2002. OMG Document formal/02-06-65.

[18] OpenCCM web site (LIFL). http://www.1ifl.fr/0OpenCCM.

[19] SIEGEL, J. Developing in OMG’s Model-Driven Architecture. Object Management
Group, Nov. 2001. White paper, revision 2.6.

[20] SUN MICROSYSTEMS, INC. Enterprise JavaBeans Specification v1.1, 1999.
[21] SUN MICROSYSTEMS, INC. Enterprise JavaBeans Specification v2.0, 2001.

[22] SzyPERSKI, C. Component Software: Beyond Object-Oriented Programming. ACM
Press and Addison-Wesley, New York, NY, 1998.

[23] THATTE, S. Xlang. Tech. rep., 2001. http://www.gotdotnet.com/team/xml_
wsspecs/xlang-c/default.html.

[24] THATTE, S. Business process execution language for web services, version 1.0. Tech.
rep., July 2002. http://www-106.ibm.com/developerworks/webservices/library/
ws-bpel/.

[25] VALLECILLO, A., HERNANDEZ, J., AND TROYA, J. M. Component interoperability.

Tech. rep., Dept. Lenguajes y Ciencias de la Computacién, University of Malaga, July
2000. ITI-2000-37.

Appendix A

Selected IDL definitions

This appendix contains the OMG IDL definitions of the central interfaces and data struc-
tures in the prototype. Some of the less significant interfaces and data structures as well
as raised exceptions have been left out for clarity.

A.1 Common

module Pilarcos {

//

/] - Policies -----—----

//

typedef string PolicyTypeName;

typedef string PolicyFrameworkTypeName;
typedef string PolicyFrameworkName;

typedef sequence<PolicyFrameworkName> PolicyFrameworkNameSeq;

typedef any PolicyValue;
typedef sequence<PolicyValue> PolicyValues;
typedef sequence<PolicyValues> PolicyValuesSeq;

// omitted policy value
struct NoValue {
long no_value;

3

// TODO: this should be made internal to Trader
typedef sequence<double> PreferredValues;

struct LongRange {
long low;
long high;

// TODO: should be
// long preferred;
PreferredValues preferred_values;

3

struct DoubleRange {
double low;
double high;

A.1 Common

// TODOD: should be

// double preferred;

PreferredValues preferred_values;
};
enum ConstraintType {

some_of,

one_of,

exactly

};

typedef sequence<string>
typedef sequence<double>

struct StringSet {
Stringlist
WeightFactors
ConstraintType

string

typedef
typedef
typedef
typedef
typedef

string
string
string
string
string

typedef
typedef

sequence<PSIType>
sequence<PIIName>

struct IndirectRef {
string name;
NameServiceRef ns_loc;

¥

interface FederatedNaming;

struct InterfaceRef {
PSIType
// name of the interface in the s
PIIName

FederatedNaming
FederatedName

boolean

3
typedef sequence<InterfaceRef>

interface FederatedNaming {

void bind_direct(in FederationContractID

in FederatedName
in Object

void bind
in FederatedName

(in FederationContractID

69

Stringlist;
WeightFactors;

strings;
weight_factors;
constraint_type;

FederationContractID;

NameServiceRef;

PSIType;

PIIName;

FederatedName;

NamingFormat; // CORBA, JNDI,

PSITypeSeq;
PIINameSeq;

type;
ervice type (e.g.
pii_name;

"billing")

federated_ns;
federated_name;
direct_naming;

InterfaceRefSeq;

id,
name,
obj);
id,
name,

70

in IndirectRef
(in FederationContractID id,

void unbind

Appendix A. Selected IDL definitions

ref);

in FederatedName name) ;
Object resolve_direct(in FederationContractID id, in FederatedName name) ;
IndirectRef resolve (in FederationContractID id, in FederatedName name) ;
};
//
[/ =mmmmm———e Service contract structure ----------
//

typedef string
typedef string
typedef string
typedef string

typedef sequence<ServiceTypeName>

struct ServiceContract {

ServiceTypeName;
RoleName;
ArchitectureName;
ServiceContractID;

ServiceTypeNameSeq;

ServiceContractID service_contract_id;
ServiceTypeName service_type;
PolicyValuesSeq policy_values;
InterfaceRefSeq interfaces;
Object federation_manager;
};
//
/] ————— Federation contract structure ----------
//
struct ServiceForRole {
RoleName role;
ServiceContract service_contract;

};

typedef sequence<ServiceForRole>

struct FederationContract {
FederationContractID
ArchitectureName
ServiceForRoleSeq

};

ServiceForRoleSeq;

federation_contract_id;
architecture;
service_contracts;

typedef sequence<FederationContract> FederationContractSeq;

typedef long
typedef sequence<PolicyContextID>

PolicyContextID;
PolicyContextIDSeq;

// Currently this is equal to ServiceTypeName.
// (Really, ServiceType should include a PolicyContextType,
// which would define the policy frameworks of the service type.)

typedef string

struct PolicyContext {
PolicyContextID

PolicyContextTypeName;

id;

A.2 Federation manager, service factory, and federated application 71

// for now, equal to ServiceTypeName; empty for application contexts
PolicyContextTypeName type;

// similar to ServiceContract.policy_values;
// zero-length for application contexts
PolicyValuesSeq policy_values;

// for offer contexts and federation contexts; empty for others
ServiceContractID service_contract_id;

// only for federation contexts; empty for others
FederationContractID federation_contract_id;

3

typedef sequence<PolicyContext> PolicyContextSeq;
3

A.2 Federation manager, service factory, and federated ap-
plication

module Pilarcos {
module FederatedApplication {

component FederationManagerComponent;

//
// Generic Configuration Interface

1/

typedef sequence<string> ConfigurationData;
interface Configuration {
// At the moment contains the arguments to ORB
void configure(in ConfigurationData configuration_data);

};

interface AdapterConfiguration {
void configure(in ConfigurationData configuration_data,
in Pilarcos::InterfaceRef if_ref);

};

//
// Application Component
//

// Called by federation manager to notify application.

interface FederatedApplicationInterface {
void establishFederation(in PolicyContextID federation_context_id)
void terminateFederation(in PolicyContextID federation_context_id);

};

//
// Service Factory

1/

typedef string AssemblyID;
typedef string ComponentType;

72

typedef string
typedef sequence<string> ComponentSourceSeq;

Appendix A. Selected IDL definitions

InterfaceName;

struct ServiceTypeInformation {
ServiceTypeName service_type; // Implemented service type

};

// "Concrete" interface types implemented by the assembly
PSITypeSeq interface_types;

// names of the interface types in the service type
PIINameSeq pii_names;

typedef sequence<ServiceTypeInformation> ServiceTypeInformationSeq;

// 'federation’,

conservative’, ’client’

typedef string LifeCyclePolicy;

struct Assembly {
// ID of the Assembly

};

AssemblyID

assembly_id;

// Assembly life cycle policy

LifeCyclePolicy

life_cycle;

// Information related to service types
ServiceTypeInformationSeq service_type_information;

struct ServiceData {

};

AssemblyID
PolicyContextID

assembly_id;
application_context_id;

FederatedApplicationInterface federated_application_interface;

typedef sequence<ServiceData> ServiceDataSeq;

// Used to identify a specific instantiation (not necessarily instance)
typedef string ServiceCookie;
typedef sequence<ServiceCookie> ServiceCookieSeq;

struct ServicelnstanceData {

};

ServiceData
ServiceCookie

service_data;
cookie;

Pilarcos::InterfaceRefSeq int_refs;

typedef sequence<ServicelnstanceData> ServicelnstanceDataSeq;

interface ServiceManagement {
void addFederationAssociation(in ServiceCookie cookie,

ServicelnstanceData
ServicelnstanceData

ServicelnstanceData
void

ServicelnstanceData
void

in FederationContractID contract_id,
in PolicyContextID context_id);

createClient (in ServiceContract service_contract);
createService(in ServiceContract service_contract,

in FederationContractID federation_contract_id);
createServicelnstanceData

(in PolicyContextID application_context_id);
destroyServiceInstanceData(in ServiceCookie cookie);
getServiceInstanceData(in ServiceCookie cookie);
destroyService(in ServiceCookie cookie);

A.2 Federation manager, service factory, and federated application 73

interface ChannelManagement {
Pilarcos::InterfaceRef createServerBinding
(in Pilarcos::InterfaceRef ref_to_server,
in Pilarcos::InterfaceRef ref_from_contract,

in ServiceCookie cookie) ;
Pilarcos::InterfaceRef createClientBinding
(in Pilarcos::PSIType type_of_client,
in Pilarcos::InterfaceRef ref_from_contract,
in ServiceCookie cookie) ;

/** Generic binding operation -> not yet implemented

Pilarcos::InterfaceRef createBinding(in Pilarcos::PSIType type_from_assembly,
in Pilarcos::InterfaceRef ref_from_contract,
in boolean server_side);

*%/

void destroyBindings(in ServiceCookie service_cookie);

};

interface FactoryConfiguration : Configuration{
void addAssembly (in Assembly assembly);
void removeAssembly (in AssemblyID assembly_id);

};

//
// Federation Manager

//

interface ChannelInterface {
// Operation returns the reference to the adapter
Pilarcos::InterfaceRef getInterfaceRef(in long federation_context_id,
in string interface_name,
in Pilarcos::PSIType interface_type);

};

interface PolicyInterface {
// Adds a new policy context as the child of the given
// parent. Updates the parent accordingly.
PolicyContextID addPolicyContext(
in PolicyContextID parent_context_id,
in PolicyContext new_context

)

// For updating values of a policy context.
void updatePolicyContext(
in PolicyContext policy_context

)

// Retrieves a policy context.
PolicyContext retrievePolicyContext(
in PolicyContextID context_id

)

// Deletes a policy context.
// (Also deletes all children and updates parent.)
void deletePolicyContext(

in PolicyContextID context_id

)

boolean isPolicyContextStored(

74

};

Appendix A. Selected IDL definitions

in PolicyContextID context_id

)

PolicyContextID getParentContext(
in PolicyContextID context_id

)

PolicyContextIDSeq getChildContexts(
in PolicyContextID context_id

)

// Creates an offer context under a service context,
// duplicating the policy values of the service context.
PolicyContextID createOfferContext(

in PolicyContextId application_context_id,

in ServiceTypeName service_type

)

// Additional operations related to contract-context mapping.
PolicyContextID getFederationContext (
in FederationContractID federation_contract_id

)

FederationContract getFederationContract(
in FederationContractID federation_contract_id

)

interface FederationInterface {

};

// Returns offers as federation contexts.

PolicyContextIDSeq populateArchitecture(
in PolicyContextID offer_context_id,
in ArchitectureName architecture,

in RoleName my_role,

in long max_offers,
in long max_time_ms
);

// Deletes extraneous offers (federation contexts), freeing resources.
oneway void discard0ffers(in PolicyContextIDSeq federation_context_ids)

// Returns federation contract ID, because for now it is required
// to make federated operation calls
FederationContractID createFederation(in PolicyContextID federation_context_id);

oneway void leaveFederation (in PolicyContextID federation_context_id,
in boolean remove_offer_context);

interface FederationManagement {

};

void establishFederation(in FederationContract contract,
in long role_index);

void terminateFederation(in FederationContractID contract_id);

component AdapterComponent {

};

provides AdapterConfiguration configuration;

A.2 Federation manager, service factory, and federated application 75

component ApplicationComponent {

};

// API (upcall and downcall)

uses PolicyInterface policy_interface;
uses FederationInterface federation_interface;
uses ChannelInterface channel_interface;

provides FederatedApplicationInterface fed_app_interface;

// root context for application
attribute PolicyContextID application_context_id;

component FederationManagerComponent {

};

// Naming API
provides Pilarcos::FederatedNaming federated_naming;

// API for application

provides PolicyInterface policy_interface;
provides FederationInterface federation_interface;
provides ChannelInterface channel_interface;

// Service Factory interface
uses ServiceManagement service_management;
uses ChannelManagement channel_management ;

// provided for other federation managers (including the federation coordinator)
provides FederationManagement federation_management;

// access to Policy Repository
uses PolicyRepository::PolicyContextManagement policy_context_management;
uses Trading : :Lookup lookup;

// access to Type Repository
uses TypeRepository::TypeRegistration type_registration;

// my own FederationManagement facet (attribute kludge)
attribute FederationManagement my_federation_management;
attribute FederatedNaming my_federated_naming;

home FederationManagerHome manages FederationManagerComponent f{

};

component ServiceFactoryComponent {

};

// To be connected to app and ib

attribute PolicyInterface policy_interface;

attribute FederationInterface federation_interface;
attribute ChannelInterface channel_interface;

attribute FederatedNaming federated_naming;

provides ServiceManagement service_management;
provides ChannelManagement channel_management ;
provides FactoryConfiguration configuration;

home ServiceFactoryHome manages ServiceFactoryComponent{

};

76 Appendix A. Selected IDL definitions

}; // FederatedApplication

}; // Pilarcos

A.3 Policy repository

module Pilarcos {
module PolicyRepository {

interface PolicyContextManagement {
// Adds a new policy context as the child of the given
// parent. Updates the parent accordingly.
PolicyContextID addPolicyContext(
in PolicyContextID parent_context_id,
in PolicyContext new_context

)

// For updating values of a policy context.
void updatePolicyContext(
in PolicyContext policy_context

)

// Retrieves a policy context.
PolicyContext retrievePolicyContext(
in PolicyContextID context_id

)

// Deletes a policy context.
// (Also deletes all children and updates parent.)
void deletePolicyContext(

in PolicyContextID context_id

)

boolean isPolicyContextStored(
in PolicyContextID context_id

)

PolicyContextID getParentContext(
in PolicyContextID context_id

)

PolicyContextIDSeq getChildContexts(
in PolicyContextID context_id

)

// Creates an offer context under a service context,
// duplicating the policy values of the service context.
PolicyContextID createOfferContext(
in PolicyContextId application_context_id,
in ServiceTypeName service_type
)5
3

component PolicyRepositoryComponent {
provides PolicyContextManagement context_management;
3
home PolicyRepositoryHome manages PolicyRepositoryComponent {

};

A.4 Type repository

}; // PolicyRepository
}; // Pilarcos

A.4 Type repository

module Pilarcos {
module TypeRepository {

typedef string InterfaceType;
typedef string InterfaceTypeName;

//
Y7 AR — Policies ---———--—-——-
//

struct PolicyType {
PolicyTypeName name;
CORBA: :TypeCode type;
3
typedef sequence<PolicyType> PolicyTypeSeq;

struct PolicyFrameworkType {
PolicyFrameworkTypeName name;
PolicyTypeSeq policy_types;
3

struct PolicyFramework {
PolicyFrameworkName name;
PolicyFrameworkTypeName policy_framework_type;

};

typedef sequence<PolicyFramework> PolicyFrameworkSeq;
//

/] == Service type ----------

//

typedef string ServicelnterfaceTypeName;

enum InterfaceRole {
provider,
user

};

struct ServiceInterfaceType {
InterfaceRole interface_role;
ServicelnterfaceTypeName name;
InterfaceType interface_type;
PolicyFrameworkNameSeq service_policy_framework_names;
};

typedef sequence<ServicelInterfaceType> ServicelnterfaceTypeSeq;

struct ServiceType {
ServiceTypeName name ;

78

PolicyFrameworkSeq

Appendix A. Selected IDL definitions

policy_frameworks;

ServicelnterfaceTypeSeq service_interface_types;

typedef string RoleName;
typedef string ArchitectureName;

struct Role {
RoleName name;
ServiceTypeName service_type;
};
typedef sequence<Role> RoleSeq;

struct Binding {
RoleName role_1;

ServiceInterfaceTypeName role_1_interface;

RoleName role_2;

ServiceInterfaceTypeName role_2_interface;

};

typedef sequence<Binding> BindingSeq;

struct Architecture {
ArchitectureName name;

RoleSeq roles;
BindingSeq bindings;
};
//
/] ——-——- Architecture w/ policy framework graphs ----------
//

// These are used only between type repository and trader.

struct RolePolicyFramework {
long architecture_role_index;
long role_policy_framework_index;

};

// index of role in architecture
// index of p.framework in role

typedef sequence<RolePolicyFramework> RolePolicyFrameworkSeq;

struct PolicyFrameworkGraph {
PolicyFrameworkType

policy_framework_type;

RolePolicyFrameworkSeq policy_frameworks_in_roles;

};

typedef sequence<PolicyFrameworkGraph> PolicyFrameworkGraphSeq;

// index = index of policy framework in role (service type)
typedef sequence<long> PolicyFrameworkGraphIndexSeq;

// index = index of role in architecture
typedef sequence<PolicyFrameworkGraphIndexSeq> RoleIndexSeq;

struct ArchitectureWithGraphs {
Architecture

architecture;

PolicyFrameworkGraphSeq policy_framework_graphs;

RoleIndexSeq

architecture_role_index;

A.5 Trader

interface TypeRegistration {

void registerPolicyFrameworkType (

in PolicyFrameworkType policy_framework_type
)5

void registerServiceType (
in ServiceType service_type

)5

void registerArchitecture (
in Architecture architecture_description

)5

void emptyTypeRepository ();

PolicyFrameWorkType describePolicyFrameworkType (
in PolicyFrameworkTypeName name

)

ServiceType describeServiceType (
in serviceTypeName name

)

Architecture describeArchitecture (
in ArchitectureName name

)

ArchitectureWithGraphs describeArchitectureWithGraphs (
in ArchitectureName name

interface TypeMatching {
boolean isCompatibleInterface (
in PSIType first_end,
in PSIType second_end
)5
3

component TypeRepositoryComponent {
provides TypeRegistration type_registration;
provides TypeMatching type_matching;
uses CosTrading::TraderComponents corba_trader;
};
home TypeRepositoryHome manages TypeRepositoryComponent {
s

}; // TypeRepository
}; // Pilarcos

A.5 Trader

module Pilarcos {
module Trading {

79

80 Appendix A. Selected IDL definitions

// note that Service(OfferID != ServiceContractID
typedef string ServiceOfferID;

interface OfferRegistration {
ServiceOfferID export(
in ServiceContract service_offer
);
void withdraw(
in ServiceQfferID service_offer_id
);
ServiceContract describeServiceOffer(
in Service(QfferID service_offer_id

)5
void emptyTrader();
s
//
/] —mmmm—aa Lookup interface ----------
//

interface Lookup {
FederationContractSeq populate (
in FederationContract initial_federation_offer,

in unsigned long max_offers,
in unsigned long max_time_ms
)5
};
component TraderComponent f{
provides OfferRegistration offer_registration;
provides Lookup lookup;
uses TypeRepository::TypeRegistration type_registration;
uses TypeRepository::TypeMatching type_matching;
uses CosTrading: : TraderComponents corba_trader;
3
home TraderHome manages TraderComponent {
}

}; // Trading
}; // Pilarcos

A.6 Public tourist service

module Pilarcos {
module TouristServicePublic {

// This will be removed when implicit contexts start working
typedef string FederationContractID;

typedef string QueryExpression;
typedef string ReservationData;
typedef string InformationPage;

A.7 Public payment service

interface HotelReservationProxy;

struct SessionData {
// BillID for possible pre-payment
PaymentServicePublic::BillID pre_payment_id;

// Refs to all subservice proxies
HotelReservationProxy hotel_reservation_proxy;
// CarRentalProxy etc..

}

struct PaymentTransaction {
PaymentServicePublic::BillID bill_id;

// true=paid, false=needs payment
boolean status;
3

typedef sequence<PaymentTransaction> PaymentTransactionSeq;

// The only subservice available
interface HotelReservationProxy {
InformationPage getInformation(in QueryExpression query,
in FederationContractID contract_id);
void makeReservation(in ReservationData reservation,
in FederationContractID contract_id);

};

interface TouristInfo {
// Starts a service session.
SessionData startSession(in FederationContractID contract_id);

PaymentTransactionSeq getPaymentData(
in FederationContractID contract_id);

// Ends the service session. also acts as a post-payment
// confirmation
void endSession(in FederationContractID contract_id);

};

}; // TouristServicePublic
}; // Pilarcos

A.7 Public payment service

module Pilarcos {
module PaymentServicePublic {

typedef string FederationContractID;

typedef string BilllID;
typedef string Account;
typedef string Certificate;

struct Bill {
// the person who logged in with username xxx
string biller;
double amount;
string description;

81

82 Appendix A. Selected IDL definitions

};

interface Payment {

Bill getBill(in BillID bill_id,

in FederationContractID contract_id);
void payBill(in BillID bill_id,

in Account account,

in Certificate certificate,

in FederationContractID contract_id);
void refuseBill(in BillID bill_id,

in FederationContractID contract_id);

};

interface Billing {
BillId getBillID(in Bill bill,
in Account account,
in FederationContractID contract_id);
void invalidateBill(in BillID bill_id,
in FederationContractID contract_id);
boolean isBillPaid(in BillID bill_id,
in FederationContractID contract_id);

};

}; // PaymentServicePublic
}; // Pilarcos

A.8 Public hotel service

module Pilarcos {
module HotelServicePublic {

typedef string FederationContractID;

// These could be different from those defined in
// TouristServicePublic

typedef string QueryExpression;
typedef string ReservationData;
typedef string InformationPage;

struct PaymentTransaction {
PaymentServicePublic::BillID bill_id;

// true=paid, false=needs payment
boolean status;
3

typedef sequence<PaymentTransaction> PaymentTransactionSeq;

interface HotelReservations {
InformationPage getInformation(
in QueryExpression query,
in FederationContractID contract_id);

void makeReservation(
in ReservationData reservation,
in FederationContractID contract_id);

A.9 Connector 83

interface HotelInfo {
HotelReservations startSession(
in FederationContractID contract_id);

PaymentTransactionSeq getPaymentData(
in FederationContractID contract_id);

// Ends the service session. also acts as a post-payment
// confirmation
void endSession(in FederationContractID contract_id);

};

}; // HotelServicePublic
}; // Pilarcos

A.9 Connector

package Pilarcos.Connections.CORBA;
public class Connector {

public static org.omg.CORBA.Object getConnection(
String federation_contract_id,
int federation_context_id,
String interface_name,
String interface_type,
Pilarcos.FederatedApplication.ChannelInterface channel_interface){}

public static org.omg.CORBA.Object getConnection(
String federation_contract_id,
InterfaceRef if_ref){}

public static org.omg.CORBA.Object getConnection(IndirectRef id_ref) {}
}

package Pilarcos.Connections.RMI;
public class Connector {
public static java.rmi.Remote getConnection(

String federation_contract_id,
int federation_context_id,
String interface_name,
String interface_type,
Pilarcos.FederatedApplication.RMI.ChannelInterface channel_interface){}

public static java.rmi.Remote getConnection(
String federation_contract_id,

InterfaceRef if_ref) {3}

public static java.rmi.Remote getConnection(IndirectRef id_ref) {}

Helsinki 2003

