Enhanced trading service in middleware
for inter-organisational applications

Markku Vahidaho, Lea Kutvonen

University of Helsinki, Finland
(Markku.Vahaaho | Lea.Kutvonen)@cs.Helsinki.FI,
WWW home page: http://cs.Helsinki.FI/

Abstract. Current information processing needs of companies require inter-
organisational cooperation. New middleware is expected to provide facilities
for capturing the workflow, searching for available members for the workflow,
and ensuring that a suggested set of members is able to interoperate both in
semantical terms and technically. The Pilarcos project has developed a proto-
type middleware where inter-organisational application management is based
on explicitly stated, platform-independent, multilateral contracts that define
the forms of cooperation between performing components. This paper discusses
the Pilarcos trader prototype as a federation contract providing service. The
Pilarcos middleware feasibility is much dependent on the scalability of Pilarcos
trading, but the measurements show that the algorithm behaves well under
changes in service offer space and business architecture complexity.
Keywords:

trading service, middleware, federation, application management, inter-organi-
sational cooperation, architecture descriptions

1 Introduction

Current information processing needs of companies require inter-organisational co-
operation. Consequently, new protocols and architecture models are built for using
open services available through Internet [1-4]. Development efforts are directed to
the way services and conversations between service providers should be described and
formulated.

New middleware is expected to provide dynamic and automatically controlled
facilities for inter-organisational cooperation. Current middleware solutions already
provide reasonable support for managing the technological heterogeneity of operat-
ing systems and network solutions and for adapting to dynamic changes in available
resources. However, in a multi-organisational environment, decisions on provision of
application-level service, on operational policies, on platform architectures, and on
communication protocols can be done independently from other systems. Further dif-
ficulties encountered by inter-organisational applications include the need to adapt to
the constant change in potential partners and the independently driven development
of services in each of these systems. These challenges should be addressed by improved
middleware support. Facilities are needed for expressing service requirements, and for
describing alternative conversation patterns between services. Furthermore, facilities
are needed for negotiating joint rules on new cooperation relationships.

Therefore, new middleware should provide facilities for capturing the workflow,
searching for available members for the workflow, and ensuring that a suggested set
of members is able to interoperate both in semantically and technically. The Pilarcos
project (Production and Integration of Large Component Systems) at the University
of Helsinki studies these needs as part of a larger set of cooperational management
services across organisations and platforms. The project has developed a prototype
middleware described below.

In the Pilarcos model, the inter-organisational application management is based on
explicitly stated, platform-independent, multilateral contracts that define the forms
of cooperation between performing components [5]. Federation establishment focuses
on capturing a shared understanding of business logic and semantics of the services
exchanged, but the selection of members is further restricted by the technical commu-
nication requirements of each member. Federation contracts are structured according
to a business architecture where a set of roles denote the services expected from mem-
ber components. Membership criteria includes conformance to the required service in
the business architecture and technical interoperability with the other members in the
federation. Member components are selected from service offers exported to trading
services.

This paper discusses the Pilarcos trader prototype as a federation contract pro-
viding service. Because of its central role in Pilarcos middleware, the performance
profile of the Pilarcos trader is essential for the feasibility of the middleware services.
First, Section 2 outlines the overall Pilarcos middleware in order to give reference to
the use of federation contracts. Section 3 focuses on the enhanced trading mechanism.
Section 4 includes measurement results of the population process and show that the
major cost of the Pilarcos middleware is not in the combinatory population algorithm.
Section 5 concludes the presentation with future work, related work and evaluation.

2 Pilarcos middleware

Pilarcos middleware provides application programmers with pervasive, platform-inde-
pendent tools to manage federations. However, the use of the functions remains ex-
plicit. In this section we review the concepts provided for the programmers and the
middleware functions available for building applications [6].

The key concept for inter-organisational cooperation is that of federation. Feder-
ation is an identified and structured collaboration of a group of partner components
in peer-to-peer communication relationships. Each federation is maintained by a fed-
eration contract. A federation contract captures the structure of the federation by
reference to a business architecture, the selected members of the federation or selec-
tion rules for membership, and policy decisions agreed for the particular federation.

A business architecture is defined by a set of roles, interactions between roles and a
set of policies. The business architecture description does not fix the identities of the
participating systems. Instead, roles are associated with service type that defines the
the class of service required. Members for the federation are selected based on service
offers exported to trading services. The service offers include metainformation on
component’s service type, technology requirements, conversation protocols expected,
operational policies, cost, location, etc.

Policies in a business architecture have two targets. First, a policy rule can be set
to govern the behaviour of a component in a role. For example, different information
retrieval strategies can be preferred depending whether there is need to save space
or time in a search. This kind of expectation can be passed on to a component via
a role related policy. Second, a policy rule can be set to govern interactions in the
federation. The business architecture can model alternative interaction sequences and
the policy value can be used to determine which of the alternatives should be used
for the federation.

Component programmers provided with a repository from where business archi-
tectures can be retrieved at need. There are separate processes for designing and
publishing business architectures for a different group of practitioners. The business
architectures are considered to be globally available and interpretable via federated
repositories. Service types related to roles can be interpreted also as requirement
definition — besides selection criteria for components.

In the Pilarcos project, no new software production tools are provided. However,
we see the recent development of OMG MDA (model driven architecture) [7] tool
chain a complementing approach. Here, a component is to be understood loosely a
service implementation encapsulated in such a way that platform services are able to
manage its lifecycle (deployment, instantiation, termination, activation and deactiva-
tion). Although Pilarcos project has used component based platforms (OpenCCM,
MicoCCM, JBoss) for experimenting and prototyping, the Pilarcos architecture does
not require component techniques to be used.

Requirements for components cover two aspects. First, the components are ex-
pected incorporate Pilarcos federation management interface. This interface defines
operations for policy manipulation, request for federation establishment or termina-
tion. Second, the components are expected to follow policy rules stated in the local
policy repository.

The Pilarcos management services enhanced trading, federation management, type
management, federated binding, policy repositories follow RM-ODP model of middle-
ware. The RM-ODP standard by ISO and ITU defines — in addition to terminology
and viewpoints — a middleware model ([8], clauses on engineering viewpoint, functions
and transparencies) that can be used to support inter-organisational applications.

The enhanced Pilarcos trader provides two main operations: exporting a service
offer for a specific service type (export), and populating a business architecture with
mutually compatible service offers (populate). The former operation is used by an
administrative tool used by a service provider. The latter operation is used by the
Pilarcos federation manager on behalf of the application wishing to establish a feder-
ation. The populate operation takes an incomplete federation offer as a parameter,
and returns one or more completed federation offers. No separate constraint parameter
is used; instead, the incomplete federation offer typically contains a pre-filled service
offer for the populating role itself, defining its policies for the federation. Thus, the
population process is completely symmetrical: any role that has been left empty in
the incomplete federation offer is populated by the Pilarcos trader. This makes it easy
to do partial repopulations for failure recovery or adaptation purposes.

The federation managers are responsible of running the protocol for negotiating,
maintaining and renegotiating federation contracts. For federation managers, the es-
sential information element is of type federation offer. It is a combination of compat-

ible service offers, one for each role in a specific business architecture. The federation
establishment protocol is initiated by a client request. As a first step, a service of-
fer that describes the client itself is positioned into a federation offer element. The
Pilarcos trader then populates the rest of the roles. As a result, several suggested
federation offers are returned for the client to choose from.

For testing whether a component is suitable for a federation, service type match-
ing is needed. The Pilarcos middleware design includes an enhanced version of ODP
type repository [9] for holding relationship information between generic types (service
types, binding types, interface types) that are technology-independent and used for
matching purposes and technology-dependent templates that are used for instantiat-
ing the corresponding components and objects. This mapping information is created
by system programmers separately from business architecture descriptions and service
offers.

Pilarcos middleware expects that components can be managed by policies, much
like in policy-based management systems (e.g. [10]). Administrators can create and set
policies for component groups. Furthermore, federation contracts are stored into the
policy repository and thus federation contracts become an integral part of component
management mechanisms. The current implementation is bare.

Federation contracts are formed using platform-independent models. In order to
realise federation management events, the abstract notations must supported with
mappings onto technical realisations and service instances. For example, platform-
independent requests for deployment, instantiation or binding need to be mapped on
platform-specific installation scripts and factory services. Especially, federated binding
requires both contractual and actual modes and transitions between the modes, as
described in ODP binding framework [11].

The Pilarcos approach uses two types of domains: administrative domains and
technology domains. An administrative domain can be for example an organisation,
a company or a department with authority to do independent operational decisions
about the way it runs its business. Organisation-wide policy management is needed to
allow IT-system administrators to reflect operational policies — such as restrictions to
cooperation partners, payment related conversation styles and time of availability of
offered services — consistently onto all applications of the organisation in an automated
manner. Service descriptors, service management rules, and policies are defined at the
administrative domain level in technology-independent terms.

Component management rise the need of separation between technology domains.
For each technology, there are various facilities for deployment, instantiation and
termination of components. A technology domain is here limited within an admin-
istrative domain for simplicity. At each technology domain, service descriptors and
service management rules are mapped onto technical engineering solutions. Naturally,
these mappings follow a pattern common to all administrative domains.

The Pilarcos middleware services reflect the administrative and technology do-
mains and the need to cooperate across the domain boundaries [6]. There are collab-
orative middleware services with a running agent at each administrative domain for
negotiating federations and advertising available services. These agents take care of
making requests to their peers at other domains, as there is no authority to otherwise
invoke management actions at a foreign domain [12]. The requests carry contracts
to pass relevant meta-information that identifies what should be done and how. On

the other hand, there are local management facilities running at each technology do-
main for managing components. In addition, at each administrative domain there are
agents responsible of mapping abstract federation contract information into a form
usable at technology domains.

3 Enhanced Pilarcos trader

The Pilarcos trader provides an enhanced trading service by populating a business
architecture with service offers with mutual interdependencies. Before the population
process algorithm can be understood, a modeling example is used to leads to a set of
basic information element definitions.

3.1 Modelling with business architectures

As an example of an inter-organisational application, we use a hypothetical tourist
service. The tourist service provides travel information, hotel booking and car rentals,
typically for a specific area such as a city. The tourist has a travel planning application
on her PC or mobile device, which remotely connects to a tourist service. Several
competing tourist service providers may exist for an area, with a variety of features
and prices. Payment for the service is done electronically, mediated by a trusted
payment service, which is typically provided by a bank or a credit card company. In
this scenario, payment services also compete for customers by price, credit and other
factors. Not all payment services and methods can be used with all tourist services.
The travel planning application must find a suitable tourist service for the area the
user is interested in. In addition, we do not wish to unnecessarily restrict payment
options by fixing the payment service in advance, but to choose it according to the
situation instead.

In the example, choices for the tourist service and the payment service are not
independent. All of the participating systems must agree on the workflow for secure
payment to be possible; they must use common communication protocols; and typi-
cally an established trust relationship has to exist between the payer and the mediator
as well as between the mediator and the payee. Using just, say, trading service for
locating suitable tourist service providers and suitable payment services would require
the application to manage variations in provision of both services and intelligence for
ensuring interoperability.

In the example application, the community formed by the tourist planner, the
tourist service and the payment service is modelled as an explicit business architec-
ture description. The roles of the tourist service and the payment service need to be
populated by the Pilarcos trader with services compatible with each other and the
tourist planner. A role is only a placeholder for an implementing component, and is
described by an associated service type.

In Pilarcos middleware, a service type defines a class of services that have the
same logical functionality but may differ in implementation. A similar concept is
used in the joint ODP/OMG Trading Service standard [13] and the UDDI repository
standard [14]. In our model, a service type defines the set of abstract interfaces that
the service exposes, along with federation policy frameworks for parameterising the

behaviour at the interfaces. A service type can be reused in multiple business archi-
tectures; a service provider need not be aware of the business architectures that the
service type may be part of.

role: client role: server
service type: tourist service service type:

> .)
TouristService

role: payment_mediator Kl_/
-

O
T servicetype:

payment PaymentService billing

N

Fig. 1. Business architecture for the tourist service example.

TravelPlanner

In addition to roles, business architecture descriptions define interaction relation-
ships and dependencies between the participants, expressed as bindings. For example,
the example description shows that using a tourist service generates a bill that needs
to be settled with a payment service. For this interaction sequence, two alternatives
are modeled: prepayment and billing afterwards. Which pattern is actually used is de-
termined by a policy selection in the federation contract; the policy decision is done
by middleware services based on the acceptable policies announced by each potential
participant.

Technically, bindings between the roles represent both communication channels
and other dependencies between components. They link the interfaces of the roles
together, creating compatibility requirements for the roles. For an illustration of the
relation between service types, interfaces and roles, refer to Figure 1. In the figure,
service types are drawn as boxes, roles as circles, and provided and required interfaces
as small filled and hollow circles, respectively.

3.2 Federation policies and policy frameworks

In the CORBA Trading Service standard, services are described by their properties,
coded as name-value-pairs. In the Pilarcos model, federation policies are used to de-
scribe service properties and behaviour. Federation policies, or just policies for short,
are also coded as name-value pairs. Although policies may carry both business policies
and technical property information, the Pilarcos trader makes no distinction between
the different kinds of policies.

Related policies are collected together as policy frameworks. Because a policy
framework, together with a description of its semantics, defines an ontology for poli-
cies, policy frameworks are subject to publication and standardisation. The structure

of a policy framework is defined by its policy framework type, which is a named set of
policy types. A policy type defines the name and, in our implementation, the OMG
IDL type of the policy. Any OMG IDL type, such as integer, string or structure,
may be used as a policy value type. Comparing policy frameworks, which must be of
the same type, is done by comparing the individual policies within the frameworks.
Policies with equal values are defined to be compatible.

The Pilarcos services also recognise special policy value types that make it possible
to use simple constraints as policies. Currently, special types are defined for expressing
simple closed intervals of integers and real numbers, for example [1, 5], and string set
constraints. These types of policies are compatible if their intersections are non-empty.

A string set constraint policy consists of a constraint type and a set of string
values. For example, a string set constraint policy of the form protocol = one_of
{“II0P-1.1”, “II0P-1.2", “RMI-1.0”} requires that exactly one of the listed pro-
tocols must be used as the final protocol. Three constraint types can be used. In
increasing order of strength, they are

— some_of, which requires that one or more of the strings be present in the final
policy;

— one_of, which requires the final policy to contain exactly one of the strings; and

— exactly, which requires that the final policy must contain exactly the original
strings.

All constraint types are exclusive: they prohibit additional values.

The intersection of two string set constraint policies is a string set constraint
policy whose constraint type is the stronger of the original types, and whose set of
strings is the intersection of the original sets. For example, the intersection of some_of
A, B,C and one_of B,C,D becomes one_of B, (. In the case of an exactly policy,
the intersection is empty unless the intersection of the string sets is equal to the string
set of the exactly policy. Note that it would be possible to have other types than
strings as values with the same rules; strings were chosen for simplicity.

Intervals and string set constraints are sufficient for expressing most common con-
straints, and yet are simple enough for efficient calculation. Most importantly, they
have the property that calculating their intersections is an associative and commu-
tative operation, which allows the Pilarcos trader to perform the calculations in any
order and optimise the search process.

3.3 Interface types

The Pilarcos model has two layers of interface types: abstract and concrete. An ab-
stract interface type represents a logical functionality, defined by an either formal or
informal description; a concrete interface type defines the actual operations supported
in a concrete interface definition language, such as OMG IDL. A single abstract in-
terface can be implemented as multiple concrete interfaces. The distinction is similar
to that between the computational and engineering viewpoints in the ODP Reference
Model [15].

Abstract interface types are platform independent; concrete types are platform
specific. This two-layered model is necessary to support federation of sovereign sys-
tems [16, 6.2], which may use differing implementation technologies. Interfaces are con-
sidered compatible if their concrete types are the same, or if an interceptor (adapter

or bridge) is available for differing types. Interface types, interceptors and their rela-
tions are registered in the type repository, which provides type matching operations.
The prototype implementations of the Pilarcos services code concrete interface types
as strings, and the type repository simply compares them for equality.

The use of abstract service types is designed to directly support more complex
interoperability tests, especially semantic matching or protocol based matching. A
variety of existing research elsewhere can be combined in Pilarcos context [17]. Cur-
rently only platform related differences or simple application interface differences can
be controlled. Also, type repository administrator tools are missing.

3.4 Service types

A service type definition consists of a set of required and provided abstract inter-
faces, and a set of policy frameworks attached to the interfaces. Defining required
interfaces in addition to provided interfaces makes service types abstract, composable
components [18].

Figure 2 is a condensed pseudocode example of the tourist service type; types are
written with capitalised initial letters. Compare this with Figure 1.

service type: TouristService

{
provides interface: TouristServiceInterface tourist_service_i;
requires interface: BillingInterface billing_i;

policy framework: TouristServicePolicies tourist_service_pf
attached to interface: tourist_service_i;

policy framework: PaymentPolicies payment_pf
attached to interface: billing_i;

Fig. 2. Pseudocode example of a service type definition.

The policy frameworks attached to an interface parameterise the behaviour asso-
ciated with the interface. Although not visible from the example, it is possible for
a single policy framework to be attached to more than one interface, which implies
that the policies are shared. In the tourist service example, the payment service has
a shared policy framework for both the billing and payment interfaces. This ensures
that the payment service, the biller, and the payer have compatible payment policies.

3.5 Business architectures

A business architecture definition consists of roles and bindings between the roles. To
the Pilarcos trader, a role is a named instance of a service type; the interfaces of the
service type are also the interfaces of the role. Bindings connect a required interface of
one role to a provided interface of the same abstract type in another role. This model

bears a close resemblance to architecture description languages [19], but extends them
by supporting run time population of the roles.

Service types, and thus also services, can exist independently of business architec-
tures, which facilitates reuse of both service type definitions and the implementing
components. Defined like this, service types are akin to the configuration-independent
component definitions of the Wright architecture description language [20]. Wright
also incorporates formal methods for behavioural compatibility verification; similar
methods could also be used to verify business architectures in Pilarcos.

When interfaces of two roles are connected by a binding, policy frameworks of
the same type attached to the interfaces are also implicitly connected. For service
offers for the roles to be compatible, their connected policy frameworks must then
also be compatible. The compatibility requirement can even extend over several roles
via service types that have shared policy frameworks, as in the tourist service example
where payment policies are shared by all roles.

In the general case, the implicit connections between policy frameworks form undi-
rected graphs, called policy framework graphs, with roles as vertices and bindings as
edges. Each policy framework graph represents a policy framework implicitly shared
between the roles in the graph. When a business architecture is registered in the Pi-
larcos type repository, it finds the policy framework graphs of the architecture by a
simple depth-first algorithm and stores them for later use by the Pilarcos trader.

3.6 Service and federation offers

A service offer describes a concrete service of a specific service type. In consists of
concrete interface types and interface references for the abstract interfaces of the
service type, as well as policy values for the policy frameworks of the service type.

A federation offer describes an entire community, whose structure is defined by
its business architecture definition. It consists of one service offer for each role in the
architecture. If one or more service offers are missing, the federation offer is incomplete,
otherwise it is complete.

[Policy framework type <>{ Service type - [Role |z_o..*| Binding |
T - T L > 0.~
L [Abstract interface type | 14 .
Policy type 1 Architecture |0—
1 is of type is of type 1
0.*
is of type

[Concrete interface type |
T

0.%

Federation offer

Fig. 3. UML class diagram of Pilarcos trading concepts.

Service offer

The Pilarcos trading concepts form two layers, describing types and implemen-
tations respectively. This is illustrated in Figure 3 with types in the upper part of

10

the diagram and the corresponding concrete entities in the lower part. All types are
implementation independent and form a shared ontology as basis for federation.

3.7 Search algorithm

In the population process, the Pilarcos trader searches its database for compatible
service offer combinations. Due to the combinatorial nature of the problem, the num-
ber of possible service offer combinations can be very large. In the general case the
problem of whether complete federation offers exist for a given architecture and a
given offer database is NP-complete (CLIQUE reduces to this problem in polynomial
time). Yet the population process should be relatively quick to be practical. This is
achieved by two means: using an optimised search algorithm and restricting the extent
of the search.

The populator can restrict the search by giving two limits: the maximum number
of federation offers to be returned, and the maximum duration for the search process
within the trader. The search terminates when either limit has been reached or the
entire offer database has been searched without success. In most cases, returning one
or a couple of federation offers suffices.

The search algorithm proceeds depth-first with respect to the roles of the archi-
tecture in order to find the first complete federation offers as quickly as possible. This
avoids having to search the entire offer space. Each role has an associated service
type; since the trader indexes service offers by their service type, the candidate offers
for each role can be accessed rapidly. Pre-filled roles are handled just like other roles,
except that they only have one candidate offer.

To reduce the size of the search tree, the Pilarcos trader sorts the roles into ascend-
ing order according to the number of candidate service offers. The search algorithm
visits the offers in the roles recursively, beginning with the first role. The interfaces
and policies of a candidate offer for the current role are compared with those of the
offers selected for the previous roles; if they are compatible, the search proceeds to the
next role, otherwise the next candidate offer for the role is tried until none are left.
When a compatible offer is found for the last role, the selected offers form a complete
federation offer.

Compatibility between service offers is determined by interface and policy com-
patibility of the offers. Interfaces are compared by querying the type repository for
interface compatibility. This is done only once per binding in the architecture. Policy
compatibility requires that the policies within a policy framework graph are compati-
ble. Compatibility rules for different policy types were discussed earlier in Section 3.2.

The number of interfaces per service type is typically small, so comparing them
does not pose a significant overhead. The number of policies in a service offer can be
much larger; therefore it is important to minimise the number of policy comparisons.
This is done by taking advantage of policy framework graph data provided by the
type repository.

At the beginning of the search process, the Pilarcos trader requests both the
architecture definition and the accompanying policy framework graph data from the
type repository. It then allocates space for one graph-specific policy framework per
each graph. For the tourist service example, graph-specific policy frameworks are
illustrated in Figure 4; policy framework types are marked “Tou” and “Pay”. Policy

11

client server

/\ client
Pay| |Tou Tou Pay Q\\ -
—| | = —_— — | = -
— |= = |— "~ |Tou
\.

\i/ payment_mediator saver -

payment_mediator -~ 7

0
N

Fig. 4. Graph-specific policy frameworks in the example architecture.

comparisons are done by calculating the intersections of the policies in the candidate
offer with those in the graph-specific policy frameworks. If the intersections are non-
empty, the offer matches, and the intersections are stored in the graph-specific policy
frameworks. Since the algorithm is recursive, each invocation has its own copy of the
graph-specific frameworks, containing the intersections of the policies in the previously
selected offers. This minimises the number of calculations needed.

Because the federation offers returned by the Pilarcos trader are to be used as basis
for federation establishment, where only the compatible subset of interval and string
set constraint policies can be used, the Pilarcos trader replaces the original policy
values with their intersections before returning the results. In the present algorithm,
when a complete federation offer has been found, intersections of policies for it are
already available and can be written over the originals in the federation offer. The
entire algorithm is outlined in Figure 5.

As presented here, the search algorithm performs the least possible number of
comparisons, and uses space only in linear proportion to the number of roles and the
number of policy framework graphs. This yields good results in practice, as will be
seen in the following section.

From a combinatorial standpoint, each newly formed federation offer should be
adequately different from the earlier so that the populator does not receive almost
identical offers. Furthermore, the service offer space should be covered uniformly in-
stead of always returning the same set of offers for identical queries. To address these
aspects, the Pilarcos trader arranges the service offers for each role randomly before
starting the search. After a complete federation offer has been found, the offers are
again ordered randomly and the search is begun anew. Possible duplicate federation
offers are skipped. Since the federation offer space is typically quite large, this proce-
dure works well to provide evenly distributed results.

Currently, all federation offers that match with the original incomplete federation
offer are returned. It would be possible to add a preference expression, as in the
CORBA Trading Service, according to which found federation offers would be sorted.
Another possibility, more in line with the Pilarcos trading model, would be to add

12

Algorithm Populate(incomplete federation offer I):

1. Retrieve architecture definition and policy framework graphs of I from the type
repository.

2. Collect candidate service offers for each role R; as follows:
(a) If there is a pre-filled offer in I for R;, mark it as the only service offer for

R;; else

(b) Search the service offer database for offers of R;’s service type.

3. Sort the roles (R;...Ry) into ascending order according to the number of can-
didate service offers.

4. Initialise empty list of complete federation offers L.

5. Invoke SearchRole(R;, empty federation offer, set of empty graph-specific pol-
icy frameworks).

6. Return federation offer list L.

Algorithm SearchRole(role R;, federation offer F, set of graph-specific policy frameworks
P):

1. For all candidate service offers O; of role R; do:
(a) Query type repository for compatibility of O;’s interfaces with adjacent
offers in F'.
(b) If an interface is not compatible, return from the algorithm.
(c) Calculate intersections of corresponding policies in P and Oj, storing the
results back in P.
If any intersection is empty, return from the algorithm.
) Add service offer O; to federation offer F'.
If R; is the last role, then:
i. Copy policy values from P to corresponding policy frameworks in the
service offers of F'.
ii. Add F to federation offer list L.
otherwise:
i. Invoke SearchRole(role R;11, copy of F, copy of P).
2. Return from the algorithm.

—_~
- O
Ll e

Fig. 5. Outline of the Pilarcos trader population algorithm.

preferences to individual policies and sort the service offers according to them before
starting the search.

The service offers traded include sets or intervals of alternative business policy
values or technical property descriptions presented as service offer properties. These
sets and intervals get narrowed down to values that are acceptable for the combination
of services in the federation. However, the selection of final policy values or technical
properties need to be unambiguous. For now, we let the Pilarcos trader choose those
final values, without any further negotiation.

4 Cost of population process

The Pilarcos middleware feasibility is much dependent on the scalability of Pilarcos
trading. The Pilarcos trader prototype implementation and measurement environ-

13

ments are introduced. The measurements show that the algorithm behaves well under
changes in service offer space and business architecture complexity.

4.1 Pilarcos trader prototype implementation

The prototype implementations of the Pilarcos trader and type repository have been
written in C++ on the MicoCCM [21] CORBA Component Model platform. They
are independent parts of the larger Pilarcos prototype software. The Pilarcos trader
implementation has two alternative modes of operation: standalone or using a stan-
dard CORBA Trading Service implementation for service offer storage. Standalone
mode is considerably faster, since interprocess communication is avoided.

Using a CORBA Trading Service for service offer storage has a number of other
advantages, however. Mature implementations are available, with different options
for storing and caching service offers. Linking of CORBA traders is directly available,
which enables the Pilarcos trader to scale to larger systems. By adhering to the
standard, interoperability can be achieved, and it becomes possible to directly take
advantage of the research efforts to improve the scalability of the CORBA trading
model [22, 23].

If a CORBA Trading Service is used, on exporting the Pilarcos trader converts
service offers into a form suitable for the CORBA trader and registers them there. The
reverse conversion is performed during the population process. The Pilarcos trader
imports service offers from the CORBA trader in blocks of five offers at a time to
limit offer transfer overhead, since the Pilarcos trader and the CORBA trader reside
in different processes and perhaps even on different servers.

In both operating modes, the Pilarcos trader prototype keeps the service offers in
main memory. This is typical of traders, which need to have a small response time to
queries. At the very least, the most frequently used service offers would be cached in
main memory.

4.2 Measurement parameters

For performance measurements, computer-generated service offer databases and busi-
ness architectures were used with separately controllable parameters. The measure-
ment parameters:

Number of roles in business architecture. The generated business architectures
consist of roles bound together in the form of a chain, without cross bindings;
however, the form of the architecture makes no difference in the search algorithm.
Fach role in the architecture has a service type of its own.

Number of service offers. Service offers were generated separately for each role in
the architecture. Their distribution was controlled by two parameters: minimum
and maximum number of service offers per role. The number of offers for the roles
was linearly interpolated between the two.

Number of policies. The total number of policies per service offer, distributed
evenly between policy frameworks. One half of the policies were intervals and
string set constraints, the other half was integers and boolean values.

Offer match ratio. This is the ratio of federation offers to all possible combinations
of service offers in the offer database.

14

Since policy frameworks are attached to interfaces, the number of interfaces per role is
not an independent parameter; adding interfaces has the same effect on performance
as adding policies.

Per data point, 20 randomised service offer databases were generated. The cut-off
role determining federation offer compatibility or incompatibility in the generated
databases was the third role.

Parameters for the baseline case were: four roles, 40 to 100 service offers per three
roles (210 total), four interfaces per role, 32 policies per service offer in four policy
frameworks, and an offer match ratio of 30 %. This represents a rather heavy but,
in our opinion, realistic usage scenario. In most tests, the Pilarcos trader was set to
return 20 federation offers per request; however, in the results, only the time to find
the first federation offer is reported, since it is largest and the differences are small.
No time limit was set.

The measurement client created an incomplete federation contract with one pre-
filled role, and called the Pilarcos trader populate operation to fill the remaining
three roles. Thus, in the baseline case, the Pilarcos trader had a total of 280 000
possible service offer combinations to search, of which 84 000 were valid federation
offers.

4.3 Measurement environment

The performance measurements were conducted on two 1 GHz Pentium III worksta-
tions with 512 MB of RAM, connected by a closed 100 Mbit Ethernet LAN. The
measurement client program was run on one workstation and the Pilarcos trader on
the other workstation. For the CORBA trader we used the Java-based ORBacus trader
2.0.0 [24] running on IBM Java2 1.4.0 in compiled mode on the same workstation as
the Pilarcos trader.

Time spent in the Pilarcos trader search algorithm, time spent in the CORBA
trader and the response time seen by the measurement client were measured sepa-
rately. The Pilarcos trader and the ORBacus trader were restarted at the beginning
of each measurement series, and were warmed up with three population requests be-
fore the actual measurements. For each data point, 20 runs were conducted, one per
generated random database. The service offer database was emptied between each
run.

4.4 Results and analysis

When a search limit of one federation offer was used, the population process in the
baseline case took an average of 22 milliseconds. The Pilarcos trader was in standalone
mode, as with other results except where noted otherwise. In addition, transferring the
request and the result over CORBA took an average of 30 ms, raising the total to 52
ms. The federation offer data structure is designed for readability and flexibility, not
speed: it contains several nested sequences and makes heavy use of the CORBA Any
type, making marshalling very performance-intensive. The marshalling delay could be
significantly reduced by using known CORBA IDL optimisation techniques. For the
rest of the results, only the time spent in the search process is presented, since the
marshalling delay is constant and predictable.

120

100

T . T
First federation offer, average
Minimum and maximum -+

oo
o

Search time (ms)
(2]
o

iy
o

0 . .

0 20 40
Offer match ratio (percent)

Fig. 6. Effect of offer match ratio on search time.

120

60

80

100

100

First federation offer, averagé

Minimum and maximum +--+---

80

60

Search time (ms)

40

20 /

60

80 100

Number of policies per offer

Fig. 7. Effect of number of policies on search time.

120

140

15

The result of varying offer match ratio from the baseline case is presented in
Figure 6. Both the average time and the variation grow significantly with low match
ratios, but are still tolerable even at a match ratio of 5 %. Based on these results, the
practical usage area for the Pilarcos trader is with offer match ratios at and above 5

%.

Effect of the number of service offers was also measured. With offers distributed
evenly between the roles, no significant effect on search time was seen with database
sizes of up to 2550 offers. This behaviour was expected, since the population algo-

16

rithm never needs to search the entire offer database. Instead, search time is directly
proportional to the number of requested federation offers.

In the measurement series presented in Figure 7, the number of policies per service
offer was varied. As expected, search time grows in linear proportion to the number of
policies. In the baseline case there were 32 policies per offer, which is a rather a high
estimate, over 64 policies would be exceptional. In this respect, the Pilarcos trader
scales very well. Moreover, the results could be improved significantly by reducing the
amount of copying and insertion and extraction from CORBA Any types in the policy
handling code.

120
First federation offer,‘ average
Minimum and maximum -------
100
—~ 80
(%)
£
[}
£ w0
<
S T
8 |
& s
40 //
20 b
0 w ‘ ‘ ‘ ‘
4 6 8 10 12

Number of roles

Fig. 8. Effect of number of roles on search time.

Figure 8 illustrates the effect of varying the number of roles in the business archi-
tecture. Again, the dependency is linear, as expected. Based on these results, large
architectures with up to ten roles would be practical; most probably, for such large
architectures other aspects than the population process are more significant.

For the measurements in Figure 9, ORBacus trader was used as service offer
database. The search times are nearly ten-fold compared to the standalone case (Fig-
ure 6), with significantly larger variation. Also, an initial cost of over 100 ms is incurred
by the first ORBacus trader queries. The initial cost as well as the large variation
results from the block-wise transfer of service offers from the ORBacus trader. Ad-
ditional, seemingly random fluctuations in the curve are probably caused by garbage
collection in the Java process. According to more detailed measurements, transferring
service offers between the ORBacus trader and the Pilarcos trader takes more than
half of the ORBacus trader query time. When a CORBA trader is used as a back-end,
a significant significant speedup could be achieved by collocating the Pilarcos trader
and the CORBA trader in the same process.

17

1000

First federation offer, avérage
900 Minimum and maximum --—-—+——

800

700

600

500

Time (ms)

400

300

200

100

0
0 20 40 60 80 100

Offer match ratio (percent)

Fig. 9. Effect of offer match ratio on search time with ORBacus trader.

However, the fact that transferring service offers is so performance-intensive also
has implications for using federated (linked) CORBA traders. In some federated cases,
the service offers would be transferred across multiple links before reaching the Pilar-
cos trader, multiplying the performance costs. The CORBA Trading Service has not
been designed for cases where the entire contents of service offers need to be trans-
ferred, and would need to be modified to support such cases practically. As with feder-
ation offers, this could be done with known CORBA IDL optimisation techniques, for
example by replacing CORBA Any types by a more restricted set of possible property
types.

5 Conclusion

The Pilarcos middleware is designed with service-oriented architectures in mind, cap-
turing discovery of services and ensuring interoperability between them [5]. Currently,
most service-oriented architectures built with Web services middleware, in Java envi-
ronments or with CORBA support (plain or with components) concentrate on service
discovery in client-server type of situations. Most middleware solutions have facilities
for composing services into larger elements to be provided for inter-organisational use.
Services are considered as a set of independent resources in the global network, as
building blocks, from which an application programmer is responsible to construct a
new added-value service. Most middleware solutions solve the interoperability prob-
lems by either trusting a shared language context (Java Virtual Machine) and transfer
of code, or trusting a shared protocol environment (CORBA, Web services). In Pilar-
cos, interoperability tests use explicit information on the shared platform facilities,
thus making it possible to use different technologies side-by-side as long individual
federations find common communication facilities. The same goal appears to be set
for OGSA (Open Grid Services Architecture) [25].

18

The Pilarcos model provides on multilateral contracts. A business architecture can
be considered as an external workflow template that describes potential choreogra-
phies between independent parties. Each potential party provides a local workflow
that fulfils its published service contract. The local workflows are hidden and no
specific requirements for their running environment is specified. The Pilarcos middle-
ware acts as a matchmaker for the parties, and then specialises the shared external
workflow according to the membership, corresponding business policies and technical
facilities. The design deliberately differs from the common goal for distributed work-
flow systems by not granting access and visibility to partner’s information processing
system.

The role of multilateral contracts composed of simple service descriptions and
connections between them is parallel with Microsoft’s XLANG specification [26]. The
XLANG approach considers business process as a contract between two or more par-
ties. An XLANG service description is used to define the behavior of each party.
Moreover, the business process definition shows how the individual service descrip-
tions are combined, using a map that defines the connections between the ports of
the services involved.

Publishing new business process specifications is essential for the evolution of
inter-organisational cooperation and service markets. In Pilarcos, business architec-
ture descriptions are directly published in a repository and can thus be used as a
structuring template for new federations. IBM’s WSFL (Web Services Flow Lan-
guage) approach defines a public interface that allows business processes to advertise
themselves as Web services [27]. Both mechanisms have much the same effect. The
recent BPEL (Business Process Execution Language) specification captures features
of both WSFL and XLANG [28].

Providing federation management facilities in a middleware has the obvious benefit
of releasing programmers from re-implementing these facilities repeatedly in applica-
tions. Furthermore, inter-organisational interoperation can only be achieved through
standard solutions and in this case, via standardising new middleware services and
metainformation elements.

Separating design of business architecture descriptions, design of service types,
and implementation of components improves the software engineering process in gen-
eral. The natural lifetimes of these elements differ, as well as the skills required for
the provision of them. The Pilarcos middleware service allow workers to concentrate
on their component logic and provides business architectures and technology map-
pings as ready-made solutions, as instructed by the currently popular production line
concept [29].

Providing tools for automating administration of service composition reduces sys-
tem maintenance cost. Because the federations directly support changes in member-
ship, there is good support for adaptation to changes in business situation and also
to changes in technical availability of services. The design incorporates into the same
management model both private business within the organisation and external coop-
erations with varied and potentially contradictory requirements.

Future enhancements on the business architectures increase flexibility and adapt-
ability of federations. We intend to expand business architectures with epochs and
cardinalities of roles. An epoch is an interval during which services provided by a fed-
eration stay identical and the set of roles involved is unchanged. A change in services

19

or roles starts a new epoch. In addition, extensions are needed so that federations
can be made to overlap or form hierarchies without application components to be
involved in the administration.

The measurement results from the Pilarcos prototype show that the population

process can be made scalable and the basic cost tolerable for the intended use. Pilar-
cos middleware is designed with dynamically changing cooperation schemes in mind.
Such schemes appear for instance as virtual enterprises that provide a new service
constructed by minor services run at member organisations computing facilities. Al-
though there is a noticeable cost at establishing the federation, the duration of the
federation is not only for single interactions but for a lengthier user session or more
naturally, for the lifetime of the virtual enterprise.

The open nature of Pilarcos model is such that highly secure systems cannot be

supported: trust building mechanisms can be incorporated, but still, critical systems
should use more static and closed solutions. The nature of Pilarcos middleware over-
head cost is such that it is not suitable for example for hard real-time systems or
systems where response times are not allowed to vary a lot.

Future work moves Pilarcos from current component platforms to Web Services

environment.

Acknowledgements

This article is based on work performed in the Pilarcos project at the Department of
Computer Science at the University of Helsinki. The Pilarcos project is funded by the
National Technology Agency TEKES in Finland, together with Nokia, SysOpen and
Tellabs.

References

1. :

- w

Rosettanet implementation framework: Core specification v02.00.00 (2001) http://
www.rosettanet.org/.

Austin, D., Barbir, A., Ferris, C., Garg, S.: Working draft on web services archi-
tecture requirements. Technical report, W3C (2002) http://www.w3.org/TR/2002/
WD-wsa-reqs-20020819.

Wang, N., Schmidt, D., O’'Ryan, C.: Overview of the CORBA Component Model. (2000)
Bodoff, S., etal: The J2EE Tutorial. (2002) http://java.sun.com/j2ee/tutorial/download.html.
Kutvonen, L.: Automated management of interorganisational applciations. In:
EDOC2002. (2002)

Vhaho, M., Haataja, J.P., Metso, J., Suoranta, T., Kutvonen, L.: Pilarcos prototype II.
Technical report, Department of Computer Science, University of Helsinki (2002) Draft,
to be published in 2003.

Siegel, J.: Developing in OMG’s Model-Driven Architecture. Object Management Group.
(2001) White paper, revision 2.6.

ISO/IEC JTC1: Information Technology — Open Systems Interconnection, Data Man-
agement and Open Distributed Processing. Reference Model of Open Distributed Pro-
cessing. Part 3: Architecture. (1996) 1S10746-3.

ISO/IEC JTC1: (Information Technology — Open Systems Interconnection, Data Man-
agement and Open Distributed Processing. ODP Type Repository Function) IS14746.

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.

23.

24.

25.

26.

27.

28.

29.

Lupu, E., Sloman, M.: A policy based role object model. In: Proceedings of the 1st
International Enterprise Distributed Object Computing Conference (EDOC’97), Gold
Coast, Queensland, Australia. (1997) 36-47

ISO/IEC JTC1: Information Technology — Open Systems Interconnection, Data Man-
agement and Open Distributed Processing — ODP Interface References and Binding.
(1998) 1S14753.

Kutvonen, L.: Management of Application Federations. In Konig, H., Geihs, K., Preuss,
T., eds.: International IFIP Working Conference on Distributed Applications and Inter-
operable Systems (DAIS’97), Cottbus, Germany, Chapmann & Hall (1997) 33 — 46
Object Management Group: OMG Trading Object Service Specification. (2000)
OMG Document formal/2000-06-27. Also http://www.omg.org/cgi-bin/doc?formal/
2000-06-27.

OASIS consortium: UDDI version 3.0 published specification. (2002) http://www.uddi.
org/specification.html.

ISO/IEC JTC1: Information Technology — Open Systems Interconnection, Data Man-
agement and Open Distributed Processing. Reference Model for Open Distributed Pro-
cessing. (1996) 1510746 1-4.

Kutvonen, L.: Trading services in open distributed environments. PhD thesis, Depart-
ment of Computer Science, University of Helsinki (1998)

Vallecillo, A., Hernndez, J., Troya, J.M.: Component interoperability. Technical report,
Dept. Lenguajes y Ciencias de la Computacin, University of Mlaga (2000) ITI-2000-37.
Szyperski, C.: Component Software: Beyond Object-Oriented Programming. ACM Press
and Addison-Wesley, New York, NY (1998)

Medvidovic, N., Taylor, R.N.: A framework for classifying and comparing architecture
description languages. In Jazayeri, M., Schauer, H., eds.: ESEC/FSE ’97. Volume 1301
of Lecture Notes in Computer Science., Springer / ACM Press (1997) 60-76

Allen, R.J.: A Formal Approach to Software Architecture. Ph.D. thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh (1997)

: MicoCCM project web pages. (2002) http://wuw.£fpx.de/MicoCCM/.

Craske, G., Tari, Z., Kumar, K.R.: DOK-trader: A CORBA persistent trader with query
routing facilities. In: International Symposium on Distributed Objects and Applications.
(1999) 230—240 Also http://rmit.edu.au/~zahirt/Papers/doa99.pdf.

Belaid, D., Provenzano, N., Taconet, C.: Dynamic management of CORBA trader fed-
eration. In: 4th USENIX Conference of Object-Oriented Technologies and Systems
(COOTS), Santa Fe, New Mexico (1998) Also http://www.usenix.org/publications/
library/proceedings/coots98/full_paplers/belaid/belaid.pdf.

IONA Technologies: ORBacus Trader, version 2.0.0. (2001) http://www.iona.com/
products/orbacus/trader.htm.

Foster, 1., Kesselman, C., Nick, J., Tuecke, S.: Grid services for distributed system
integration. IEEE Computer 35 (2002) 37—46

Thatte, S.: Xlang. Technical report (2001) http://www.gotdotnet.com/team/xml\
_wsspecs/xlang-c/default.html.

Leymann, F.: Web services flow language (wsfl 1.0). Technical report (2001) http:
//www-4.ibm. com/software/solutions/webservices/pdf/WSFL.pdf.

Thatte, S.: Business process execution language for web services, version 1.0. Tech-
nical report (2002) http://www-106.ibm.com/developerworks/webservices/library/
ws-bpel/.

Herzum, P., Simms, O.: Business Component Factory. Wiley Computer Publishing
(1999)

