Costs and benefits of
Pilarcos federation middleware

Lea Kutvonen
Department of Computer Science, University of Helsinki
P.O. Box 26 (Teollisuuskatu 23), FIN-00014 UNIVERSITY OF HELSINKI

February 10, 2003

Abstract

Current information processing needs of companies require inter-
organisational cooperation. New middleware is expected to provide
facilities for capturing the workflow, searching for available members
for the workflow, and ensuring that a suggested set of members is
able to interoperate both in semantical terms and technically. The
Pilarcos project has developed a prototype middleware where inter-
organisational application management is based on explicitly stated,
platform-independent, multilateral contracts that define the forms of
cooperation between performing components. This paper discusses the
performance costs caused by the middleware and the benefits gained
by the use of such middleware. As a conclusion the applicability and
requirements of the adoption of Pilarcos middleware are discussed.

1 Introduction

Several phases of enterprise application integration technologies (EAI) have
emerged in the recent years and improved the availability of IT services of
large companies. Internationally, it can be seen that for the next few year, the
research and development trend will turn to agentified, dynamically collabo-
rating business systems. Because these integration solutions are founded on
a single authority directing business models and their technical development,
the approach is not applicable for small and medium scale companies (SMEs).
The small and medium scale companies by necessity focus on a small set of
novel IT services, and provide them on a relatively small, seldom changing
set of IT platforms (communication and information processing systems).

The SMEs gain and keep their competitive position best by networking with
companies that provide complementary services.

Networking of enterprises requires support for dynamically creating co-
operation relationship, federations, between services provided by each en-
terprise. There is need for describing new kinds of federation structures,
joining and leaving federations, and changing membership of federations as
the market situations change.

Federation management is made problematic by two major issues. First,
at each enterprise different technology solutions for information processing
and communication used. Second, each enterprise has its private set of poli-
cies governing its business decisions and operational solutions in practise.
Federations cannot be allowed to override neither of these decisions but must
incorporate negotiation of choices and a set of transformation elements for
overcoming technical differences.

A federation management infrastructure for enterprises essentially pro-
vides facilities for composing new services together with other enterprises
and, in order to do this in a reasonably large scale, mediation between plat-
form technologies. This structure supports autonomous evolution of the IT
system in each enterprise and also masks changes in the cooperating systems.

The Pilarcos project develops infrastructure services for federation sup-
port in such a way that inter-organisational cooperation can be defined by a
workflow-like, dynamically changeable description. For the federations, par-
ticipants can be selected dynamically and and the negotiated cooperation
policies effects the final workflow structure. Management of the federation is
distributed and each cooperating party is autonomous.

The Pilarcos project has developed a prototype middleware where inter-
organisational application management is based on explicitly stated, platform-
independent, multilateral contracts that define the forms of cooperation be-
tween performing components.

This paper briefly introduces the middleware, discusses the performance
costs caused by the middleware and the benefits gained by the use of such
middleware. As a conclusion the applicability and requirements of the adop-
tion of Pilarcos middleware are discussed.

2 Pilarcos middleware services

Pilarcos middleware provides application programmers with pervasive, platform-
independent tools to manage federations. However, the use of the functions
remains explicit. In this section we review the concepts provided for the
programmers and the middleware functions available for building applica-

tions [9].

The key concept for inter-organisational cooperation is that of federa-
tion. Federation is an identified and structured collaboration of a group of
partner components in peer-to-peer communication relationships. Each fed-
eration is maintained by a federation contract. A federation contract captures
the structure of the federation by reference to a business architecture, the
selected members of the federation or selection rules for membership, and
policy decisions agreed for the particular federation.

A business architecture is defined by a set of roles, interactions between
roles and a set of policies. The business architecture description does not
fix the identities of the participating systems. Instead, roles are associated
with service type that defines the the class of service required. Members
for the federation are selected based on service offers exported to trading
services. The service offers include meta-information on component’s service
type, technology requirements, conversation protocols expected, operational
policies, cost, location, etc.

Policies in a business architecture have two targets. First, a policy rule
can be set to govern the behaviour of a component in a role. For example,
different information retrieval strategies can be preferred depending whether
there is need to save space or time in a search. This kind of expectation can
be passed on to a component via a role related policy. Second, a policy rule
can be set to govern interactions in the federation. The business architecture
can model alternative interaction sequences and the policy value can be used
to determine which of the alternatives should be used for the federation.

Component programmers provided with a repository from where busi-
ness architectures can be retrieved at need. There are separate processes for
designing and publishing business architectures for a different group of prac-
titioners. The business architectures are considered to be globally available
and interpretable via federated repositories. Service types related to roles
can be interpreted also as requirement definition — besides selection criteria
for components.

In the Pilarcos project, no new software production tools are provided.
However, we see the recent development of OMG MDA (model driven ar-
chitecture) [8] tool chain a complementing approach. Here, a component
is to be understood loosely a service implementation encapsulated in such
a way that platform services are able to manage its life-cycle (deployment,
instantiation, termination, activation and deactivation). Although Pilarcos
project has used component based platforms (OpenCCM, MicoCCM, JBoss)
for experimenting and prototyping, the Pilarcos architecture does not require
component techniques to be used.

Requirements for components cover two aspects. First, the components

are expected incorporate Pilarcos federation management interface. This
interface defines operations for policy manipulation, request for federation
establishment or termination. Second, the components are expected to follow
policy rules stated in the local policy repository.

The Pilarcos management services enhanced trading, federation manage-
ment, type management, federated binding, policy repositories follow RM-
ODP model of middleware. The RM-ODP standard by ISO and ITU defines —
in addition to terminology and viewpoints — a middleware model ([3], clauses
on engineering viewpoint, functions and transparencies) that can be used to
support inter-organisational applications.

The enhanced Pilarcos trader provides two main operations: exporting a
service offer for a specific service type (export), and populating a business
architecture with mutually compatible service offers (populate). The former
operation is used by an administrative tool used by a service provider. The
latter operation is used by the Pilarcos federation manager on behalf of the
application wanting to establish a federation. The populate operation takes
an incomplete federation offer as a parameter, and returns one or more com-
pleted federation offers. No separate constraint parameter is used; instead,
the incomplete federation offer typically contains a pre-filled service offer
for the populating role itself, defining its policies for the federation. Thus,
the population process is completely symmetrical: any role that has been
left empty in the incomplete federation offer is populated by the Pilarcos
trader. This makes it easy to do partial re-populations for failure recovery
or adaptation purposes.

The federation managers are responsible of running the protocol for nego-
tiating, maintaining and re-negotiating federation contracts. For federation
managers, the essential information element is of type federation offer. It
is a combination of compatible service offers, one for each role in a specific
business architecture. The federation establishment protocol is initiated by
a client request. As a first step, a service offer that describes the client itself
is positioned into a federation offer element. The Pilarcos trader then popu-
lates the rest of the roles. As a result, several suggested federation offers are
returned for the client to choose from.

For testing whether a component is suitable for a federation, service
type matching is needed. The Pilarcos middleware design includes an en-
hanced version of ODP type repository [2] for holding relationship informa-
tion between generic types (service types, binding types, interface types) that
are technology-independent and used for matching purposes and technology-
dependent templates that are used for instantiating the corresponding com-
ponents and objects. This mapping information is created by system pro-
grammers separately from business architecture descriptions and service of-

fers.

Pilarcos middleware expects that components can be managed by policies,
much like in policy-based management systems (e.g. [7]). Administrators
can create and set policies for component groups. Furthermore, federation
contracts are stored into the policy repository and thus federation contracts
become an integral part of component management mechanisms. The current
implementation is bare.

Federation contracts are formed using platform-independent models. In
order to realise federation management events, the abstract notations must
supported with mappings onto technical realisations and service instances.
For example, platform-independent requests for deployment, instantiation or
binding need to be mapped on platform-specific installation scripts and fac-
tory services. Especially, federated binding requires both contractual and
actual modes and transitions between the modes, as described in ODP bind-
ing framework [4].

The Pilarcos approach uses two types of domains: administrative domains
and technology domains. An administrative domain can be for example an
organisation, a company or a department with authority to do independent
operational decisions about the way it runs its business. Organisation-wide
policy management is needed to allow IT-system administrators to reflect
operational policies — such as restrictions to cooperation partners, payment
related conversation styles and time of availability of offered services — con-
sistently onto all applications of the organisation in an automated manner.
Service descriptors, service management rules, and policies are defined at the
administrative domain level in technology-independent terms.

Component management rise the need of separation between technology
domains. For each technology, there are various facilities for deployment,
instantiation and termination of components. A technology domain is here
limited within an administrative domain for simplicity. At each technology
domain, service descriptors and service management rules are mapped onto
technical engineering solutions. Naturally, these mappings follow a pattern
common to all administrative domains.

The Pilarcos middleware services reflect the administrative and technol-
ogy domains and the need to cooperate across the domain boundaries [9].
There are collaborative middleware services with a running agent at each
administrative domain for negotiating federations and advertising available
services. These agents take care of making requests to their peers at other
domains, as there is no authority to otherwise invoke management actions
at a foreign domain [5]. The requests carry contracts to pass relevant meta-
information that identifies what should be done and how. On the other hand,
there are local management facilities running at each technology domain for

managing components. In addition, at each administrative domain there are
agents responsible of mapping abstract federation contract information into
a form usable at technology domains.

3 Costs of Pilarcos middleware

While Pilarcos middleware provides facilities for dynamically forming feder-
ations there is overhead cost from the use of the middleware services. This
cost has been estimated by a series of performance measurements on the
prototype application and infrastructure services. First, the overall overhead
of Pilarcos middleware in terms of CPU load and effect on response times
seen by a client was considered. Second, the main elements of the cost were
factored out at the areas of business architecture population, federation es-
tablishment and termination and adaptation of communication across CCM
and EJB platforms. Third, some scalability tests were run to see how input
rate of client requests affect the response times.

The measurements were performed with a system that included all the
Pilarcos infrastructure services and an application case. In concrete terms,
the Pilarcos prototype consists of Pilarcos infrastructure service components
and Tourist Information Service application components that take advantage
of the Pilarcos services. Infrastructure services and most of the application
components have been implemented on two new CORBA Component Model
platforms, the Java-based OpenCCM and the C++-based MicoCCM [?]. In
addition, one of the application domains is built on Enterprise Java Beans
technology, running on the JBoss application server. Seamless interoper-
ability between the three platforms has been a major focus the prototype
development.

Figure 1 illustrates the main Pilarcos infrastructure components and their
relations in a generic setting. The organisational domain borders separate
the organisations running the client application, the server application, and
the global trading and type repository services

The application case is built around an idea of a portal service, the Tourist
Info, which provides travellers access to vertical tourist services like travel
information, hotel bookings, and weather services. It is assumed that neither
the portal service nor the vertical services are free, and the traveller has some
electronic payment instrument (e.g. credit card) available.

The prototype implements two business communities: tourist info com-
munity and hotel info community. Tourist info community contains three
domains each with their own role (tourist info client, tourist info service,
payment service) and describes the business community related to providing

‘[6]syusuoduros ad£joj01d sodreig Jo MOIAIDAQ) :T 2INS1g

technology domain border

organisational domain border

(I 1
! : lication calls : !
component | _ | Client-side application 4> il T O Server-side application |__ _ | component
homes components i : components homes
resolving in-direct interface references : o
T Comector AP |~~~ =2+ 9= i R = Technalogy specifc
. ! -
: i :
rrrrrrrrrrrr ‘# T R S SR P E——— #‘
I
resolving federated intérface references. -~ N
—— | Management AP | | FlLonanat Management API L
vice . : . vice
Fectoy |~ Federation Manager federation r?1anagement Federation Manager | pagiory
I
I
¢ | ;
Policy Repository I - Tl e Policy Repository
Global e
T Type Repository el
Pilarcos
Trader

Business community seen by the Tourist Info Service

Business community seen by the Tourist Info Client Business community seen by the Hotel Info Service

Tourist Info Client Hotel Info Service

Tourist Info|| | Hotel Infoi
Service ' Client |

Payment Service Payment Service

Figure 2: Business entities and communities in the Tourist Info Service
case|9].

the portal service. Hotel info community also contains three domains each
with their own role (hotel info client, hotel info service, payment service)
and describes the business community related to providing the only imple-
mented vertical service (hotel bookings). Tourist info client and hotel info
client represent the users of corresponding services whereas tourist info ser-
vice and hotel info service represent the providers of the services. Payment
service represents a trusted third party used to mediate the transfer of funds
between the other entities in the community. Figure 2 shows the business
entities and the communities formed by them.

Measurement environment consists of seven 1GHz Pentium IIT worksta-
tions with 512MB RAM memory. Workstations were connected with closed
100 Mbps Ethernet. Operating system used in workstations was CS Linux
with kernel 2.4.18. Different components of Pilarcos prototype were dis-
tributed to workstations, one per each machine. Background clients used
two machines and were evenly distributed in them. Distribution of compo-
nents are shown in Figure 3.

Before measurements the system was warmed up with 3000 measurement
rounds done by client. The measurements themselves included 3000 rounds
by one to 8 clients. Throughput optimisation flags were used for Java virtual
machines. In all measurements IBM Java 1.4.1-platform was used.

Looking at the measurement results, the cost of Pilarcos middleware us-
age appears to be acceptable. As we consider a "session" form a user, the
application runs the following steps:

Tourist Server Hotel Server

[Payment Server }

Switch

[Background client machine 1 } [Measurement client } [Background client machine 2 }

Figure 3: Distribution of Pilarcos components in measurement
environment|9].

e ask the Pilarcos trader to populate a business architecture;

o tell the federation manager to create the federation; this actually in-
volves the population and creation of the second federation in the ap-
plication scenario;

e run a group of application scenario specific operations and requests for
the servers;

e end the session and ask the federation manager to terminate the feder-
ations.

The population, federation creation, and federation termination phases
can be seen in Figure 4. Under normal load conditions, the population pro-
cess takes less than 25 milliseconds, federation creation under 40 milliseconds
(the measured 100 ms includes two create operations and a population opera-
tion), and federation termination about 20 milliseconds (again, the measured
numbers cover two terminate operations). Operations for getInformation and
makeReservation are also noticeable in the measurements. The 20 millisec-
onds of getInformation include adaptation delay between the platforms, the
30 milliseconds of makeReservation additional factor of bean instantiation
on the EJB platform.

For the measurements presented in Figure 4 the number of request making
client computers were increased so that the input rate of requests reached a
level where saturation on one of the computers was approaching. However,
no unexpected behaviour on response times is seen here.

10

ms
300
275 1
250
225 1
200 [4,12 federations/
175 M second
B 7,76 federations/
150 L second
- | [184T federations/
125 - second
& 82 federations/
100 u U second
75 "
50 ! B
Sl Al
0 “[l_ﬂl ; : T T T '___|_|| T T -

popuat
create-
Federa
tion
dtart.
Sessio
getBill
payBill
et
Infarm
ation

Figure 4: Response times for the client[9)].

Looking at the CPU usage, additional measurement needs arise. The
measurement environment was initially set up in such a way that one of
the computers run two platforms simultaneously. This computer runs the
Hotel Server application component and takes care of all platform specific
transformations and adaptation needs. Figure 5 shows that this computer is
becoming a bottleneck in the system as the load increases.

The conclusions from this behaviour are twofold. First, additional mea-
surements are needed in an environment where the platforms are (more realis-
tically) installed in separate computers. Second, the cost of adapter creation
is considerably high in the current implementation. A library based solution
has been planned but was not yet available for measurements.

To support interpretation of the above measurement results, Figure 6
shows the same application components running without the help of Pilarcos
middleware. The configuration of application components is here fixed, and
only OpenCCM is used as a platform. Thus, the flexibility of finding appro-
priate partners for the federation is missed, and also heterogeneity support.
All application components have been selected beforehand and their locations

11

Ya
20

80

70

&0

50

54, 12 federations/ second
il 7.78 federations/ s2cond
[]8 47 federations/ second
30 & {7]8 .82 federations/ s=cond

40

20 —

BackgroundClient TouristSerner HotelSerier PaymentServer Trader

Figure 5: Processor usage in servers.

are resolved by name server. The measurements show that the overhead load
is mostly visible in the new operations offered by the Pilarcos middleware.
Additional few milliseconds fixed cost is added on all operations.

ms

100

90

80

70

60

50
[pilarcos

40 M simulated load in pilarcos
B traditional

30 ili W simulated load in
traditional

20+

10+

0_'5 8 8c B 5 g sc Fie B 8 K

c.= = o L)
2. Bs B4 B & g3 E¥S WX & z§ 83s

Figure 6: Time used in different phases seen by client with simulated load[9].

In general, the measurement results were as expected. However, the use of

12

two platforms in one computer is unrealistic and further measurements should
be done. Second, platforms are not mature enough and caused scalability
problems themselves, so scalability tests were not done as thoroughly as we
wished.

4 Benefits of Pilarcos middleware

This section discusses the ways in which Pilarcos middleware extends an or-
ganisations possibilities to establish cooperation relationships and still pre-
serve its autonomy, and how the new middleware services effect on software
development, maintenance and administration.

4.1 Forming cooperation relationships

The Pilarcos middleware makes it possible to form application level coop-
eration relationships between multiple equal partners. Federations can be
formed across organisational boundaries and over technology domains. In
simple cases new middleware services just make programming easier, but
more complex cooperations could not be achieved otherwise.

In simple cases, the Pilarcos middleware helps in reducing application
software complexity by providing ready-made functions for service discov-
ery and binding in heterogeneous platform environments. Currently, most
service-oriented architectures built with Web services middleware, in Java
environments or with CORBA support (plain or with components) concen-
trate on service discovery in client-server type of situations. Services are
considered as a set of independent resources in the global network, as build-
ing blocks, from which an application programmer is responsible to construct
a new value-added service. Most middleware solutions solve the interoper-
ability problems by either trusting a shared language context (Java Virtual
Machine) and transfer of code, or trusting a shared protocol environment
(CORBA, Web services). In Pilarcos, interoperability tests use explicit in-
formation on the shared platform facilities, thus making it possible to use
different technologies side-by-side as long individual federations find com-
mon communication facilities.

In more complex cooperation networks it is clear that without Pilarcos
middleware the application components could not establish federations, i.e.
multilateral contracts, in such a flexible way. Inter-organisational coopera-
tion can only be achieved through standard solutions and in this case, via
standardising new middleware services and meta-information elements.

13

4.2 Extending the potential cooperation networks

The Pilarcos approach is not dependent on one communication standard; in
contrary, the goal is to govern the multitude of communication standards. In
practise this means that service discovery and binding mechanisms carry ex-
plicit information on the protocols involved and that there is a set of adapters
available for the most common combinations.

For organisations this means expansion of potential cooperation partners
from those who use the same kind of communication platform (for exam-
ple, an ORB from the same vendor). The cost of adapted communication is
higher, but the amount of manual administration and the number of plat-
forms purchased is kept in minimum.

4.3 Preserving autonomy in cooperations

In contrast to distributed workflow systems, the Pilarcos architecture design
deliberately denies access and visibility to partner’s information processing
system. A business architecture can be considered as an external workflow
template that describes potential choreographies between independent par-
ties. Each potential party provides a local workflow that fulfils its published
service contract. The local workflows are hidden and no specific require-
ments for their running environment is specified. The Pilarcos middleware
acts as a matchmaker for the parties, and then specialises the shared external
workflow according to the membership, corresponding business policies and
technical facilities.

The Pilarcos architecture allows organisations to simultaneously partic-
ipate several cooperation relationships that have different requirements on
communication and policies. Each of the federation contracts must be com-
patible with the organisation’s own policies and facilities, but within those
limits, the federation contracts participated can even be contradictory to
each other.

The separation of local and global workflows supports independent evo-
lution of services in each organisation. It is possible to change local imple-
mentations or platforms without cooperation partners to notice the change.
This allows organisations more time to react on external pressures. Espe-
cially for SMEs this is beneficial. The SMEs gain and keep their competitive
position best by networking with companies that provide complementary
services. Current integration solutions are founded on a single authority di-
recting business models and their technical development, thus benefiting only
very large companies.

14

4.4 Separation of concerns on development

Separating design of business architecture descriptions, design of service
types, and implementation of components improves the software engineer-
ing process in general. The natural lifetimes of these elements differ, as well
as the skills required for the provision of them.

The Pilarcos middleware services allow workers to concentrate on their
component logic and provides business architectures and technology map-
pings as ready-made solutions, as instructed by the currently popular pro-
duction line concept [1].

As the Pilarcos middleware is based on repositories, like type repository
and trader, that can federate with each other, it is possible to make the
software development process a distributed one. The pieces for a federation,
in this case a pre-designed distributed application, can be implemented by
independent teams and existing components can be reused where applicable.

The Pilarcos design supports component-based service markets by pro-
viding a mechanism for explicating the services needed. The role definitions
in business architecture descriptions give precise description of the services
needed and the functionality of the component packages that should be easy
to market. As a sign of development in this direction can be seen in OMG do-
main services, where new services need to define the intended use in addition
to their interfaces.

The Pilarcos design supports also evolution of business architectures. As
business architectures are explicitly defined and published, differences in ver-
sions can be detected and problems caused by differences in process assump-
tions can be avoided. The publication mechanism also supports development
and delivery of new versions of business architectures. With epoch related
enhancements in the business architecture description language, even exist-
ing federations can be made to transform their cooperation to use a new
version of a business architecture.

4.5 Reduced cost on administration and maintenance

Providing tools for automating administration of service composition reduces
system maintenance cost. Because the federations directly support changes
in membership, there is good support for adaptation to changes in business
situation and also to changes in technical availability of services. The design
incorporates into the same management model both private business within
the organisation and external cooperations with varied and potentially con-
tradictory requirements.

The federation mechanism helps in the maintenance of the application:

15

the overall architecture can be changed by changing the business architecture;
the components can be updated by publishing new versions or compatible
services; and new platform technologies can be adopted by creating and
publishing a set of adapters.

5 Conclusions

Adopting Pilarcos middleware requires that standard, pervasive management
services were adopted generally. These standards should cover the cooper-
ative services between middleware platforms, especially protocols for fed-
eration managers. Also, a language or appropriate language sets should
be standardised for expressing the meta-information models for cooperative
management across organisations. The information models required include
business architecture models, federation contracts, service offer contents, and
type definitions [6].

The Pilarcos middleware is applicable in situations where flexibility and
evolution support is required. Especially, for small and medium size enter-
prises the networking support the middleware provides may give an essential
benefit. However, the open nature of Pilarcos model is such that highly
secure systems cannot be supported: trust building mechanisms can be in-
corporated, but still, critical systems should use more static and closed solu-
tions. The nature of Pilarcos middleware overhead cost is such that it is not
suitable for example for hard real-time systems or systems where response
times are not allowed to vary a lot.

Acknowledgements

This article is based on work performed in the Pilarcos project at the De-
partment of Computer Science at the University of Helsinki. The Pilarcos
project is funded by the National Technology Agency TEKES in Finland,
together with Nokia, SysOpen and Tellabs.

References

[1] HERZUM, P., AND SiMMmS, O. Business Component Factory. Wiley
Computer Publishing, 1999.

[2] ISO/IEC JTC1. Information Technology — Open Systems Interconnec-
tion, Data Management and Open Distributed Processing. ODP Type
Repository Function. 1S14746.

3]

[4]

[5]

18]

[9]

16

ISO/IEC JTC1. Information Technology — Open Systems Intercon-
nection, Data Management and Open Distributed Processing. Refer-
ence Model of Open Distributed Processing. Part 3: Architecture, 1996.
1S10746-3.

ISO/IEC JTC1. Information Technology — Open Systems Interconnec-
tion, Data Management and Open Distributed Processing — ODP Inter-
face References and Binding, Jan. 1998. 1S14753.

KuTvoNEN, L. Management of Application Federations. In International
IFIP Working Conference on Distributed Applications and Interoperable
Systems (DAIS’97) (Cottbus, Germany, Sept. 1997), H. Konig, K. Geihs,
and T. Preuss, Eds., Chapmann & Hall, pp. 33 — 46.

KuTvoNEN, L. Automated management of interorganisational applcia-
tions. In EDOC2002 (2002).

Lupu, E., AND SLOMAN, M. A policy based role object model. In Pro-
ceedings of the 1st International Enterprise Distributed Object Comput-
ing Conference (EDOC’97), Gold Coast, Queensland, Australia (October
1997), pp. 36-47.

SIEGEL, J. Dewveloping in OMG’s Model-Driven Architecture. Object
Management Group, Nov. 2001. White paper, revision 2.6.

VAHAAHO, M., HAATAJA, J.-P., METSO, J., SUORANTA, T., SILFVER,
E., AND KUTVONEN, L. Pilarcos prototype II. Tech. rep., Department
of Computer Science, University of Helsinki, Jan. 2003. C-2003-NN.

