CORBA Component Model - status and experiences

Juha Haataja, Egil Silfver, Markku V&hdaho and Lea Kutvonen

Helsinki December 31, 2001
UNIVERSITY OF HELSINKI
Department of Computer Science

Contents

1 Introduction 1
2 Status of CCM - standard and implementations 2
2.1 Review of thestandard L Lo oL 2
2.1.1 The abstract model L 2

2.1.2 The programming model oL 3

2.1.3 The packaging modelo 4

2.1.4 The deployment model Lo 4

2.1.5 The execution model 4

2.1.6 The main changes in the finalised version 4

2.1.7 Available implementations, b}

2.2 The first implementation of CCM standard - OpenCCM 6
2.2.1 History and goals of OpenCCM 6

2.2.2 Features implemented in OpenCCM 7

2.2.3 Performance measurements 7

3 Software development with OpenCCM - development process and expe-

riences 14
3.1 Pilarcos prototype - the context for OpenCCM evaluation 14
3.2 OpenCCM based development process 15
3.2.1 Getting started oL 16
3.2.2 Imstallation 16
3.2.3 Definition of interfaces and components with IDL3 17
3.2.4 IDL3 to IDL2 generation 19
3.2.5 Code generation 20
3.2.6 Component and deployment application implementation 21
3.2.7 Compilation and packaging 23
3.2.8 Problems related to federation management 24
3.3 Developer experiences 26

4 Concluding Summary 28

Chapter 1

Introduction

The Pilarcos project is researching topics related to federation establishment between au-
tonomous systems. During the first year of the project a reference architecture [5] was
designed and a prototype was implemented [11]. The goal of the prototype was to demon-
strate and study the feasibility of the Pilarcos architecture. The prototype was imple-
mented on top of the OpenCCM platform, which was the first available implementation of
the CORBA Component Model specification (CCM) [8].

The purpose of this document is to summarise the experiences gained during proto-
typing. The experiences are divided into three categories: experiences of CCM standard,
experiences of the OpenCCM platform, and experiences of OpenCCM based development
process.

Chapter 2 of this document first provides an overview of the CCM standard. The
second part of the chapter takes a deeper look at the OpenCCM platform. Finally, some
code generation and memory consumption metrics are reported and results of some basic
benchmarks are discussed.

Chapter 3 concentrates on the OpenCCM based development process and provides
a chronological summary of the steps needed when using the platform. The focus is on
the usage of the OpenCCM platform itself; an accompanying document [11] describes the
implemented prototype.

Chapter 4 concludes the document. It provides a summary of the CCM standardisation
effort and the experiences gained.

After reading this document the reader should have understanding of the CCM stan-
dard, its strong points and weaknesses, as well as guidelines on how to build CORBA
component applications on the OpenCCM platform.

Chapter 2

Status of CCM - standard and
implementations

In order to specify a sophisticated component model for the CORBA platform, the Object
Management Group (OMG) started a standardisation effort a few years ago. The result
was the CORBA Component Model (CCM) specification published at the end of 1999.
CCM is a major part of the larger CORBA 3 “umbrella”. The original CCM specification
was huge, containing almost 2000 pages (with all parts included). The size and complexity
of the standard made it very difficult to understand and implement, and a relatively large
number of issues were raised during the implementation efforts. Now, at the end of the
year 2001, it seems that all the major issues have finally been fixed, and the first version
of the standard is finalised. Implementations seem to be maturing towards industrial level
strength.

This chapter provides an overview of the CCM standard as it is now, provides a review
of the experiences reported by the LIFL. GOAL group which implemented the OpenCCM
platform, lists the available implementations of CCM, explains the features of OpenCCM,
and reports the results of performance tests conducted.

2.1 Review of the standard

The CCM component model is split into two levels: basic and extended. The basic model
can be used to componentise conventional CORBA objects, and is equivalent in function-
ality to Enterprise Java Beans 1.1. The CCM and EJB models have a deep relationship,
because the original Java Bean model and later the EJB were the main source of inspiration
for the CCM. The extended model brings the CCM up one level by adding functionality to
the basic component model and is usually the model referenced when talking about CCM.
The CCM standard consists of five separate models. Here we summarise the models
shortly and provide some discussion on their strong points and weaknesses. The discussion
is based on the experiences of the LIFL GOAL group (see [6]) which implemented the
OpenCCM platform, as well as on the experiences gained during Pilarcos prototyping.

2.1.1 The abstract model

The abstract model defines the semantics of components. A component is fundamentally
a unit of design and deployment capable of communicating with its environment through
different kinds of communication ports.

Components and their ports are defined using new IDL3 extensions. Ports are compo-
nent’s interaction points with other components. There are separate ports for synchronous
connections and for asynchronous, event based connections. The component ports allow for
the definition of the component’s provided interfaces (facets) as well as connection points
for components used interfaces (receptacles). The asynchronous counterparts for facets and
receptacles are called event sources and event sinks. Components are monolithic in the
sense that the implementations of the facets cannot be distributed physically to different
component servers, and static in the sense, that it is not possible to add ports to or remove
ports from a component at runtime. The ports are fixed at design time.

Receptacles can be defined to store one or multiple simultaneous facet connections.
The standard does not provide any usage scenarios for the receptacles supporting multiple
connections, however. One possible usage scenario would be supporting fault tolerance
[6]. Simplex receptacles provide one operation (get_connection) to get a handle to the
facet connected to it. Multiplex receptacles also provide one operation (get_connections)
which returns handles to all facets connected to the receptacle and their associated cookie
values. The cookie values usually have little meaning to the component implementor as
they are intended to be used by the deployment and configuration application. In any case
it would be a good idea to add fine-grained get operations to multiplex receptacles which
would allow getting one reference at a time instead of all of them in a bulk.

In addition to the basic communication ports, it is possible to define configurable
attributes for the components. The life-cycle of a component can be divided into config-
uration phase, where attributes are configured, and usage phase where the services of the
component are used. However the standard only suggests this distinction to be made, but
does not actually mandate it.

Components only support single inheritance in IDL3 even though component is basi-
cally an extension of the interface meta-type and there are no apparent reasons for not
supporting multiple inheritance [6].

Finally, component homes provide a generic way to instantiate and destroy components.
Homes are also defined in IDL3 which makes it possible to add home specific operations
to them. Home is a completely separate meta-type from component which means that
components cannot be homes. Allowing a home to be a specialisation of a component
would have made it possible to create hierarchical instantiation structures.

2.1.2 The programming model

The programming model defines a Component Implementation Framework (CIF). The
focal point of CIF is the Component Implementation Definition Language (CIDL). CIDL is
used for defining how components interact with their runtime environment (container). As
CIDL definitions may include statements describing the persistent state of a component and
OMG has already specified a language, called Persistent State Definition Language (PSDL),
for that purpose the CIDL should be a superset of PSDL. However, the relationship of the
languages or even the syntax and semantics of CIDL were not properly defined in the
first release of the standard. As a result, the generation of component implementations
is under-specified which hampers component portability across containers from different
platform vendors.

2.1.3 The packaging model

The packaging model defines how components are packaged into units suitable for auto-
matic deployment. The packaging specification is based on the Open Software Description
(OSD) model and is realised as an XML-DTD. The packaging model enables the defini-
tion of component packages for single components and component assembly packages for
several interconnected components. The OSD based XML-DTD is very flexible but also
quite large and difficult to understand. There is no tool support yet for defining the de-
scriptors and none of the existing CCM platforms actually support deployment based on
those descriptors.

2.1.4 The deployment model

The deployment model defines how to automatically deploy and instantiate the compo-
nent based applications in distributed servers. The deployment process defines how to
install component implementations, create components with their homes, and connect the
components together as described in the packaging descriptors.

The CCM standard leaves the deployment interfaces under-specified, however. It spec-
ifies ComponentInstallation, AssemblyFactory, and Assembly interfaces which enable in-
stallation of component packages and assemblies but shows only an example scenario of the
instantiation of containers and component homes. The example scenario uses non-standard
interfaces to provide a complete deployment scenario. Only partial implementations of the
deployment architecture exist so far.

2.1.5 The execution model

The execution model describes the runtime environment for the components. The runtime
environment is called the component container. The container provides an additional ab-
straction layer above the CORBA platform hiding non-functional aspects like handling of
CORBA services and persistence management from the component implementor. It is in-
tended that the generated component implementation skeleton interacts with the container
through the container interface.

The number and properties of containers is fixed in the standard. The specified con-
tainers are service, session, process, and entity container. Each container has its roots in
the EJB specification. According to available implementation experiences (e.g. [6]), the
container interfaces are poorly specified which is one source for the portability problems
mentioned in the programming model section.

The GOAL group is designing adaptive containers which would enable adding new
services to already instantiated containers making it possible to dynamically deploy and
configure them [6]. These kind of adaptive containers may very well be part of the future
versions of CCM standard.

2.1.6 The main changes in the finalised version

The finalised version of the CCM specification contains 13 significant changes and 23 minor
changes compared to the initial proposal. The following list summarises the main changes:

e Addition of CIF meta-model and related language mappings,

e removal of Component Container Architecture,

e removal of Packaging and Deployment meta-model,

e fixes in IDL3, Interface Repository interfaces, CIDL language, component model
and its IDL mappings, container interfaces, EJB and CCM integration, packaging
and deployment XML DTDs, component deployment interfaces, and in baseIDL and
componentIDL meta-models.

The CIDL language which has been under wide criticism has kept its existing gram-
mar but a meta-model has been specified for it. It is assumed that CIDL will continue
development and new versions of it may contain significant changes.

There are no product level implementations of the EJB/CCM mapping but enough
proof of concept exists so that the mapping is kept in the specification with some changes.
The EJB/CCM mapping may also be a target for changes in the future.

2.1.7 Available implementations

By now, there exist several platforms which implement at least parts of the CCM specifi-
cation. None of them support the whole specification yet, but together they implement all
the features which are included in the finalised specification. The following list summarises
the properties of the five most sophisticated implementations available. The information
is based on what is available at the implementations’ web-sites [1, 3, 7, 9, 10].

OpenCCM (LIFL)
e Author: LIFL GOAL group

ORBs supported: ORBacus, OpenORB, Visibroker, JavaORB

e Implementation language: Java

Special features: Open Source; First Java implementation published; Name will be
changed in the future because of the Exolab’s OpenCCM

Where to find: http://corbaweb.1lifl.fr/0OpenCCM/

MicoCCM
e Author: FPX
e ORBs supported: Mico
e Implementation language: C++
e Special features: Open Source; First C+-+ implementation published

e Where to find: http://www.fpx.de/MicoCCM/

OpenCCM (Exolab)
e Author: Exolab
e ORBs supported: OpenORB

e Implementation language: Java

e Special features: Open Source, Exolab also the author of OpenEJB, OpenJMS,
OpenORB; promises CCM/EJB integration based on OpenEJB and CIDL support

e Where to find: http://openccm.exolab.org/

K2-CCM
e Author: ICMG
e ORBs supported: information not available

e Implementation language: information not available

Special features: Provides a CCM/EJB bridge and a CIDL compiler

Where to find: http://www.componentworld.nu/corp/ccm/ccm.overview.asp

CIF-CCM
e Author: CIF project at Sourceforge
¢ ORBs supported: information not available
e Implementation language: C++
e Special features: Open Source (LGPL)
e Where to find: http://sourceforge.net/projects/cif/

The platforms are in their pre-alpha/alpha phases, and do not qualify as industrial level
platforms. It is to be expected that new commercial implementations will start shipping
during 2002-2003 now that the CCM specification is finalised.

2.2 The first implementation of CCM standard - OpenCCM

OpenCCM was the first published implementation of the CCM specification. OpenCCM is
a Java-based Open Source platform implemented by the LIFL. GOAL group. This section
describes the history and goals of the OpenCCM platform as well as its main features
as they were in the latest published version (v0.2). In addition some measurements and
benchmarks are reported.

2.2.1 History and goals of OpenCCM

Originally the OpenCCM platform was meant to be a research platform. The idea was to
implement parts of the CCM specification for research purposes. When the GOAL group
later joined the CCM finalisation task force, these plans were re-evaluated and it was
decided to go for an “industrial quality Open Source CCM platform”. The latest published
version of OpenCCM is version 0.2. The OpenCCM platform is implemented in Java and,
at the moment, supports only Java based components. The GOAL group however promises
to support also C++ based components in the future [6].

OpenCCM can be used on top of several ORBs. Version 0.2 supports ORBacus 4 for
Java, Visibroker 4 for Java, OpenORB, and JavaORB. More ORBs are said to be supported
in the future.

Next we will take a look the parts of the CCM standard the version 0.2 implements
and how the platform will develop in the near future.

2.2.2 Features implemented in OpenCCM

The OpenCCM 0.2 implements only parts of the original CCM specification. Parts included
in the platform so far are:

e Interface repository for IDL3,

e IDL3 compiler for loading IDL3 files into the repository, and generation of IDL2 files
and Java-based component implementation skeletons from the repository,

e a monolithic component server / container implementation capable of hosting compo-
nents. The monolithic server provides the standard ComponentInstallation interface
for installing the jar-packages containing component implementations and a propri-
etary interface for instantiating component homes.

Several upgrades to the platform are under development [6]. The time schedule for the
updates remains to be seen but it is promised that following functionality will be included
quite soon:

e Packaging tool supporting OSD-based packaging,

e a model and a framework for defining component based applications called “CODeX
- Composite Oriented Deployment and eXecution” model,

e 3 deployment framework that supports the standard CCM deployment model and
extends the model to fit a larger set of requirements,

e adaptive containers which allow for the composition and deployment of containers
into component servers in a similar way components themselves are composed and
deployed.

The idea that monolithic containers are replaced with modular services that can be used
to compose generic component containers sounds very interesting from the Pilarcos point of
view, and might provide new possibilities to integrate part or all of the Application Binder
[4, 5, 11] functionality to CORBA in a more sophisticated way. One might envision, for
example, that Application Binder could be implemented a service which could be plugged
into any container on demand.

2.2.3 Performance measurements

In order to get basic understanding of the OpenCCM runtime behaviour, some code gen-
eration and memory consumption metrics were gathered and some basic benchmarks were
conducted.

Size of the platform

The OpenCCM 0.2 platform is packaged into a jar-package sized 1.1MB. Compared to
ORBacus core classes (3.4MB) and ORBacus naming service (0.5MB) we can conclude
that the size of the platform in its latest release is about one third of the size of the core
platform it is run above and twice the size of a naming service. It should be kept in mind
that the size of the platform will continue to grow in the future.

Code generation

The code generation metrics were gathered by first specifying a simple interface with one
operation, a component implementing this interface and a home managing the component
and secondly by generating the code with ORBacus and OpenCCM tools. The results are
summarised below:

¢ CORBA based generation (with ORBacus tools):

— IDL to Java generation produces 7 classes
— Size of compiled classes: 11kB

— Size of jar-packaged classes: TkB
e CCM based generation (with OpenCCM 0.2 tools):

— IDL to Java generation produces 38 classes

* 7 classes for provided interface, total 11kB (same as in basic CORBA case)
* 8 classes for component, total 36kB
x 23 classes for component home, total 43kB

— Generation of component implementation skeleton produces 1 class, total 1kB
— Generation of home implementation skeleton produces 1 class, total 1kB

— Total size of all compiled classes: 92kB

— Total size of jar-packaged classes: 46kB

The results show that the amount of generated classes in OpenCCM case is massive
compared to basic CORBA case. This is mostly due to the complex IDL3 to IDL2 map-
ping in CCM specification, especially for component home. The difference in size of the
generated code is not of major concern since most of the OpenCCM generated classes are
quite small.

Memory consumption

The memory consumption metrics were gathered by first instantiating the component
server environment and then instantiating simple homes and components in it. In order to
measure how much memory consuming functionality is added to the component executor
with each additional provided interface, the memory consumption was measured with a
component that provides one interface as well as with a component that provides five
similar interfaces. The measurements were made using the vmstat and free utilities in
the Linux system.

To provide a baseline for the measurements, the memory consumption of the Java
Virtual Machine (JVM) was also measured. This is important as the memory footprint
of the JVM is included in all the other measured footprints. It should be kept in mind
that the JDK-version and used heap-size may greatly affect the memory consumption. As
another baseline, the memory footprint of ORBacus naming service was also measured.
The results are summarised below:

e Configuration:

— Java version 1.2.2 Classic VM (build 1.2.2-L, green threads, nojit)

— Default JVM, ORB, and OA start-up parameters and JVM heap size
e Measurements:

— JVM and a class with only main() method 2.7MB RAM

— ORBacus naming service: 4.1MB RAM (includes a JVM instance)

— OpenCCM 0.2 component server: 4.9MB RAM (includes a JVM instance)
— Instantiation of a component home: 900kB

— Instantiation of component providing 1 interface: 400kB

— Instantiation of component providing 5 interfaces: 600kB

It can be seen that the instantiation of the component platform takes around 5MB
of memory. Roughly half of this footprint belongs to the JVM. The memory footprint of
the OpenCCM platform seems to be somewhat larger than that of the ORBacus naming
service but not considerably.

A simple component consumes a bit less than 0.5MB of memory and the footprint grows
with about 50kB for each additional interface provided. Instantiation of the component
home takes almost 1MB of memory. It should be noted that the component implementation
includes only the generated parts of the component and embedding the actual business logic
will make the footprint larger. The growth depends on the complexity of the application. In
future releases the logic related to each facet may be instantiated without instantiating the
whole component. This reduces the memory consumption of large components providing
many interfaces.

interface Benchmarking {
typedef sequence<octet> OctetSeq;

/* for scalability benchmark */
void ping();

/* for marshalling benchmark */
void marshal(in OctetSeq parameter); // OkB, 0.5kB, 1kB, 2kB, 4kB, ...

component BenchClient supports Management{
uses Benchmarking bmarking;

};

home BenchClientHome manages BenchClient{

};

component BenchServer supports Management{
provides Benchmarking bmarking;

I8

home BenchServerHome manages BenchServer{

}s

Figure 2.1: The benchmarking interface and components.

Benchmark configuration

A series of simple benchmarks were conducted in order to explore the runtime behaviour of
OpenCCM platform. These benchmarks do not provide much information themselves, and
they should be used together with the wider benchmarks concerning the behaviour of the
Pilarcos prototype as a whole [11]. The benchmarks reported here are simple client-server
benchmarks which give some basic understanding of the benchmarking environment used
during the prototype benchmarks.

The benchmarks are divided into two separate groups: the marshalling benchmarks,
and the scalability benchmarks. The marshalling benchmarks perform operation calls be-
tween the client and the server components with growing amount of octet-data as operation
parameter. The scalability benchmarks perform empty operation calls with full throughput
and growing number of background clients. The idea of the scalability tests is to explore
the invocation routing behaviour of the platform under heavy load.

The hosts used in the benchmarks had the following properties:

e Processor: 1GHz Pentium III
e Memory: 512MB RAM
e LAN: 100Mbit Ethernet

e Linux 2.2.19 OS and Java version 1.2.2 Classic VM (build 1.2.2-L, green threads,
nojit)
The host and platform configuration was the following:

e One component server and CORBA component in each host (client or server com-
ponent)

e Default ORBacus ORB threading model (blocking) and two different POA thread-
ing models (threaded, thread pool=10). The fundamental difference between the
threading models is that the threaded model synchronises the execution of the user
code whereas the thread pool model allows several concurrent executing threads. The
size of the pool defines the amount of pre-instantiated threads available for incom-
ing requests. Pre-instantiation increases the performance of a server by preventing
frequent thread creation and destruction.

All measures are gathered by making 1000 operation calls and calculating their mean
value. This is done to get the average behaviour. Then this procedure is repeated 20
times and the mean value of the 20 previously calculated average values is calculated. This
method makes sure that the measurement procedure is distributed in time. This has to
be done in order to remove the effect of randomness in the operating system behaviour.
Things measured in the benchmarks are:

e Marshalling benchmarks: Operation calls with growing amount of bulk data as a
parameter (0 bytes, 500 bytes, 1kB, 2kB, ... , 128kB)

e Scalability benchmarks: Operation calls with empty operations at full throughput
with growing number of background clients. The measured client and the background
clients use the same interface. The things measured are the throughput and invoca-
tion time seen by each client, the throughput seen by the server, and the CPU load
at the server node.

10

The interface and component definitions used in the benchmarks are shown in Fig-
ure 2.1.

Benchmark results

The marshalling benchmark shows a linear trend in the invocation times. The invocation
with no parameters takes around 0.65-0.70ms and the invocation with 128kB octet-data
as a parameter takes around 17ms. The linear growth is expected because the parameter
size should only affect the marshalling/unmarshalling time.

The marshalling/unmarshalling is performed by static stub/skeleton code which con-
sumes CPU time an amount linearly dependent on the size of the marshalled parameter.
There is no real difference in invocation times between different POA threading policies.
The roundtrip time compared to parameter size can be seen in Figure 2.2.

Average roundtrip

— Roundtrip (threaded) — Roundtrip (thread_pool=10)

20,00
18,00 +
16,00 +

14,00 +
12,00 +
10,00 +
8,00 +
5,00 +

Roundtrip {ms)

4,00
2,00 +

0,00 T T T T T
] 25000 50000 75000 100000 125000
Parameter size (bytes)

Figure 2.2: Invocation time versus size of marshalled parameters.

The scalability benchmarks show some differences between the different threading poli-
cies of the POA. Using a pool of pre-instantiated threads results in a greater overhead but
a faster response to suddenly growing loads. A fixed-size pool also results in a more deter-
ministic behaviour both at the client and at the server side. Figure 2.3 shows the server
throughput with both policies. It can be seen that the server throughput is higher without
the pool (around 1600 invocations per second) than with the pool (around 1400 invocations
per second) in case of single concurrent client.

Figure 2.3 also shows how the server throughput grows faster when a thread pool is used
and stabilises in a level around 2400-2500 invocations per second after the CPU is fully
utilised (see Figure 2.4). The throughput of the threaded version reaches a maximum
of around 2700 invocations per second but becomes very un-deterministic and starts to
decrease after the CPU is congested. With 10 simultaneous clients the throughput of both
threading models is equal.

11

Server throughput

— Server throughput (threaded)
— Server throughput (thread_pool=10)

Server throughput (callsfzec)

g 3] 7 8 g m N

Simultaneous clients

e
g
[}
I

Figure 2.3: Total server throughput versus simultaneous clients.

As a conclusion it can be said that the marshalling/unmarshalling of operation param-
eters usually consumes most of the time during an operation call. It can also be said that
in the environment we used, the network latency had nearly zero-effect on the response
time. In a slower or congested network the situation would be different

CPU usage

——CPU usage (threaded) ——CPU usage (thread pool=10)

100 -
95 1
90
g5
g0 -
75 A
70 A
65 -
B0 -
859 1
a0 T T T T . T T T T

CPU usage (%)

Simultaneous clients
Figure 2.4: CPU-load versus simultaneous clients.

The scalability tests show that the default threading model of the ORBacus POA
(threaded) produces less overhead than the pooled model (thread_pool=10). If variation

12

in observed behavior should be minimised and/or the invocations arrive in short bursts,
the thread pool provides a clear advantage.

The size of the pool should be fitted according to the amount of expected simultaneous
clients. Facts to be taken into account when choosing thread pool size are the average
number of concurrent clients during a typical burst, and the maximum expected number
of concurrent clients during a typical burst.

13

Chapter 3

Software development with
OpenCCM - development process
and experiences

Previous chapter provided an overview of the CCM standard and its first implementa-
tion, the OpenCCM platform. This chapter describes the development process used when
implementing CCM based applications with OpenCCM and summarises the experiences
gained.

3.1 Pilarcos prototype - the context for OpenCCM evalua-
tion

The Pilarcos prototype is the first realisation of the Pilarcos infrastructure services. The
prototype is implemented in the context of a Tourist Information Service business case.
The business case defines a context where clients can request tourist information services
through a portal service and pay those services with a payment method of their choice.
The prototype implementation contains first versions of Pilarcos infrastructure services
implemented as CORBA components as well as simple implementations of the service
applications involved. The complete definition of the business case and the prototype
design can be found in an accompanying document [11].
The prototype development environment was the following:

e Operating system: Linux 2.2.19
e Programming language: Java
e Language environment: JDK 1.2.2 (also JDK 1.4 beta 2 was tested)

CORBA ORB: ORBacus for Java 4.0.5

CCM platform: OpenCCM 0.2

The prototype development group consisted of three people. Each of the three partici-
pated in design and implementation phase. The group had considerable amount of previous
experience in programming with Java in centralised environments but less experience in
distributed Java programming.

14

The group had no experience in CORBA Component Model based programming and
only some experience in conventional CORBA programming. The group, however, had
a fair understanding of the CORBA and CORBA Component Model specifications. In
addition, the group had professional level understanding of networked environments in
general.

The development effort took four months in real world time. Each of the three devel-
opers used around one third of their working hours in the development effort. The exact
amount of work consumed to produce the implementation is difficult to calculate, because
the research work cannot be separated from the development work.

The following features of ORBacus and OpenCCM were used in the prototype:

e ORBacus 4.0.5
— ORB

— Naming service
— Trading service

— IDL to Java generator (jidl)
e OpenCCM 0.2

— Interface repository for IDL3

— IDL3 to IDL2 generator (ir3_id12)

— Component executor generator (ir3_java)

— Component implementation skeleton generator (ir3_jimpl)

— OpenCCM runtime component server

OpenCCM components and homes

— Synchronous connections between components (facets/receptacles)

The size of the software produced during the prototyping effort can be summarised as
follows:

e Around 300 lines of IDL definitions (not counting comments or empty lines),
e around 3500 lines of Java-code (not counting comments or empty lines),

e 32 user written Java classes including the implementations of 10 CORBA compo-
nents.

3.2 OpenCCM based development process

This section explains the process of OpenCCM based development. It shows, in chrono-
logical order, the necessary steps needed to develop software with OpenCCM. From each
step the necessary actions to take, the problems which may arise, and the solutions to
the problems are explained. A concrete example of each step is also provided in order to
better illustrate the meaning of each action. Figure 3.1 shows the different steps in the
development process. The steps are explained in the following subsections.

15

ORBacus
Stubs
Prototype.idl jidl

1 ir3 idi2

javac +jar

Component

A
Executors ’

Prototype.jar

ir3_feed
Prototype.idl3
ir3_start / \ ir3_stop

"begin” "end"

Component
Implementation
Skeleton s

Figure 3.1: Overview of OpenCCM based development process.

3.2.1 Getting started

The first step in the development effort is to find the platform implementations and re-
lated documentation. In our development environment the Linux operating system and
Java platform (JDK 1.2.2) were pre-installed in the machines so what was left was to get
ORBacus 4.0.5 for Java ORB, ORBacus naming service, ORBacus trading service, and
OpenCCM 0.2 platform.

The ORBacus platform is available both in source code and in binary format. Since
we had no plans to touch the ORB code or the naming/trading service code, we just
downloaded the ORBacus components in binary format. The ORBacus platform and
related documentation are available at the IONA web-site [2].

The OpenCCM platform was downloaded in source code format. The OpenCCM source
code can be found from the OpenCCM web-site [9] along with separate installation and
development guides. The guides are actually only web pages providing short explanation
on how to install and use the platform. The source code package also provides some
exemplary source code. In addition to the OpenCCM guides, the CCM specification [8]
is useful in understanding some of the more complex issues. There also exists a very nice
document describing the GOAL group experiences with CCM and detailed examples on
how to use OpenCCM in development |[6].

3.2.2 Installation

The installation phase includes installation of the ORBacus platform and installation of
the OpenCCM platform. In our case this means installing the ORBacus 4.0.5 binaries and
configuring, compiling and installing the OpenCCM 0.2 source code.

The ORBacus installation only requires copying the used platform libraries to some
directory. In our case the needed libraries were 0B. jar, OBNaming. jar, OBTrading. jar,
and OBUtil.jar containing the core classes, naming service, trading service, and necessary
utilities. In addition to these the ORBacus command-line utilities, like the jidl compiler,
are needed.

OpenCCM installation is somewhat complicated. Un-zipping the platform release re-
sults in a complex directory structure. The configuration of the platform is done by editing
three files related to the used operating system, the used Java environment, and the used
ORB product. Since we were using Linux and ORBacus the files needed to be configured

16

were make rules for Unix systems, make rules for JDK in Unix systems, and make rules for
ORBacus in Unix systems.

When the configurations are properly set, the platform can be compiled with the make
utility. The compilation procedure results in several new directories plus the OpenCCM. jar
package containing the compiled platform code.

After compilation, the platform can be installed from command-line by typing make
install. This installs the platform to a directory specified during the configuration
phase. The installation results in three new directories (bin, 1ib, idl) which contain
all the tools, libraries, and IDL interfaces of the platform. The bin directory also contains
envi.0penCCM.sh script which can be used to set values for the environment variables.

3.2.3 Definition of interfaces and components with IDL3

The actual development effort starts with the definition of interfaces and components.
First phase is the definition of the IDL interfaces. This phase is identical to that of
conventional CORBA development. Here is where the first bug in the OpenCCM platform
was discovered: it is not possible to use several IDL modules. Nested IDL modules result
in parallel Java packages in the generated code. The usage of multiplex receptacles also
leads to several errors in the generated code.

Because the time frame and work hours available in our development effort were limited,
it was decided that instead of fixing the platform code, we put everything in one IDL
module called Prototype. The module and its descriptions were placed in a file called
Prototype.idl3.

An example of the definition process is provided in the context of Tourist Information
Service (see [11] for the service description). First the service interface provided by the
Tourist Information Service needs to be defined. The interface includes three operations
called requestService, useService, and abort which are used for requesting the service
related billing information, for using the service, and for aborting the service usage. The
interface is shown in Figure 3.2.

interface TouristInfo {
void requestService(out string billld, in string servContId);
OctetSeq useService(in string what, in string servContId);
void abort(in string servContId);

}s

Figure 3.2: The IDL interface of the Tourist Information Service.

The next phase is to define the interfaces needed by the Tourist Information Service.
The service needs one external interface called Billing in order to support on-line payment
via an external payment service provider. The Billing interface provides operations for
initialising the billing procedure, for aborting the billing procedure, and for checking if the
customer has paid his bill. Figure 3.3 shows the interface used for billing.

Now the needed interfaces are defined and it is time to define the CORBA component
implementing the Tourist Information Service. The component is defined to provide the
TouristInfo interface and use the Billing interface. The resulting component definition is
shown in Figure 3.4.

17

interface Billing {
string getBillId(in Bill bill, in string account,
in string servContId);
void invalidateBill(in string billld, in string servContId);
boolean isBillPaid(in string billld, in string servContId);

};

Figure 3.3: The Billing interface used by the Tourist Information Service.

At this point we have the definition of the service interfaces used and provided by
the TouristInfoServer component as well as the definition of the component itself. Be-
cause our component is supposed to work in the Pilarcos environment interacting with
the Pilarcos services, we need to define some additional interfaces for policy and feder-
ation management. The interfaces needed are the PolicyConfiguration interface and the
FederationManagement interface.

component TouristInfoServer {
uses Billing billing;
provides TouristInfo touristInfo;

};

Figure 3.4: The TouristInfoServer component with basic definitions.

It is intended that in the future the policy and federation management interfaces be-
come an integrated part of every component so that it would not be necessary to define
them separately for every component.

In order to support component configuration and benchmarking we also need to add
few attributes to the component. One attribute is needed to support configuration of
component debugging level and two others for workload simulation and benchmarking
purposes.

In addition, we need a simple home which can be completely generated and needs only
to have the ability to create and destroy components. Unfortunately the generated homes
in OpenCCM 0.2 do not (yet) implement the operations for destroying components so we
can only have a home which automates the component creation.

Putting all the pieces together we have the complete IDL3 definition for the Tourist
Information Service including the interfaces, component, and home definitions. Figure 3.5
shows the final design of the TouristInfoServer component (some irrelevant details omitted).
This example shows nicely the power and elegance of the new IDL3 concepts of component
and component home.

At this point it should be reminded that the definition process was presented as a
rather straightforward procedure. This actually gives a false impression. In reality the
process of (1) IDL3 definition, (2) IDL2 generation, (3) code generation, (4) component
implementation, (5) component and application testing goes on in an iterative manner
until the IDL definitions stabilise. The fact that the IDL definitions change during the
development cycle introduces difficulties related to code generation and implementation
phases. These issues are discussed more in corresponding subsections.

18

component TouristInfoServer {
uses Billing billing;
provides TouristInfo touristInfo;

uses PolicyConfiguration policyConf;
provides FederationManagement federationManagement;

attribute long workMillis;
attribute long sleepMillis;

attribute long debuglevel;
}

home TouristInfoServerHome manages TouristInfoServer {

};

Figure 3.5: The IDL3 definition for the TouristInfoServer-component.

3.2.4 1IDL3 to IDL2 generation

In order to proceed to the code generation phase, the IDL3 definitions have to be converted
to IDL2 definitions. The CCM specification provides a standard mapping to do this. The
mapping is realised in OpenCCM by an IDL3 to IDL2 generator which utilises the interface
repository in the process.

The tools needed to generate the IDL2 definitions are

1. ir3_start to startup the interface repository,
2. ir3_feed to feed the IDL3 files into the interface repository,

3. ir3_id12 to generate the IDL2 files from the contents of the interface repository,
and

4. ir3_stop to terminate the interface repository.

The usage of these tools to generate the IDL2 files for the Pilarcos prototype is illustrated
in Figure 3.6.

ir3_start

Feeding the OMG IDL3 Repository with Prototype.idl3

ir3_feed Prototype.idl3

Generating idls for Prototype module

ir3_idl2 -o Prototype.idl -i Components.idl -i CosNaming.idl
-i CosTrading.idl -i CosTradingRepos.idl ::Prototype

ir3_stop

Figure 3.6: Usage of OpenCCM interface repository to generate IDL2 descriptions.

The generation procedure produces the Prototype.idl file which contains the IDL2
versions of the prototype definitions.

19

3.2.5 Code generation

The code generation phase has three distinct steps: (1) generation of component and
home executors, (2) generation of component and home implementation skeletons, and (3)
generation of marshalling stubs and skeletons.

The generation of component and home executor skeletons is achieved by utilising again
the interface repository. In addition to the tools utilised in the IDL3 to IDL2 section a
new tool called ir3_java needs to be used. Figure 3.7 shows the flow of activities.

ir3_start

Feeding the OMG IDL3 Repository with Prototype.idl3
ir3_feed Prototype.idl3

Generating OpenCCM skeletons Prototype module
ir3_java ::Prototype

ir3_stop

Figure 3.7: The generation of component and home executors from IDL3.

The results from the executor skeleton generation phase are the non-functional parts for
components and component homes. These parts act as glue between the user implemented
part of the component and the component container. In the future versions of the platform
the generated executor can be customised by including proper CIDL statements into the
generation process.

In addition to the component and home executor generation the OpenCCM also pro-
vides tools for generating the skeleton classes for the user implemented parts. These so
called implementation skeleton classes extend the generated component and home execu-
tors and include the signatures for all the business operations. What developer has to do
is to add the business logic into the operations. The implementation skeleton generation
is achieved by using the ir3_jimpl tool. Figure 3.8 summarises the tool usage process.

Generating Java implementation skeletons
ir3_start

ir3_feed Prototype.idl3

ir3_jimpl ::Prototype

ir3_stop

Figure 3.8: The generation of the component and home implementation skeletons.

A clip from the implementation skeleton of the TouristInfoServer component (Fig-
ure 3.9) shows the generated signature for the requestService operation.

The stubs are generated from the IDL2 file Prototype.idl with ORBacus IDL to
Java generator (jidl). The stub generation does not involve the interface repository (see
Figure 3.10).

During the development effort, one bug was discovered related to the generation phase.
The generated implementation skeletons (both component and home implementations
skeletons) try to import code from a non-existing package. The extra line (see Figure 3.11)
can be found just below the package definition at the beginning of each class. This bug

20

public class TouristInfoServerImpl // component implementation skeleton
extends TouristInfoServerCCM // component executor
implements fi.helsinki.cs.pilarcos.Prototype.TouristInfoOperations,
fi.helsinki.cs.pilarcos.Prototype.FederationManagementOperations

{
/* Example operation signature from the implementation skeleton */
public void
requestService (org.omg.CORBA.StringHolder billld, String servContId)
{
/7
// TODO : put your own code here !!!
//
}
}

Figure 3.9: Part of the implementation skeleton generated for TouristInfoServer compo-
nent.

Generating Prototype CORBA 2 stubs.
jidl --auto-package --tie --output-dir $(gendir) -I $(idldir) Prototype.idl

Figure 3.10: An example of the ORBacus IDL to Java generator usage.

is probably a legacy of the OpenCCM 0.1 and a straightforward solution to this problem
is to remove the extra line from each implementation skeleton. In order to automate the
removal process a simple shell script was written.

The generation paradigm was found to be easy to use and effective. Some problems
arise, however, if the IDL descriptions change frequently. Every time the IDL changes,
not only the stubs and executors need to be re-generated but also the implementation
skeletons. This means that the implemented business logic must be moved from the old
implementation skeletons to the new ones. This problem is a fundamental problem in the
generation paradigm.

3.2.6 Component and deployment application implementation

Implementing components using the generated implementation skeleton is, in theory, a
straightforward procedure. The components are implemented by just filling in the business
logic to the generated implementation skeleton. In reality the process involves complicating

import fr.lifl.goal.OpenCCM.runtime.*;

Figure 3.11: The import bug in the beginning of each generated implementation skeleton.

21

aspects like concurrency of execution.

The concurrency problem arises when there are multiple threads simultaneously exe-
cuting the business logic of the component. In this case the component programmer must
make the component implementation thread-safe by synchronizing the access to the con-
currently used data structures, and in some cases synchronize the usage of the business
operations themselves. This complicates the programming effort and requires some under-
standing of the problems related to concurrency and synchronization. Understanding the
business logic is not enough.

In addition to making the component code thread-safe, component thread-safety should
be made explicitly visible in the component documentation and packaging descriptor. Be-
cause OpenCCM 0.2 does not support XML-based packaging this could not be done in the
Pilarcos prototype.

The concurrency issue becomes a real problem when people start using off-the-shelf
CORBA components made by third parties in critical software. If components which are
not programmed thread-safe are deployed in multithreaded environments the result may
be a catastrophy.

After the component is implemented it is usually a good idea to add the configuration_complete
operation in order to support the division of the components life-cycle into configurational
and operational phases as shown in Figure 3.12.

public class TouristInfoServerImpl // component implementation skeleton
extends TouristInfoServerCCM // component executor
implements fi.helsinki.cs.pilarcos.Prototype.TouristInfoOperations,
fi.helsinki.cs.pilarcos.Prototype.FederationManagementOperations

/* The added configuration_complete() operation */

public void configuration_complete ()
throws org.omg.Components.InvalidConfiguration
{
// Check if the configuration is valid,
// and ‘‘lock’’ the attributes which should not
// change state after this operation is called

}

Figure 3.12: Adding the configuration_complete operation to the implementation skele-
ton.

If a component uses services from other components, the client behaviour can be added
by bootstrapping the interface references from the receptacles using the get_connection
operation in case of simplex receptacles and get_connections operation in case of multi-
plex receptacles. Figure 3.13 shows how the Billing interface is bootstrapped and used in
the requestService operation of the Tourist Info Server component.

In case the platform would provide a deployment tool, implementing the components
would be enough. Unfortunately OpenCCM 0.2 does not offer a deployment tool, and a
proprietary development application must be implemented in order to use the components.

Since the platform is in its early stages and is evolving constantly there was no point
in implementing our own generic deployment tool. It was decided to implement a simple

22

public class TouristInfoServerImpl // component implementation skeleton
extends TouristInfoServerCCM // component executor
implements fi.helsinki.cs.pilarcos.Prototype.TouristInfoOperations,
fi.helsinki.cs.pilarcos.Prototype.FederationManagementOperations

{
/% Implementation of the requestService-method (some details
e.g. exception handling omitted) */
public void
requestService(org.omg.CURBA.StringHolder billld, String servContId)
{
Bill bill = new Bill("TouristInfoService", 6.0, "Test Bill");
String account = "10101010";
// Bootstrapping the Billing interface from the receptacle
Billing billing = get_connection_billing();
synchronized (billIdTable) {
// Using the Billing interface
billld.value = billing.getBillId(bill, account, servContId);
billIdTable.put(servContId, billId.value);
}
}
}

Figure 3.13: Example of bootstrapping and usage of an interface connected to a receptacle.

deployment application which can deploy, instantiate, and connect the prototype related
components. The demonstrative examples which come along the OpenCCM distribution
gave a good starting point for implementing it. Figure 3.14 shows a small deployment appli-
cation which is able to deploy and instantiate the TouristInfoServer component, configure
it, as well as connect the Billing interface to one of its receptacles.

3.2.7 Compilation and packaging

The compilation of both, the generated files and the user implemented files is done in a
three-phase compilation chain. First the generated ORBacus stubs ans skeletons are com-
piled, then the generated executors are compiled and third the generated implementation
skeletons filled with user written business logic are compiled. In our case, the compilation
was done using the javac compiler included in the JDK 1.2.2 release.

As the OpenCCM platform does not support OSD-based packaging yet, the packaging
was performed by simply putting all the compiled Java-classes in one Prototype. jar file.
This package was used as the basic unit when deploying components in the component
servers. The packaging was performed using the jar-tool included in the JDK environment.
In a more realistic scenario the Java-classes related to each component should be separately
packaged and zipped together with the corresponding XML-descriptors.

23

// Obtain the component server reference from the naming service
fr.1ifl.goal.OpenCCM.ComponentServer.Server server = obtainComponentServer(componentServerName) ;

// Get the ComponentInstallation interface from the component server
org.omg.Components.Deployment . ComponentInstallation install = server.provide_install();

// Install the Prototype.jar containing the prototype classes
install.install(implId, archiveURLString);

// Get a home factory from the component server
fr.lifl.goal.OpenCCM.ComponentServer.CCMHomeFactory factory = server.provide_ccm_home_factory();

// Create a home for the TouristInfoServer

org.omg.Components.CCMHome home = factory.create(
"fi.helsinki.cs.pilarcos.Prototype.TouristInfoServerHomeImpl",
"touristInfoServerHome") ;

// Narrow the home to the exact home type
touristInfoServerHome = TouristInfoServerHomeHelper.narrow(home) ;

// Instantiate the TouristInfoServer component
touristInfoServer = touristInfoServerHome.create();

// Configure the attributes of the component
touristInfoServer.debuglevel(this.debuglevel());
touristInfoServer.workMillis(this.workMillis());
touristInfoServer.sleepMillis(this.sleepMillis());

// Get the reference of the Billing facet from the Application Binder
Billing billing_facet = touristInfoAB.provide_billing();

// Connect the Billing facet to the component receptacle
touristInfoServer.connectBilling(billing_facet) ;

// End the configuration phase
touristInfoServer.configuration_complete();

Figure 3.14: Code example from a deployment application.

3.2.8 Problems related to federation management

Because the Pilarcos infrastructure services were implemented as CORBA components,
their implementation procedure was similar to the application service implementations.
There are, however, some problems related to management of Pilarcos federations which
should be pointed out (see [11] for a definition of Pilarcos related concepts).

The Pilarcos infrastructure services lift the abstraction level seen by component pro-
grammer making the business logic unaware of lower level connections, even of the CORBA
object references used and provided. It is in the responsibility of the infrastructure ser-
vices to know to which application federation each incoming and outgoing operation call
is related to and handle them accordingly.

Figure 3.15 shows an example case where a service application is connected to three
clients (on the left side) and three sub-services (on the right side). There exists an as-
sociation between each client and a corresponding sub-service, for example between the

24

Application
A->B

198
Y

Applicaioni

Binder

L] L L[]

Figure 3.15: A service federation between client A, application service, and sub-service B.

client marked with A and the sub-service marked with B. The association is established
before the service usage time during the federation negotiations. The figure also shows an
infrastucture service called Application Binder (see [11]) which is responsible for managing
the federations and their connections.

If we look at the situation from the Application Binder point of view, it first receives
an invocation from client A, identifies the sender as A and applies corresponding federation
policies to the request. It then forwards the invocation to the application service. The
problem here is that the application service must know from which client the forwarded
invocation came from and to which federation it is associated to. This information can-
not be implicitly provided to the application service without complicating the business
logic implementation, for example in a CORBA service context list. For this reason it
was decided to add an explicit attribute (ServiceContractId) to each application service
interface which identifies the related federation.

The usage of an explicit attribute also makes it easier to implement the application
service and Application Binder in a multi-threaded environment where there may be several
simultaneous client threads executing the business logic at the same time and usage of the
implicit execution context becomes complicated.

After receiving the invocation, the application service executes the business logic which,
in this case, requires usage of another application service (B). Since the business logic is
completely unaware of the underlying connections, the Application Binder must intercept
the invocation and identify that it is going to service B. In order for it to do this, the
application service must provide it the ServiceContractId attribute it received in the up-
call. In the selected CORBA component based service implementation, this requires that
the ServiceContractId is added also to the interface the Application Binder provides to
the application service.

It is worth noticing that the multiplex receptacles are not suitable for implementing the
connection between the Application Binder and the sub-services (e.g. B). This is because
the receptacles do not provide fine-grained query operations, but only get_connections
operation which returns all the connected facets with every query. Thus the Application

25

Binder keeps the object references it uses hidden in internal data structures.
Because all the actors are CORBA components the described problems become visible
in all component configurations where multi-party associations exist.

3.3 Developer experiences

The IDL3 concepts of component and component home were found to be useful when
designing CORBA based applications. Components provide a nice way to group interfaces
into implementation units and homes standardise component life-cycle management. The
ability to describe components’ dependencies on external interfaces (by defining receptacles
and event sinks) is the enabling technique for designing large and automatically deployable
component based applications.

The fact that there exists no methodology or design process for using IDL3 hampers
its usability to some degree. There also exists no long-term experience on the effects of
poorly designed components in rapidly changing systems. It can still be said that at least
in the prototyping environment the IDL3 was seen as a clear improvement compared to
conventional IDL.

The possibility to generate all necessary glue and skeleton code was also seen as an
improvement. It certainly enables new developers to start producing software much faster
than with conventional CORBA environment. On the other hand as the amount of gen-
erated code grows larger and the generation-chains get longer it becomes harder for the
developer to understand what is actually happening. The temptation of not bothering to
understand what happens “behind the scenes” grows which leaves the system more vulner-
able to possible side-effects.

Frequently changing IDL also causes problems because the changes in IDL result in re-
generation and re-implementation of the components. It is quite frustrating to have to copy
the implemented parts of the components to newly generated component implementation
skeletons repeatedly. With proper tool support the problems related to generation might
be avoided. In general the CCM programming model places more importance on software
development tools than does the conventional CORBA programming model.

The implementation of components in single threaded environments is rather straig-
forward. Adding business logic to the generated implementation skeletons is enough. In
multi-threaded environments the business logic must be made thread-safe which compli-
cates the programming task. Components can be made thread-safe by synchronising access
to important data-structures and, in some cases, synchronising operations themselves. The
thread-safety properties of the component should be explicitly stated in the component
documentation and in the component packaging descriptor.

Since the OpenCCM 0.2 includes no XML-based packaging support the packaging
model could not be evaluated. It is clear however that without sophisticated tool support
the packaging process is not very user friendly.

OpenCCM does not implement all the standard deployment interfaces nor the standard
interfaces are even enough for a full-scale deployment. For this reason the evaluation of the
deployment model usability is OpenCCM specific. What can be said about it is that the
concept of automated deployment with standard interfaces seems very promising even with
the OpenCCM 0.2 monotlithic component servers. The idea of the standard deployment
interfaces and component as a unit of deployment is perhaps the largest individual advance
compared to conventional CORBA development.

The fact that component ports are fundamentally designed for client-server configura-

26

tions was problematic when implementing federation management services as components.
Since there is no built-in support for multi-party associations the information had to be
explicitly included to the IDL interfaces.

As it is now the OpenCCM 0.2 is not suitable for commercial level usage. However,
with the major IDL and code generation bugs fixed it suits well to research and educational
purposes as well as experimental prototyping.

27

Chapter 4

Concluding Summary

CORBA Component Model specification is one of the key advances to be included in the
CORBA 3.0 standard. The specification brings to CORBA perhaps the most advanced
component model in the market.

Summary of CCM related issues

The CCM specification includes core component model (i.e. the abstract model), com-
ponent programming model, component packaging model, component deployment model,
and component execution model. The key features of each model can be summarised as
follows:

e Core component model defines the semantics of the components. IDL3 extensions are
specified for the definition of components, their communication ports, and component
managers (i.e. homes),

e component programming model defines a framework (CIF) for component implemen-
tation. The focal point of CIF is the CIDL language. CIDL is used for defining how
components interact with their run-time environment,

e component packaging model defines how components are packaged to deployment
units. Packaging model is based on XML-based Open Software Description (OSD)
model and enables packaging of single components as well as component assemblies,

e component deployment model defines how to automatically deploy and instantiate
component based applications in distributed component servers,

e component execution model describes the component run-time environment. The
run-time environment is called a container. The container provides an additional
abstraction layer above the CORBA platform hiding the non-functional aspects like
handling of CORBA services.

In addition to the CCM architecture the specification defines an inter-working architecture
with EJB 1.1.

The first published standard proposal was huge and contained many major and minor
issues to be corrected. Each model went through some changes but the most radical
changes in the finalised version are the addition of a CIF meta-model, the removal of the
component container architecture (container interfaces were not removed), and the removal

28

of packaging and deployment meta-model (XML-descriptors were not removed). Other
changes include fixes in IDL3, Interface Repository interfaces, CIDL language, component
model and its IDL mappings, container interfaces, EJB and CCM integration, packaging
and deployment XML DTDs, and component deployment interfaces.

The syntax and semantics of the CIDL language and the container interfaces were
not majorly changed even though implementation experiences point out that implemented
components are not portable across platforms from different vendors. It is assumed that
the programming model and container model will go through some iterative changes in the
future versions of the standard.

The CCM/EJB inter-working architecture has not been fully implemented anywhere,
but enough proof-of-concept exists so that it will be kept in the finalised version with some
improvements.

It took over a year before the first implementations of CCM began to show up. The
first implementation published was OpenCCM [9] from LIFL GOAL group. The first C++
based implementation published was MicoCCM [7]| from FPX. Recently implementations
from Exolab, ICMG, and CIF-project at Sourceforge have been announced and more may
be under way. All the implementations so far are in pre-alpha/alpha phases and suitable
mostly to educative/evaluative/research purposes. It is expected that the first industrial
quality implementations will be shipping in 2002/2003.

It can be said that the next couple of years in the implementation frontier are very
crucial to wide adoption of the standard.

Summary of OpenCCM features and benchmarks

As is case with all the other implementations, OpenCCM 0.2 implements only parts of
the CCM specification. Parts implemented so far are Interface Repository for IDL3, tools
for loading IDL3 files into the repository as well as tools for generating IDL and Java
files from the repository. A monolithic component server/container implementation is also
provided. In future, the platform is supposed to include support for OSD-based component
packaging, a sophisticated deployment machine, a framework for defining component based
applications, and composite, adaptive container framework. From these, the adaptive
container concept is interesting from Pilarcos point of view because it extends the CCM
container model with new concepts that might be useful in implementing some of the
Pilarcos infrastructure services.

The measurements made with OpenCCM 0.2 did not bring up anything extraordinary,
but some interesting issues were revealed. Comparison of conventional IDL to Java gen-
eration with ORBacus tools and IDL3 to Java generation with OpenCCM tools showed
that the amount of extra classes generated from IDL3 definitions is large. In case there
are a large number of interfaces and components, the management of the generated classes
becomes a problem at least without sophisticated software engineering tools. It is good
to notice that the large amount of classes is mostly due to the complex IDL3 to IDL2
mapping for component homes.

In addition to code generation measurements, the memory consumption of starting a
component platform and instantiating simple components and their homes was measured.
As the platform is implemented in Java and a JVM instance must be running in each
machine the platform is running, the memory consumption of the JVM itself gives a good
baseline for memory consumption measurements. When interpreting the results it should
be kept in mind that the JVM version and the used heap-size may greatly affect the

29

memory consumption.

Assuming the default JVM heap size it can be said that the OpenCCM 0.2 component
platform roughly doubles the memory consumption compared to the JVM instance alone.
In case of component instantiation, it can be concluded that the memory consumption
caused by adding facets to the component is minor compared to the memory consumption
caused by adding business logic to the component except for very simple applications. In-
stantiating component homes takes a considerable amount of memory and in environments
where memory is a scarce resource it might be a good idea to distribute the homes and the
components they manage to different component servers. The ability to do this depends
on the platform capabilities (i.e. support for light-weight proxy homes). In the future
releases of the platform it should be possible to instantiate needed facet implementations
on-demand without instantiating the other facets of the component. This makes it possible
to reduce the memory consumption further.

In addition to code generation and memory consumption measurements, some bench-
marks were conducted in the same environment with a client-server configuration. The
benchmarks were divided to simple marshalling and scalability tests. The average invo-
cation time with an empty operation call took less than 1ms. This illustrates the time it
takes to route the invocation from the client application to the server application. Adding
growing amounts of octet-data as a parameter makes the invocation time grow linearly. If
we would have used complex data structures like complex IDL-structs or any-values there
would probably have been additional marshalling delays involved. In any case, it can be
concluded that the marshalling delays dominate the invocation routing times.

The scalability benchmark tested what happens when several concurrent clients are
generating load to the server component with empty operation calls. The scalability tests
brought up clear differences between the different POA threading policies. The thread pool
model was clearly more deterministic and produced less variation in server throughput than
threaded model. From a performance point of view it can be concluded that if variation
in invocation times must be short and the invocations arrive in short bursts the pooled
model should be used. Otherwise a model with no thread pool is recommended because of
smaller overhead.

Summary of OpenCCM experiences

The OpenCCM platform was used to implement Pilarcos architecture in the context of a
Tourist Information Service business case.

The component concept was found to be useful both as a design concept as well as a
deployment concept. The ability to group interfaces to implementation and deployment
units and the ability to define their dependencies on external interfaces were recognised as
key benefits. In fact the idea of the component as a unit suitable for automatic deployment
was found to be the most important change compared to conventional CORBA program-
ming. The lack of concrete design methodology for CORBA components was, however, a
complicating factor.

The code generation paradigm was found to be effective especially for programmers
who have little experience in CORBA programming. When experience grows the advantage
gained gets smaller.

Because the generated parts of the implementations must be regenerated each time the
IDL definitions change, it is advisable to design the IDL to be as stable as possible. A
design /implementation cycle where IDL definitions are changed at a fast pace and in an

30

iterative manner causes extra work because the existing business logic must be copied from
the old implementation skeletons and integrated into the new ones in each iteration. This
problem exists to some degree in conventional CORBA development too, because changing
the IDL usually causes some changes to the implementations. With generated code the
problem is, however, much wider since the old implementation skeleton becomes totally
useless when a new skeleton is generated. Software development tools may decrease the
problems involved.

Adding the business logic was a rather straightforward procedure except for the fact
that components which are intended to work in a multi-threaded environment must be
programmed to be thread-safe. Multi-threading is a problem which concerns the whole
paradigm of component based development. Even if most of the technical details can be
abstracted away from component programmers, like use of connections and use of CORBA
services, the problems with concurrent execution of multiple threads can not be. The
thread-safety of a component must be clearly stated in its documentation in order for it
to be safely used.

Finally, since component ports are fundamentally designed for client-server associations
and component receptacles lack introspection capabilities it is difficult to implement multi-
associative services, like federation management services, as CORBA components.

Concluding words

CORBA Component Model is the most sophisticated component model in the market and
despite the delays in its finalisation work still holds great potential. In order for the CCM
model to gain success in the future following key requirements must be fulfilled:

e Mature, industrial strength implementations must be available relatively soon,
e interworking capabilities with other technologies must be improved,

e the poorly standardised parts must be rapidly improved,

e no more fundamental problems should be discovered.

Even if all these requirements are met, the popularity of the CCM model will ultimately
depend on the limits of the existing, first generation, component models. It cannot be
assumed that CCM will replace existing technologies, like EJB, in the current application
environments, but its main strengths are in (future) application scenarios which are beyond
the reach of existing technologies.

31

Bibliography

[1] CIF-CCM web-site. http://sourceforge.net/projects/cif/.
[2] IONA / ORBacus web-site. http://www.ooc.com/ob.
[3] K2-CCM web-site. http://www.componentworld.nu/corp/ccm/ccm.overview.asp.

[4] KuTvOoNEN, L., HAATAJA, J., SILFVER, E., AND VAHAAHO, M. Evaluation and
exploitation of CORBA and CCM technologies. Tech. rep., Mar. 2001. C-2001-11.

[5] KuTvoNEN, L., HAATAJA, J., SILFVER, E., AND VAHAAHO, M. Pilarcos architec-
ture. Tech. rep., Mar. 2001. C-2001-10.

[6] MARVIE, R., AND MERLE, P. CORBA Component Model:
Discussion and Use with OpenCCM. Tech. rep., June 2001.
http://corbaweb.lifl.fr/OpenCCM /docs/2001__06_ Informatica.ps.

[7] MicoCCM web-site. http://www.fpx.de/MicoCCM.

[8] OBJECT MANAGEMENT GROUP. CORBA Component Model - Volume 1. Framing-
ham, MA, USA, 1999. OMG Document orbos/99-07-01.

[9] OpenCCM web-site (LIFL). http://www.lifl.fr/OpenCCM.
[10] Open web-site (Exolab). http://openccem.exolab.org.

[11] VAHAAHO, M., SIiLFVER, E., HAATAJA, J., KUTVONEN, L., AND ArLANKO, T.

Pilarcos demonstration prototype — design and performance. Tech. rep., Dec. 2001.
C-2001-64.

32

