DEPARTMENT OF COMPUTER SCIENCE
SERIES oF PuBLicATIONS C
REeEporT C-2001-NN

Pilarcos architecture

Lea Kutvonen, Juha Haataja, Egil Silfver, Markku Vih#daho

UNIVERSITY OF HELSINKI
FINLAND

DEPARTMENT OoF COMPUTER SCIENCE
SERIES oF PuBLicaTIONS C
REPoRrT C-2001-NN

Pilarcos architecture

Lea Kutvonen, Juha Haataja, Egil Silfver, Markku Vih#daho

UNIVERSITY OF HELSINKI

FINLAND

Contact information

Postal address:
Department of Computer Science
P.O.Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki
Finland

Email address: Lea.Kutvonen@cs.Helsinki.FI (Internet)
URL: http://www.cs.Helsinki.FI/
Telephone: +358 9 708 51

Telefax: +358 9 708 44441

Computing Reviews (1998) Classification: C.2.4., D.2.0
Helsinki 2001

Pilarcos architecture
Lea Kutvonen, Juha Haataja, Egil Silfver, Markku Vihidaho

Department of Computer Science
P.O. Box 26, FIN-00014 University of Helsinki, Finland
Lea.Kutvonen@cs.Helsinki.F1

Technical report, Series of Publications C, Report C-2001-nn
Helsinki, March 2001, vi + 66 pages
Abstract

The PILARCOS project develops middleware solutions for automatic management of
interorganisational applications. The project works at three fronts:

e architecture development for a federated environment where applications are con-
structed based on architecture descriptions populated by traded components;

e prototyping in CORBA some essential middleware services required for global
negotiation of federations and instantiating architectures; some of this work con-
tributes to the further development of common CORBA services; and

o designing an ODP viewpoint based software engineering process and tool that
interfaces with the middleware repositories of the runtime environment.

This report describes the middleware architecture supporting interorganisational applic-
ations and their distributed management, and gives an overview of the related software
engineering process.

The runtime support for applications and the software engineering process become
intertwined through middleware repository services appearing in both environments.

Computing Reviews (1998) Categories and Subject Descriptors:
C.2.4 Computer-communication networks: Distributed Systems
D.2.0 Software engineering: General

General Terms:
Design, Experimentation, Standardisation

Additional Key Words and Phrases:
Software system architectures, federated systems, software engineering, component
models

Acknowledgements

This report is based on work performed in Pilarcos project at Department of Computer
Science at University of Helsinki. The Pilarcos project is funded by the National Tech-
nology Agency TEKES in Finland, together with Nokia, SysOpen and Tellabs. Plenty
of the ideas behind this research are encouraged by discussions within and around the
ODP standardisation work.

Helsinki, March 2001

Lea Kutvonen

Contents

Introduction

Open system framework
2.1 Sovereign systems and federation 00000
2.2 Federable system architecture
2.3 Application programming interface L0000
2.4 Extensions to some basic concepts
2.4.1 Services and interfaces
2.4.2 Type and template
2.4.3 Binding lhaisons and channels 0000
2.5 Scenario for accessing business services L.
2.6 Business service deployment process L.
2.7 Management aspectso
2.8 Summarising the federated service acquisition process
2.9 TInteraction between service design, deployment and exploitation aspects

Software engineering with ODP viewpoints

3.1 Overview of ODP viewpoints

3.2 Brief tutorial on ODP viewpoints 0L
3.2.1 Enterprise viewpoint Lo
3.2.2 Information viewpoint oL
3.2.3 Computational viewpoint Lo
3.2.4 Engineering viewpoint oL oL
3.2.5 Technology viewpoint,

3.3 Interpreting viewpoint correspondences L.

3.4 Software engineering processes for the Pilarcos architecture

3.5 Thetoolset
3.5.1 Enterprise viewpoint editor and analyser
3.5.2 Computational viewpoint editor and analyser
3.5.3 Engineering viewpoint editor and system composer
3.5.4 Viewpoint correspondence tool L.
3.5.5 Management tool Lo

10
11
11
13
13
16
17
18
19
21

vi CONTENTS

4 Infrastructure services 37
4.1 ODP infrastructure model from engineering viewpoint 37
4.2 Using and extending the ODP reference model 42
4.3 Business service deployer00 43
4.4 Application component deployer 45
4.5 Binding factoryo o 45
4.6 Binding components L0 46

4.6.1 Application binder oL Lo o 46
4.6.2 Channel controller o 48

4.7 Repositorieso 49
4.7.1 Business service brokerage oL oL 49
4.7.2 Policy repositoryo 50
4.7.3 Design repositoryo 51
4.7.4 Computational component assembly trader 52
4.7.5 Typerepositoryo 53
4.7.6 Common storage service for repositories 54
4.7.7 Business type repositoryo o 95
4.7.8 Component assembly repository 55

4.8 Management services 56
4.9 Development issues oL 56
5 Conclusion 59

References 61

Chapter 1

Introduction

The current trend in information technology is going towards global systems, inter-
organisational cooperation, and markets of independently developed components for
improved productivity in IT system development.

The variety of component based global systems are of interest here, as well as mul-
tiple aspects of them. For example, open virtual enterprises like

e virtual businesses;

e ad hoc groups between people in the large network environment formed by user
request;

e ad hoc platform support for mobile computing units to reach their home units
that reside at remote servers; and

e ad hoc platform support for ubiquitous computing units to services local to each
visited physical environment

involve series of establishment and management problems. Further, software engineers
can put together a new application from purchased components either in local software
engineering projects or in projects that span multiple organisations. The interesting
themes also include marketing aspects like outsourcing and leasing of business services
between companies. Topical terms are ASP (application service provider) and peer-to-
peer computing.

Following up this trend requires

e evolution of open service markets both for business services and for computa-
tional components; these markets should become an integral part of the global
computing infrastructure. Achieving this requires some major development in
terms of joint understanding on the reasonable structure of service markets and
development of open distributing computing platforms to support these markets.
Furthermore, the computational components should be consistent with a shared
engineering architecture; the requirements of such architecture are discussed later
in this paper.

2 1 INTRODUCTION

e evolution of organisation wide management tools that allow business and comput-
ing policies to be administered in a consistent and efficient way; the management
information must be inherited by all of the organisations applications and infra-
structure services and also used for agreements on inter-organisational coopera-
tion. The management tools require that the computing infrastructure and the
applications are structured in an appropriate way.

e promotion and further evolution of global infrastructure services that support
inter-organisational cooperation routines, like checking semantical and technolo-
gical capabilities for cooperation, negotiating on decisions dependent on organisa-
tional policies, accessing business service markets, and selecting suitable compu-
tational components for a task.

e evolution of software architecture that binds together the requirements of service
and component markets, infrastructure services and organisation-wide manage-
ment needs.

e evolution of software engineering tools that produce components with the above
mentioned architecture view and insert the components to the global markets.

The Pilarcos project works towards these goals by developing middleware solutions
for automatic management of interorganisational applications. The name Pilarcos is
an acronym for Production and integration of large component systems. The loose
term "large system" is used for systems spanning multiple administrative domains, like
organisations; the owners and thus goals of the systems involved differs but still they
have mutual interest and are technically interoperable.

The project works at three fronts

e architecture development for a federated environment where applications are con-
structed based on architecture descriptions populated by traded components;

e prototyping in CORBA some essential middleware services required for global
negotiation of federations and instantiating architectures; and

o designing an ODP viewpoint based software engineering process and tool that
interfaces with the middleware repositories of the runtime environment.

The middleware architecture for a federated environment exploits three levels of
abstraction. On the topmost level, the interorganisational applications are captured by
business architecture descriptions spanning across organisational boundaries. The ser-
vices provided by each participant are independently supported by each partner. The
second level captures into a design description how the computing is actually organised.
The design is populated by component assemblies that implement the service. The as-
semblies form the third level. The entities at this third level are technology and platform
dependent whereas all other levels are technology independent. The topmost population
process of the business architecture description manages dynamic federations between
autonomous organisations with differing evolution cycles and policies; the design pop-
ulation process manages technology domain boundaries and efficient reuse of existing
components.

The infrastructure ideology behind this project is that of ODP-RM (open distrib-
uted processing reference model) [10, 11, 12, 13, 17]. The middleware services exploited
include traders, type repositories, federated binding mechanisms. Traders are used
to mediate metainformation about available service providers in the global network,
grouped by service type that indicates common basic behaviour of the services. Type
repositories manage information about known service types and thus help traders in
their tasks. Type and type relationship information is also used for bindings between
objects in the global system, for runtime check of type conformance of partner’s in-
terfaces for communication. Federated binding mechanism produces a communication
channel between objects in separate, autonomously administered domains. This re-
quires interworking of the negotiation protocols that select suitable components at each
domain for the communication.

Also, the software engineering tools to be tried out are based on the ODP view-
point languages. The first design considers only tools for entering enterprise and com-
putational viewpoints into the repositories and exploiting those descriptions within the
runtime system. Special interest is focused on ODP enterprise language that gives some
guidelines for the two architecture description levels, and the two population processes
mentioned above.

Essential for Pilarcos architecture is that the runtime environment and the software
engineering tools use shared middleware repositories. Thus, the two environments be-
come intertwined and give strong support for the service and component marketplaces
aspired.

The practical pilots to be used for evaluating the feasibility of the architecture and
promoting the ideas are based on OMG technologies, especially CORBA [32], CCM
(CORBA Component Model) [37], UML [34], and MOF [35].

This report describes the open federation framework in Section 2, the related soft-
ware engineering process in Section 3 and explains how the framework mixes the design,
deployment and exploitation epochs of a service life-cycle together in Section 2.9. These
sections show how the Pilarcos framework supports federation (dynamic cooperation
establishment between organisations), exploits component markets, and support auto-
mated and adaptive service deployment. As a more concrete representation, the infra-
structure repositories and middleware services exploiting them are briefly reviewed in
Section 4.

Chapter 2

Open system framework

The goal of the open system framework 1s to support automated deployment of busi-
ness services and automated federation establishment governed by the policies of each
involved sovereign system.

This section discusses the basic principles of the open system framework, in terms
of portals for accessing business services, the deployment process of a business service,
and the concepts of federation required for interorganisational cooperation.

The framework is based on the idea of separating out role based architecture de-
scriptions and objects that can be plugged into the roles through a selection process
with meta-information available on the objects.

The framework heavily builds on logical, widely understood types (predicates on
objects) to negotiate contracts and map the contracts to real implementations separately
and independently on each platform. Interoperation is guaranteed by the shared logical
contract.

Here, objectis a very scalable term in the ODP reference model sense, capturing any-
thing ranging from a single variable to a full featured IT system. Interesting examples
of objects are CORBA components and CORBA component assemblies.

2.1 Sovereign systems and federation

Federated systems are composed of sovereign systems that include middleware for in-
teroperability support.

A system is considered to be sovereign when 1t has an autonomous administration. In
a sovereign system, decisions — for example on system architecture, services supported,
programming and interface definition languages, remuneration, authorisation policies,
and communication protocols — can be done independently from any other systems.

Interoperability support includes mechanisms that negotiate about the shared cap-
abilities of the systems and establish an interoperation relationship at system run-time.
Such mechanisms are needed in a multi-organisational environment because the inter-
acting objects cannot inherit properties that would ensure interoperability.

Cooperation ability between objects located to separate sovereign systems becomes
separated to two concepts: interoperation and interworking. Interoperation between

6 2 OPEN SYSTEM FRAMEWORK

(application) objects means that the supporting infrastructure manages aspects arising
from system sovereignty. In an interworking relationship the objects need to manage
those aspects internally.

The characterising goal of federated systems is to enable world-wide information
service systems, but still allow each member system to offer a localised computing
environment for the end-users. A shared goal with the traditional distributed system
evolution is the inclusion of new technology, like mobility, multi-media streams, and
multi-party communication relationships.

We consider a federated system to be a community of federable systems that dy-
namically enter and leave federations.

Federation is a state of agreement between two or more systems about interop-
eration. Federations can be established and terminated during the operation of the
systems. The federation agreement covers general communication related aspects, such
as protocols and locations of interfaces, and service specific aspects, such as quality of
service contracts.

A federable system is a sovereign system that contains middleware services that
support federation establishment and management.

The goal of the federated system model is to improve the facilities for accessing
services (not servers) from computing systems belonging to other organisations. Feder-
ation can be established between such systems that include similar facilities and that
are allowed to federate by their owners. There is no predefined shared goal for the
joint operation nor a shared control for the joint operation, but clients at any federable
system can request services that are eventually performed at another federable system.

Composition of a world-wide system involves interconnection of the independent
systems. The scope of potential federations is determined by the amount of common
communication facilities and the amount of applications that are suitable for coopera-
tion. A fully connected communication network between the federable systems is not
necessary, as all services are not used at all federable systems and in some cases an in-
termediating system can be used. Furthermore, reachability of individual servers from
all locations is not an objective. Therefore, practical limitations of interconnectivity
do not invalidate the model. However, the communication services across the feder-
ated system should be able to join various communication technologies. For example,
the communication services should be able to adapt the failure detection and recovery
mechanisms to fixed and mobile networks.

In the world-wide federated system, it is not reasonable to expect that all organisa-
tions would offer a similar computing platform or application repertoire for their users.
Instead, each organisation should be allowed to offer localised interfaces. We can adopt
the concept of personalisation (from the context of micro-kernels [22, 41]) as a design
pattern that separates the actual execution of services from the mechanism through
which the users exploit the service. In the federated system, we allow transformation of
generic service concepts to a local representation format at each member system. Such
an architectural opportunity is beneficial for vendor competition as well: The vendors
of federable system platforms and applications are granted a possibility of commercial
competition with their products within the federated systems.

The federation management mechanisms are easier to build if federations are not
established between whole systems but per individual services. Each service federation

2.1 Sovereign systems and federation 7

can be established independently and the federations can be reconstructed whenever
changes at the services or service implementations are introduced. The service-wide fed-
erations require standardised contract schemata. Such work has already been initiated,
for example within the business object modelling special interest group (BOMSIG) of
OMG [30].

We introduce a federated system application architecture that contains sovereign
objects establishing liaisons, i.e. contractual relationships, among themselves. The li-
aisons ensure that the interacting objects are technically able to exchange information
and perform services for each other in a semantically consistent way. The technical cap-
abilities are controlled using meta-information about the objects. The meta-information
is maintained by platform level services.

Figure 2.1 illustrates the global system view where each service is essentially formed
by application level objects and platform level objects. The properties of platform
level objects effect essentially the interconnectivity potential of an application object,
and thus platform objects must be included in the global system view. In distributed
systems, the network of platforms is homogeneous and fully connected, and the global
system view can be abstracted to contain only the application level objects. In feder-
ated system model, the interconnectivity and heterogeneity of the platforms must be
considered. The federated system global infrastructure may consist of a set of distrib-
uted systems. The network of platforms is not fully connected. Instead, it obtains a
shape depending on the shared protocols, the awareness of other systems, and the au-
thorisation of remote users at each individual system. We can consider each federable
system as an independent management domain [39].

R Service R~
application iai application
jaison
environment
liaison
infrastructure
platform platform global
liaison infrastructure

Figure 2.1: Global system view of federated system.

Examples of typical federated system applications include services for electronic
commerce, i.e., authentication, billing, payment, and retail. Some services common
in distributed systems, like distributed file systems or global naming services, do not
appear as joint services of the federated system. Instead, such services can be supported
by the federated systems and federated at will.

Typical federated system platform services include those of distributed system plat-
forms, but especially additional services like trading, type repositories, federated binding
management, and federated naming services. These services represent meta-information
services fundamental for federated systems, and services that exploit meta-information
for creating object federations. Some platform services are federated by nature them-

8 2 OPEN SYSTEM FRAMEWORK

selves. These services are further discussed in Chapter 4.

Currently, there are not yet any federated system implementations. However, ex-
amples of federated system characteristics can be found in TINA, CORBA, and ANSA
systems.

The open system framework is supported by a set of new infrastructure services, i.e.,
middleware functions and repositories. The essential benefits of these services become
understandable only through the understanding of the enhanced basic concepts induced

by the ODP reference model.

2.2 Federable system architecture

From the point of view of the run-time structure, the architecture of a federable system
in Pilarcos has three levels. In this section, we introduce these levels and present their
the run-time function along with their connection to the ODP software engineering
viewpoints (subject of Chapter 3).

The levels of architecture, illustrated in Figure 2.2, are

e the business architecture, which describes combinations of services possibly span-
ning multiple organisations;

o the design of a service, that is, its computational architecture; and

o the component assemblies that are used to implement the design.

Business architecture
(scheme for co—operation
of services)

/ N q\ Assignment

Design (computational
architecture of a service)

/ ' | Assignment
Component assembly
(concrete implementation of
a computational component)

Figure 2.2: Levels of architecture in Pilarcos systems.

2.2 Federable system architecture 9

The topmost level, the business architecture, is an ODP enterprise viewpoint de-
scription of a possible cooperation scheme in which federable systems may participate.

In ODP enterprise language terms, a business architecture is a community specific-
ation. The essential content of such a specification is a contract about the cobehaviour
of the community:

e the community structure as a set of roles;
e interactions between the roles; and
e assignment rules for objects into the roles.

Each role in the community specification denotes a possible behaviour. The be-
haviour descriptions are refined with policy statements indicating which parts of the
behaviour are prohibited, permitted or obliged to take place and under what conditions.
Roles themselves can represent further communities, enabling compositionality.

The ideas of roles as placeholders and assignment rules for constraining the pop-
ulation of roles are fundamental to the role-based architecture model used in Pilarcos.
The choice of objects to fulfil the roles can be done at design time, but can equally
well be deferred until run time. The choice of objects to fulfil the roles can be done
by the designer with assistance of a tool or automatically by the infrastructure services
at run time; in either case, the assignment rules guide the process. This role-based
architecture model enables the objects to be developed and re-used independently, a
model naturally suitable for federable systems.

In business architectures, the roles are placeholders for business services. These
business services should accomplish significant business tasks and they should be tech-
nology independent. Upon a service request, suitable services for fulfilling the roles
are found from the dynamic service market supported by business service traders or
brokers. This is discussed further in Section 2.5.

The business architecture is used for ensuring that the service providing parties
agree on the task to be performed. Tt can be seen as denoting workflows (for example,
[36]) within and between organisations. Since the business architecture is used as the
common semantic basis for negotiating about business services, the negotiating parties
must have a shared or mappable view of it. This is achieved by storing the architecture
descriptions in a business type repository (Section 4.7.6).

The business architecture related to a service should be defined so that it only
includes the roles and interactions that all participants must know of. For instance,
the implementation of a service within an organisation can involve an internal business
architecture, but this internal architecture should be separate from the publically used
architecture. Note that a client requesting a service occupies a role in the business
architecture just like the servers; the only difference between a client and a server is
that the client makes the initiative for the particular interaction.

Designs describe the platform-independent computational architectures of the ser-
vices that are visible in the business architecture. While a business architecture poten-
tially spans multiple organisations, a design represents the implementation strategy of
a service within an organisation. A design is an ODP computational viewpoint descrip-
tion, and 1s related to the business architecture by the correspondence rule stating that

10 2 OPEN SYSTEM FRAMEWORK

exactly one design must be chosen to fulfil a business role. The chosen design matches
by its externally visible interfaces to the business role that it implements.

The role-based architecture model is used in Pilarcos not only on the business archi-
tecture level, but also on the design level. The placeholders for component assemblies
in the design are analogous to business roles. Each placeholder must be filled by one
component assembly. Using component assemblies instead of individual components as
atomic building blocks makes it possible to integrate legacy components in the system
by embedding them within the assemblies. As physical implementations, the compon-
ent assemblies are platform-dependent, unlike designs and business architectures. Like
designs, the component assemblies are also selected and instantiated at run time by the
infrastructure services.

The interactions between component assemblies are captured as bindings (Sec-
tion 2.4.3). Bindings are also instantiated at run time. Designs can contain both
local and federated bindings, of which the latter are used for interorganisational inter-
actions. In business architectures, the interactions between roles set requirements for
the corresponding bindings on the design level.

2.3 Application programming interface

The federated system architecture is too demanding for programmers to tackle without
proper support. We need to raise the level of abstraction seen by users and providers
of services in a federated environment, and free programmers from having to explicitly
deal with the technical issues involved in federation.

A central concept in the federated environment is that of service. Here, the term is
used of both business level and design level services. They differ only by their level of
abstraction; the underlying concepts and the supporting mechanisms are the same. In
the Pilarcos environment, services are identified by type, not by name. Thus, the service
implementations that an application uses are not fixed, but can instead be selected at
run time with support from the infrastructure services.

In addition, the client and server views of the service interface need not be identical
or based on a common inheritance hierarchy; the infrastructure services are able to
automatically match the interfaces using appropriate interceptors. This is discussed in
Section 2.4.1. These ideas facilitate the independence of clients and service providers,
a key theme in Pilarcos. Combined with proper encapsulation of components, this
makes it possible for parts of an application to evolve independently, bringing a level of
flexibility also to the software engineering process within an organisation.

To the application programmer, the Pilarcos framework provides a generic program-
ming interface through which services can be invoked. The exact form of the generic
interface depends on the language and technology used. Federation transparency is
achieved by using the same interface for both design and business level services, whether
local or federated.

When making a service request, the client specifies the service type, criteria for
the service such as QoS properties, the business architecture or design involved, and
the roles of the client and the service within it. The service type is a classifier for
services. In addition to the functionality, it also specifies the framework of quality of

2.4 Extensions to some basic concepts 11

service parameters related to the service. A service type is not tied to any one role
in an architecture nor to a specific implementation, but can be used in several role
specifications and have multiple implementations.

Service requests are received and handled by an application binder, a local sup-
porting infrastructure object. The process is described in Section 2.8. All component
assemblies have an application binder, which is their single point of access to the outside
world and can thus control and enforce contracts and policies (Section 4.6.1).

The bindings between communicating parties are implicit: the programmer does
not need to construct any part of the communication channel explicitly. Thus far, only
primitive bindings (direct communication between two parties using a simple transfer
protocol) have been provided in implicit form. Complex bindings, for example those
for group communication or involving QoS control, have required explicit programming
within the application. In the Pilarcos framework, even complex bindings are implicit.

Although the service usage model presented here may make the construction of
simple applications somewhat more complicated than before, it greatly eases the task of
developing and maintaining complex applications, making federated systems practicable

to build.

2.4 Extensions to some basic concepts

The federated system model requires a more rigorous set of concepts for maintain-
ing interactions between objects than traditional distributed systems. In a federated
environment, objects cannot have inherited information about the behaviour or com-
munication capabilities of each other. Instead, each object of a sovereign system must
explicate its properties and negotiate about the federations to be entered.

2.4.1 Services and interfaces

Federated systems are basically founded on the concept of service. In order to facilitate
federation negotiations, the views of the same service are separated based on whether
a service is supported for others to use, or whether a service is requested.

A service denotes a behaviour that can be invoked through an object interface. For a
client, the service concept denotes a functionality that can be performed by its system
environment. For a set of service providers, the service concept denotes a potential
sequence of interactions that may be performed as a result of a defined signal from the
client. The sequence of actions is governed by agreed policies on the joint behaviour
of interacting object and the state of system environment at the time the service is
performed.

For traditional distributed systems service is usually considered to cover only a
description of interface structure. The service definition above captures the interface
description as one of the items involved, but enhances the concept further to include as-
pects that are interesting for the organisations. The organisations consider the services
also from the point of view of merchandises. Thus, quality of service, remuneration,
and monitoring of the actual behaviour against the liaison become interesting. Further-
more, the definition requires that we promote interfaces to capture object behaviour in

12 2 OPEN SYSTEM FRAMEWORK

addition to the interface structure. Behaviour can have either operational or stream-
exchanging semantics, as defined in ODP reference model.

Federation establishment mechanisms also require the refinement of interface
concept. In the object models characteristic to distributed systems, the interface is
the abstraction of functionality that is shared between the communicating objects. In
a federated environment, the existence of such shared knowledge cannot be assumed.
Instead, all objects have their private views to any interfaces and services. A commonly
used interoperation scenario is that of a client and a server object. For those objects
we can define a client-role interface and a server-role interface. When one of these in-
terfaces is expected to receive a signal (e.g., operation invocation delivery), the other
one should include statements of sending the corresponding signal. If the interfaces do
not match perfectly, but are reasonably similar, the objects can still interoperate, but
via an interceptor that transforms the signals while they are transported between the
interfaces.

Thus a client role interface denotes a requester view to a service. A client role
interface definition expresses the client’s assumptions and restrictions on the service
type and the access technology for a requested service. Similarly, a server role interface
denotes a supporter view to a service. A server role interface definition expresses an
implemented service type and required access technologies for the supported service.

In order for the sovereign systems to negotiate about cooperation, the views to
offered and requested services have to be captured. Therefore, a service offer defines

e the type of server interface supported by a set of objects,

o the service properties in terms of quality of service, and

o the conditions under which the advertised properties are expected to be valid.
Likewise, a service request defines

e the type of client interface supported by the requesting object,

e the service properties expected in terms of quality of service, and

e the requirements for the validity of the advertised properties in an acceptable
service offer.

For communication to take place through the client’s and server’s interfaces, the type
conformance of these two need to be tested. Even, when the two are not identical, there
can be ways of intercepting the two to match to each other for successful communication.
A mechanism called type repository is used for checking the type conformance, and to
suggest the required interceptors.

These service offers and service requests are mediated through trading mechan-
isms between organisations and between technology domains within organisations. The
matching offers and requests form service contracts that are used for construction of
liaisons shown in Figure 2.1. How this happens in practice is described in Chapter 4.

Although the Pilarcos project concentrates on the effects of federation on operations
only, the contract model is equally valid and directly usable to streams too. Existing
work on quality of service and stream binding are considered and consistent with this
work.

2.4 Extensions to some basic concepts 13

2.4.2 Type and template

All the above definitions use the term ‘type’ when referring to interfaces or services.

According to ODP reference model, a type is a predicate over an object [11,
clause 9.7]. An object is of a given type if it fulfils the predicate, irrespective of how
the object was created. The concept of type is very general and can be specialised in
many ways to form various type hierarchies. Types are used for reasoning and verify-
ing properties of objects, i.e., in the trading and binding processes. Suitable examples
of types include "requires CORBA platform", and "supports banking operations for
opening and closing accounts".

Types are not sufficient for execution of services, though. Templates [11, clause 9.11]
are more constructive by nature and are used for instantiation. For example, program
code can be considered to form an object template.

The concepts of templates and types are independent of each other: having a com-
mon template does not induce being of the same type, and especially, being of the same
type does not induce a shared template. A template is a type that is suitable for object
creation 1n a given environment.

In a federated environment, the service liaisons must be based on the type con-
formance of their interfaces. For the creation of objects templates are used. Object
templates are private for each platform architecture.

Types need to be mapped to templates during service deployment and binding es-
tablishment. Type repositories are used for storing the relationships between types,
between templates, and between types and corresponding templates. At system design
time, or at the time of introducing new building blocks for systems, templates are bound
to existing type definitions, or even, new type definitions are introduced. At system
usage time, types can be used for global negotiations and the result can then be locally
mapped via the type repository to templates. The templates are in this way independ-
ently selected for each participating system, and heterogeneous configurations can be
automatically managed.

The relationship between objects, types, and templates has been interpreted slightly
differently in different contexts [15, 33, 19]. Most systems do not separate the concepts
and furthermore trust on inheritance hierarchy as the only means for subtyping.

2.4.3 Binding liaisons and channels

A binding process facilitates signalling between object interfaces. In a centralised envir-
onment, the result of binding is that the objects are able to address each other. In a
distributed environment, binding of object interfaces makes not only the objects aware
of each other’s interface locations, but also creates a communication channel between
the interfaces. In other words, a configuration of marshalling and transmission software
objects is created and the required resources for the communication are reserved.

We can abstract the binding process a step further. We can define the result of
the binding process, from the point of view of the communicating partners, to be a
binding liaison, that ensures that a communication channel can be created between the
communicating objects [17]. Thus, the time for configuring the objects involved and
the resource reservation can be optimised based on communication load.

14 2 OPEN SYSTEM FRAMEWORK

A binding liaison 1s a context where the shared facilities supporting the client and
server role interfaces have been selected and will be deployed.

The binding liaison has two states; one in which the binding contract has been
agreed, and one in which the agreement has taken a concrete, resource consuming
format and a communication channel has been established.

From the point of view of the system that supports the binding liaison, a concept
of binding type is of interest.

Binding type [17, 5, 4] defines the communication partners, the roles of each par-
ticipating object and the number of roles in the group. Binding type also specifies
the behaviour rules for the group. For example, it defines what transparencies are as-
sumed, how a failure is determined and what kind of security functionality is included.
From these concepts enough technical detail can be generated within middleware to
create a full blown communication channel between a group of application objects.
The supporting services of the communication relationship must use the binding type
as a specification of the necessary channels between the involved objects. Also, the
end-points of the channels must conform to the interfaces of the involved application
objects.

The binding is realised by a channel formed by a set of independent channel sections
and a channel controller that carries the binding liaison information even when the
channel sections are not present. The number of channel sections involved and the
interface types supported at each channel end-point is dependent on the binding type.

A channel is a configuration of intermediate objects that are able to route signals
(operation invocations, terminations, flow signals) from one application object to an-
other. A channel is composed of traditional objects, like stubs for marshaling, binder
objects for controlling the channel connectivity, and protocol objects for data transfer.

When the location of the channel objects within administrative domains is con-
sidered, the channel structure as a set of independent channel sections becomes visible.
Each section has an endpoint at an application object, and another endpoint present-
ing an external low-level access point for communication with objects in other systems.
Each section is managed within a single administrative domain. The channel controllers
interwork in order to gain control over the whole channel.

The actual channel structure varies depending on which distribution transparencies
are selected by the user, and which communication protocols are in use. The actual
channel structure varies also depending on the platform architecture and administrative
rules on the systems that support partial channels.

The channel objects can be selected at run-time, instead of compilation time as in
many RPC implementations. Also, several stubs can be active concurrently, using the
same protocol link underneath. Separate concurrent protocols for channel objects are,
for instance, group management [38], and QoS management [42]. In a general case,
the stubs are not self-sufficient, but require services from management functions like
authentication services [21].

The end-points of the channel are determined either by the binding initiator or the
binding process itself| i.e., the interfaces to be interconnected can be either identified or
searched based on their properties. This also means, that the computational interfaces
are bound together, instead of creating a channel between the technical addresses at
which the interfaces are initially located. A channel does not necessarily form a static

2.4 Extensions to some basic concepts 15

circuit through the network; a channel can be based on connectionless protocols.

The role of the channel controller is dependent on the binding type selected by the
object requesting to be bound to other objects. For instance, the channel controller may
monitor the membership of the binding liaison and act as a leader in failure detection
protocols.

The channel controller allows the channel configuration and parameters to be mod-
ified during the service liaison duration. Changes can involve, for example, multi-cast
group members or timeout values when a fixed network line is switched to a mobile
network line. A channel controller is a direct client to all of the channel object’s man-
agement interfaces, and therefore it offers a combined control interface to all of them.
The channel controller has a specific object at each domain, and those objects may
cooperate in order to offer a joint binding liaison management service.

Channel management actions can occur because initiated by management requests
arriving to the channel controller interfaces or because of internal events of the channel.
For example, if a breach of the binding liaison occurs, the channel may be reconfigured.
It should be noticed that the breach may be related either to the federated application
or to the virtual platform supporting the application federation. In the latter case, the
application federation can be retained and reconfigure only the lower service layer. This
means that the channel type is retained but the instances for it are replaced.

The binding liaison information is captured to a binding contract object that is
replicated to each of the sovereign systems involved. The binding contract object is en-
capsulated into the channel controller and thus managed through the channel controller
interfaces. The binding contract supports the following information for controlling the
architecture and design level aspects:

e a service type identifier (for each type system involved),
e service type specific QoS agreements,
e a business architecture identifier,

e a role identifier within that business architecture,

the selected design for that business role, and

the role (component placeholder) identifier within that design. Reference to the
policy context becomes identified with the last four items.

Further, the binding contract supports the following information for controlling the
channel:

e a binding type identifier (for each type system involved),

¢ binding type specific failure detection and recovery protocols, failure defined as
not being able to meet the QoS agreement,

e remuneration protocol,

o technical descriptions for interface signature expected by the client (can be differ-
ently selected at each sovereign system),

16 2 OPEN SYSTEM FRAMEWORK

e communication protocol,
e channel type identifier (for each type system involved), and

o interface reference for the channel controller (separately for each sovereign sys-
tem).

The binding contract information is replicated in each of the objects involved in the
liaison. Because the interfaces can reside at separate systems, the data representing
the contract information may have different local formats and coding. Each object can
use the local copy of the binding contract as policy information or parameters to its
internal activities. This mechanism can be used to provisioning of the binding contract
as part of the object behaviour (see [27] for an example).

The ODP reference model discusses various forms of bindings, i.e., sitmple and com-
plex bindings and implicit and explicit bindings.

The complex bindings differ from simple bindings in several key points. A simple
binding is a direct one-to-one communication channel between two operational interfaces
where no management operations on the communication channel are supported. A
complex binding involves more complex mechanisms. First of all, complex bindings
cover not only operational interfaces but also stream interfaces (continuous media),
and allows multiple participants to be bound together. Furthermore, a complex binding
supports interfaces for managing the communication channel during its life time.

Traditionally, a simple binding has been supported by implicit binding mechanism
- the communication channel is established as part of the operation call performance.
However, there has not been implicit support for complex bindings; applications need
to create the communication channels themselves and take care of the management
operations as well.

2.5 Scenario for accessing business services

Let us consider a scenario where an organisation supports a portal. Through the portal,
clients can access — in a tailored way — a set of business services. Behind the portal
interface there is an infrastructure that dynamically deploys the objects comprising the
requested service and tailors it according to the client preferences. The portal can be
represented by a business service trader or a business service broker.

The parties in this scenario may be complex; the organisation behind the portal
can be a virtual company comprising of various autonomous organisations, likewise the
client can be a requester on behalf of a large software setup performing duties of a
business service.

The services fulfilling the business architecture are found via the service markets
supported by business service traders or brokers. The main difference between traders
and brokers is in the amount of responsibility over the mediated services taken, level of
automation in the selection process, and the capabilities of marketing combinations of
services with independent origins.

Business service brokerage is a business of its own right; location and number of such
services is guided by market forces. The broker has responsibilities over the quality of
the mediated services, and the negotiation between clients and brokers is manual. The

2.6 Business service deployment process 17

negotiation involves a business contract that does not participate any computing tasks,
but in text form sets obligations for the involved companies about the computing task
in question. The broker also provides technical information about the contracted task.

Trading implements a simple, automated business contract negotiation. The pro-
tocol involves only a trading request parametrised by a contract draft describing the
needs and properties of the client, and a reply with a set of potential contracts filled
with service provider information. The trader does not need to know which one of the
contracts the client picks - that is part of the federated binding process explained later.
The business contract captures the business architecture, which is required to force a
matching ontology to be used by both service provider and user. Additional services can
be involved into the contract - like billing for the service or checking for authorisation
of using the service. For checking the technical suitability of a business service, the
contract must include also technical interface information.

Matchmaking between the client request and the services offered through the portal
is based on

e a business service description that expresses what kind of service is requested
and how the negotiators see the workflow related to that service to involve the
communicating parties;

e a technical interface through which the client is prepared to communicate in its
role within the business service;

e business level requirements set for the service, such as policies governing the ser-
vice behaviour, quality of service aspects.

The match making must result into sufficient information at the service providing
system for automatic service deployment to take place. The deployed service is a config-
uration of computational objects and channels between them, and the configuration also
contains a communicating channel reaching towards the client outside of the system.
The deployment process itself is described in the next section.

2.6 Business service deployment process

While business architectures are globally understood, each role in the architecture can
be implemented with a different design in each organisation supporting that service.
The design can be produced within the software engineering process (see Section 3)
or can be brought to the system as an outsourced design. In both cases the design
is retrievable from the local design repository, using the business service as a key. If
multiple designs are available, also multiple offers can be available through the business
service broker or there is a local heuristic to choose the design to be applied.

The design description introduces a set of computational (logical) objects, their
interfaces, bindings between the interfaces, QoS agreements and policy rules governing
the shared behaviour of these objects. It may also set requirements for allocating
objects, for sharing resources, and for performance optimising strategies. The design
should also be reusable for other business architecture descriptions. The computational

18 2 OPEN SYSTEM FRAMEWORK

objects needed to populate the architecture description are found via local component
assembly repository, or via a trader.

The computational design shall be further refined for solving engineering problems;,
like data partitioning or replication, data transmission modes, and failure recovery.
However, the result of this refinement identifies too small units for global markets - the
expense of maintaining and retrieving information would be too high because of the
huge number of required objects. Therefore, the Pilarcos project places emphasis on
the computational objects and services, and shows engineering refinements as internal
structures and requirements for the marketed objects.

The computational objects are representations of assemblies where objects and
simple bindings between them are established. More complex configurations are then
formed based on these functional groups and complex bindings can be established
between the groups.

The component assemblies are platform dependent implementations of an object.
The designs are platform independent and thus allow heterogeneous, distributed im-
plementations to be set up, as long the whole implementation stays within the same
administrative domain.

The component assemblies include implementations of the objects involved, inter-
faces for them, simple bindings between the interfaces, listing of interfaces that are left
for external objects to bind to, structures for instantiation related data like interface
locations.

Naturally, it is expected that component assemblies are highly reusable for vari-
ous computational designs, and thus, become part of numerous business architecture
implementations.

The component assemblies are also the unit of managerial control within the organ-
isation or within the system. This solution causes engineering architecture requirements
for the computational objects also in form of compulsory management elements associ-
ated to each computational object. The management elements can be either be required
to be implemented by each marketed object, or, there can be platform services that offer
these elements for the objects to use. In Pilarcos, the goal is to find a design by which
generic infrastructure services can be exploited; these include application binders, in
cooperation with the policy repository.

2.7 Management aspects

Management issues in the Pilarcos architecture include management of application ob-
jects, federations between them, infrastructure service management. Shared special
factor in these are contract based management and organisation-wide policy manage-
ment.

A contract is an agreement between two or more objects on their shared behaviour,
i.e., interaction sequence and the goal of that behaviour. As an example, refer to binding
contracts and their management in Section 2.4.3.

A policy is a decision that has to restrict object behaviour within the system. For
example, a policy "opening times are 9-18" should restrict operations for creating new
bank accounts to these times.

2.8 Summarising the federated service acquisition process 19

The organisational management tools are based on a policy repository where a hier-
archy of enterprise, information, computational, engineering and federation instance
policies and contracts are stored. This information is inherited by the additional man-
agement elements introduced above to be included into each object that provides busi-
ness services. In this way, the organisational and federation negotiation decisions can
have effect on the newly started or already running services.

An organisation can represent a single user as well. For example, the user of a
ubicomp device has policies about interacting with system and exploiting surrounding
services.

The policy repository provides means to check the consistency of all policies within
the organisation.

In the case of a federation, the established federation contract becomes the governing
policy authority for the partners involved for the duration of that federation liaison. As
described earlier, an organisation can simultaneously participate multiple federation
liaisons even if they are contradictory, as long the organisation’s internal policies are
not violated. For security reasons, a federation contract must restrict the further usage
of information originating from a federation.

The federation contracts are negotiated during the remote service deployment pro-
cess and binding establishment between the communicating partners in all involved
systems. The federation contract needs to be introduced temporarily into the local
policy repositories, so that the policy rules agreed will take effect on all the objects
participating the federation.

2.8 Summarising the federated service acquisition
process

In a federated environment, acquiring a service from an other organisation and binding
to the related interfaces is a complex process. For application programmers, the situ-
ation should be made as simple as possible. The Pilarcos framework supports simple
concepts for that purpose: service type and binding type. With these concepts the
application programmer is able to express the application needs for service, and the
infrastructure services can have enough instructions to take care of the federation ne-
gotiations needed. Essential improvement here moves the responsibility of establishing
and maintaining federated bindings from application programmers to the infrastructure
services.

Figure 2.3 summarises the overall system architecture. Section 4 further discusses
each middleware service and repository involved. In the following paragraphs the basic
flow of control is briefed.

The client makes a request to a local infrastructure object supporting it, client
application binder, expressing the business service description and the call interface it
uses. The request gets forwarded to the portal that matches the request against the
offers it has stored from the service providing systems.

The client application binder then sends a prepare service request to the address
given by the portal. That request invokes a deployment process at the service providing
system.

20 2 OPEN SYSTEM FRAMEWORK

3 Service requesting system
f (client system)
i Policy repository

1. Business service request ‘ 10. Enter federation contract

‘ (Client) application binder 10. Prepare remote bindin Binding factory

3. Prepare service

2. Import 9.Prepare federated
binding

1 Business service broker / N B
| ! Policy repository

! Business 4. Retrieve Desi
‘ i i ! 2 esign
3 _— .
; : 8. Egg?‘r"fgg'eruhon service repository
| I deployer
!\ | (server) application | __—
Trader I ' (Serv)v plcat
' ! binder 7. Create 5. Import
1 1
G 3 8.Createand 6. Create and configure
configure binding assembly Trader

- Application
lf3|n;j|ng component
actory deployer
Service providing system 3

Figure 2.3: Overview of the system.

The business service deployer of the selected organisation or selected system re-
trieves a corresponding design, i.e., computational architecture description. Essential
building blocks in that description are service types and binding types. For each ser-
vice or binding in the description, the deployer needs to choose and instantiate (if not
already running) a suitable implementing module. The services can be found via an
organisational trader that supports knowledge about application objects running or
instantiatable. For the binding objects, the business service deployer creates an applic-
ation binder for each binding endpoint. It also instructs groups (or most often pairs)
of application binders to connect to each other. The application binders create mutual
connections by the help of binding factory - which is able to create both local and fed-
erated bindings. The binding factory uses the help of a type repository for knowledge
about how binding types are instantiated at each platform.

The instantiation process is guided by application object type and binding object
type information found in a design description that matches the business service in
question. The instantiation process is naturally platform dependent, unlike other parts
of the deployment process.

As a response to the prepare service request, the client application binder receives
a request to prepare a federation contract in the local policy repository and a binding
object towards the newly created binding object for the service. For the federation
contract, the request contains suggested agreed values for all business, computational
and engineering aspects of the federation. The client has initially given suggestions at
the initial service request, so in a simple case this response completes the negotiation.
In more complicated cases, for example when security reasons have forced keeping back
parts of the contract information, further messages may be exchanged between the

2.9 Interaction between service design, deployment and exploitation aspects 21

service deployers. For the binding, the request contains binding type and address in-
formation. After this process the client’s original service request can be forwarded to
the service as a operation invocation through the transport connection that has been
created between the outermost binding objects.

The overall system architecture view spans multiple administrative domains as fol-
lows. The business service broker represents a global market of business services. The
brokerage service can be distributed, but essentially provides a separate service for
fining out from which organisations business services are available. Each organisation
has their private business service deployers. The deployment process is governed by
organisational decisions on technologies, remuneration, evolution of provided services,
etc. Heterogeneity does not appear only between organisations, but also within each
organisational IT system. Thus, the business service deployers are platform independ-
ent and exploit the services of a group of platform dependent application component
deployers. The design repositories and component assembly traders are organisational
repositories. Design repositories and organisational component assembly traders do not
automatically federate but give a local service. Possible federations amongst design
repositories, for example, need human intervention via software engineering tools (see
Chapter 3). Organisations can also federate between the assembly repositories, but only
as means of design time loading or publishing of assemblies. For use in the execution
time environment, the assemblies must be locally available for performance reasons.

2.9 Interaction between service design, deployment
and exploitation aspects

The open system framework deliberately integrates together design and run time in-
formation. The tools for this intertwining are provided by the dynamic middleware
repositories:

e business service brokers and traders offer an up-to-date view to offered services
world wide;

e the business services on markets are categorised based on the business architecture
they are able to participate in; furthermore, the set of business architectures can
be evolved over time as the descriptions are stored on-line;

e in each organisation, the selected set of business service elements can be suppor-
ted by a set of designs, i.e., computational viewpoint descriptions of the service
element; like the business services also the computational services are available
on-line, and categorised with a dynamically evolvable type system;

e finally, in each organisation, the computational services can be implemented in
a distributed manner; the mappings between platform independent designs and
platform specific implementations are retrievable from local type repositories and
traders; again, the repositories are at place to ensure system evolution.

The essential programmer concepts of service type and binding type are supported
by the deployment process. The key is to use type concepts for applications to set

requirements for the services they need, and map these declarations to detailed instruc-
tions, i.e., templates for instantiation, later in the process. A type is just a predicate
over an object’s externally visible properties, while a template denotes all necessary de-
tails for creating an object on a given platform. Thus, types are interpretable globally,
while templates are restricted to a given platform environment.

The software engineering process can roughly be divided in projections where

e business architecture is specified,

e computational designs for a business service are defined, and

e component assemblies for implementing a computational objects is constructed.
Correspondingly, the products of these projections are stored into

e global business service broker’s type repository,

e organisational design repositories, and

e component assembly repositories and organisational component assembly traders.

From these repositories the same elements are used for installation of appropriate com-
ponent assemblies and further for deployment or run time instantiation of the parts
needed to provide a business service.

Chapter 3

Software engineering with ODP
viewpoints

As already discussed in Section 2.9, the ODP viewpoint languages directly support
architectural descriptions necessary for the service acquisition processes and federation.
This chapter will further describe the viewpoint languages involved, and the software
engineering process suitable for evolving new, open systems.

3.1

Overview of ODP viewpoints

The ODP viewpoints define projections of a system under description. The viewpoints
discuss various aspects of the system as follows [12].

Enterprise viewpoint [18] discusses the system under specification and its beha-
viour in relation to its environment. Basic concepts for description are those
of community, roles, interactions between roles, policies governing the collective
behaviour of the roles, and rules about assigning components to each of the roles.

Information viewpoint discusses the scope and processing rules of information
needed for and by the system. The logical content of the information storages
involved, and the logical structure of information are described. Required rules
for consistency are expressed as invariant and static schemata, modifications to
the information as dynamic schemata. Each schema is a logical statement about
the values, not programmatic expression.

Computational viewpoint shows the system as a collection of logical components
together with their interfaces and behaviour.

Engineering viewpoint is concerned of showing how the system is supported by the
open infrastructure services, like processing on some nodes and communicating
across the network, and how distribution is managed.

Technology viewpoint concerns selected standards and solutions for actual imple-
mentations, and also on additional information for testing.

24 3 SOFTWARE ENGINEERING WITH ODP VIEWPOINTS

The relationships between ODP viewpoint languages are not commonly accepted.
The effects of changes in one viewpoint onto another are not established by the standard,
and there seems to be very little to force on all specifications, as the viewpoints are
rather like projections than overlapping views.

The Pilarcos method of using the viewpoints takes the engineering view as the
complete system description and uses the other viewpoints to give restrictions and
requirements for the construction of that view.

The four viewpoints show projections of the engineering view of the system, thus
they do not affect each other. They are interrelated, but changes in one viewpoint
are not propagated to other viewpoints than engineering. Violations against other
viewpoint specifications are flagged for the designer, and the corrections can be done at
any chosen one of the viewpoints. Therefore, it is also the designer’s choice how much
effect reuse of existing components have on the architecture.

Notations for the various viewpoint languages have not been fixed yet. The ODP
viewpoint languages are abstract, they provide the concepts and relationships between
concepts, for notational languages to present. For a specification tool a simple set of
concrete notations, preferably graphical notations, need to be selected.

For enterprise, information and engineering viewpoints, UML has been considered
and tested as a notation. However, it does not appear fully suitable to these tasks.

3.2 Brief tutorial on ODP viewpoints

The ODP viewpoints allow object systems to be specified in an organised, guided man-
ner. However, the viewpoint rules do not instruct on the level of detail or completeness
of the specifications. Those aspects must arise from the software engineering process in
which the viewpoint specifications are involved. Because of this multi-purpose nature,
the specification rules are very general and should have their specific interpretations
in each use-case. We can still claim that the goal of the ODP reference model is not
to cover the full software engineering process, but only to support system specification
and specification conformance analysis. For implementation specifications the ODP
viewpoints would be too hefty.

The ODP reference model defines five viewpoints — enterprise, information, compu-
tational, engineering and technology viewpoints [10, 12]. A system must be specified
from each of these viewpoints. Each viewpoint specification is a consistent and com-
plete specification on its own, but it only considers those aspects of the system that
are valid on its point of view. The viewpoint specifications do not overlap totally, but
they may show different level of detail in the areas where they discuss same or related
features. The engineering viewpoint specifications are tightly related with the ODP
infrastructure model that is specified as part of the engineering viewpoint specification
rules. The viewpoint specifications can be considered as projections of a system.

3.2.1 Enterprise viewpoint

The enterprise viewpoint description of a system specifies the activities and the re-
sponsibilities of the system [12, 18, clause 6]. Activity means any information exchange
sequence and it i1s a high-level abstraction of the operations within the system. The

3.2 Brief tutorial on ODP viewpoints 25

system itself can have any granularity that is interesting. The system can be as wide as
a global information network with all applications or as small as a memory cache in a
processor. The enterprise specification identifies the system, its environment, and the
required communication of the system and its environment. The specification answers
to the questions “What is the purpose of the system?” and “What services the system
is responsible to provide?” and “Who needs the services?”.

The objective of a enterprise viewpoint specification is to define the purpose and
scope of the system under specification. This is done by describing the system struc-
ture, the evolution rules for that structure, the responsibilities the system has, and the
functionalities the system is required to implement.

An enterprise specification consists of a group of communities. Each community is
constructed for a given objective, i.e., is a logical collection of performers and function-
ality that is required for achieving the community goal.

A community is a configuration of enterprise objects with a contract on their col-
lective behaviour. The contract structure is defined by the community specification.

A community is specified in terms of

e roles that is a placeholder for an enterprise object that performs given actions in
the community; the role specification gives requirements and restrictions for the
behaviour of an object;

e rules for assigning enterprise objects to roles; the policy rules can include both
behavioural and non-behavioural properties of the potential objects or properties
over relationships between objects in the roles of a community;

e policies that apply to roles; policies govern the cobehaviour in the community;

e behaviour that changes the structure or the members of the community during
its lifetime.

Communities have relationships to each other. Especially, one community can pop-
ulate a role in another community. Thus, more complex systems can be constructed
by the population process alone. However, the community specifications can also force
some interleaving for the communities: some roles can be defined to be used in multiple
communities, or some roles can be required to be populated by the same object in order
to cause information or control flow between the communities.

A community is also capable of communicating with its environment. The envir-
onment is not specified in detail, but only the requirements for it that are relevant for
understanding the behaviour of the specified system.

A community specification gives the rules for the behaviour of the community and
the responsibilities for the community. During the lifetime of the community, the mem-
bers may leave or join the community; however, even when a role is temporarily without
assigned actor, the community still carries all responsibilities related to that role. The
degree of dynamism in the community structure is dependent on the community spe-
cification — no changes are allowed unless there are specified behaviour rules for that
change.

Communities can also have specified capabilities for creating additional communit-
ies within the enterprise specification: Federation is a special case of community es-

26 3 SOFTWARE ENGINEERING WITH ODP VIEWPOINTS

tablishment. Some of the specified communities are able to dynamically create a new
community specification that is then populated.

A policy is a decision that restricts the potential for actions and interactions im-
plemented in an object. Policies can be associated to enterprise objects, roles or com-
munities can be restricted by policies.

Alternative way for describing cobehaviour in the community is to model with pro-
cess. In process modelling the focus is on the whole community moving from one joint
state to another because of a chain of actions with a goal. A process is a chain of
actions that can be started by an external or internal trigger, and that terminates when
a target state is reached.

3.2.2 Information viewpoint

The information viewpoint description of a system identifies logical information entit-
ies, their logical contents, their repositories and the objects that are responsible for the
information flow in the systems [12, clause 7]. Questions for information viewpoint spe-
cification are “What information is needed to support the system’s services?”, “Where
does the information come from and go to?”, and “Is it necessary to store the inform-
ation somewhere?”. The information viewpoint specifications should not describe data
structures, but only the semantics of the information. Also, the technique of storing
information is irrelevant in this viewpoint (as the logical infrastructure supports storage
services).

3.2.3 Computational viewpoint

The computational viewpoint specification captures the behaviour of the system [12,
clause 8]. Behaviour is an abstraction of how things are done, in contrast to the notion
of what things are characteristic in the enterprise viewpoint activities. An activity
identified in enterprise viewpoint may involve several objects to perform a sequence of
operations in the computational viewpoint. The computational viewpoint shows the
system as a composition of logical objects. For each object its interfaces are described.
If the interface involves operations, each operation gets logical parameter descriptions
(logical information components, not technical data structures) —if the interface involves
streams, each data flow component of a stream gets logical protocol descriptions instead.
This is the viewpoint that usually explicitly shows potential for distribution. Neither the
enterprise viewpoint nor the information viewpoint specifications need to express any
distribution concerns. The computational viewpoint answers to questions like “Which
operations are available?”, and “Who (which logical entity) performs the operation?”.

3.2.4 Engineering viewpoint

The engineering viewpoint specification identifies the infrastructure services needed for
the system to operate [12, clause 9]. The RM-ODP engineering viewpoint defines the
set of available infrastructure services, and all other engineering viewpoint specifica-
tions should show how the specified system utilises these services. The engineering
specification, therefore, answers the question “By which services are the computational

3.3 Interpreting viewpoint correspondences 27

objects supported?”. The ODP infrastructure model identifies a set of global, distrib-
uted basic services that should be available at each node in the global system. These
include invocation of operations, transfer of continuous data as streams, trading, type
repository functions, etc. [14, 16, 15]. These services facilitate selective transparency
of communication between objects.

The ODP reference model defines an abstract infrastructure to offer basic services
like distribution transparent communication primitives. The infrastructure is described
using some supporting concepts, that give an internal engineering view of the middle-
ware. However, these concepts are only used for description purposes, not as technology
requirements. The abstract infrastructure model is described in Section 4.1.

3.2.5 Technology viewpoint

The technology viewpoint specification shows in a concrete hardware and software con-
figuration how the system services and other required components are realised [12,
clause 10]. The specification answers the question “How are the infrastructure services
realised?”.

3.3 Interpreting viewpoint correspondences

The defined correspondences between viewpoint specifications of a system are of specific
importance for the system design process.

The current committee draft for the ODP enterprise language [18] requires the sys-
tem specifier to declare the relationships between the enterprise specification structures
and the structures in other viewpoints. The Pilarcos toolset has built-in some basic
assumptions as follows:

e For each role in the enterprise specification there shall be a list of the computa-
tional designs with interfaces that correspond to the enterprise action.

e For each enterprise interaction type there shall be a list of binding types capable
of representing the enterprise interaction type.

e For each role affected by a policy in the enterprise specification there shall be a
list of the computational object types that exhibit choices in the computational
behaviour that are modified by the policy.

e For each computational object there shall be a configuration of engineering objects
able to perform the tasks of the computational object.

e For each computational binding there shall be a list of engineering channel types
and stub, binding or protocol objects that are constrained by the binding and the
corresponding enterprise interaction.

e For each computational object there shall be a list of those engineering nodes that
support some or all of its behaviour.

28 3 SOFTWARE ENGINEERING WITH ODP VIEWPOINTS

e For each community and role in the enterprise specification there shall be an
engineering viewpoint controlling object governing the behaviour of those engin-
eering objects that correspond that community or that role in question. The
responsible controlling object is the appropriate application binder together with
the associated policy context within the policy repository.

These compulsory mappings give structure for the Pilarcos software engineering
process. They force a top down refinement between enterprise viewpoint and com-
putational viewpoint, still keeping the design independent of technical detail. Both
viewpoints provide an architectural description, but at different levels of abstraction.
They also force a refinement between computational and engineering viewpoint, where
the engineering view is dependent on the platform and shows the full rigour of distribu-
tion. Finally, they force an enterprise viewpoint structure to be automatically imposed
on the engineering viewpoint.

In addition to these, the following consequences are visible between enterprise, in-
formation, and computational viewpoints and the structure of the engineering viewpoint
specifications.

Corresponding to the enterprise view, explicit contract management objects repres-
ent the organisations, communities and roles. A contract management object stores
policy information inherited from the policy repository and provides a service interface
for changing that. Changes can occur because of organisational management opera-
tions or because of establishing a federation. A federation takes place as an application
level phenomenon and a federation contract only involves a specific instance of using
services; it is not an organisation to organisation agreement for all future cooperation
cases around that application.

Information viewpoint must define the information storages and relate them to en-
terprise roles. It must also define artifacts that are stored within the storages and
transferred between enterprise objects. For interoperability, the artifacts should be as
generally exploitable as possible. Artifacts can be standardised at two levels: within
an enterprise for federation purposes or externally, for example predefined DTDs for an
application domain can be standardised for example by W3C.

Invariant and static schemata become visible in the engineering view as policies
controlling the data consistency. Various triggers and interceptors can be used for
this. An information object defines a control domain for the object introduced to the
engineering view.

The dynamic schemata interrelates enterprise viewpoint activities and computa-
tional viewpoint operations. In the engineering view, the dynamic schemata become
visible as pre- and postconditions of operations and triggers derived from the enterprise
specification.

In Pilarcos, decisions done for the whole enterprise in technology viewpoint are also
stored to the policy repository and inherited down to the engineering level via the policy
repository.

3.4 Software engineering processes for the Pilarcos architecture 29

3.4 Software engineering processes for the Pilarcos ar-
chitecture

The foreseen Pilarcos tools support the following production processes
e process of specifying and designing a new system;
e process of implementing, storing and reusing independent components; and

e process of defining metainformation to be used in the process of integrating com-
ponents into a system that provides a feasible service

and the following integration processes
e process of analysing the federation of multiple existing systems;

e process of executing a global cooperation scheme based on a shared business ar-
chitecture that gets populated by appropriate service providers and service com-
ponents by demand; and

e process of integrating components into a service providing system.

The Pilarcos architecture model operates with three independent levels of descrip-
tions and implementations. Each of these levels 1s manipulated independently from
the other, with the corresponding viewpoint related tools: business architectures with
enterprise viewpoint editor, designs with computational viewpoint editor, component
assemblies with engineering viewpoint editor and programming tools. The system will
be brought to life by defining correspondences between specifications via the viewpoint
correspondence tool, and by registering implementations to the assembly repository and
traders.

If a new system is to be developed totally from the beginning, the tools need to
be repeatedly used for supporting each phase of the development cycle. Although the
enterprise viewpoint stresses the same aspects as system analysis, there are aspects that
need to be captured in other viewpoints as well. The system design affects the enterprise
viewpoint specification as well, although the majority of work in design phase probably
go to computational viewpoint designs.

However, the development of a standalone new system is not what the Pilarcos
architecture is designed for. In the contrary, gradual system evolution is assumed. The
system is already running with a set of business architectures, a set of designs and a
set of component assemblies. In this environment, the system developers, application
programmers and system engineers create new constellations of existing services and
introduce additional services.

The enterprise specification provides a business architecture that is used for global
negotiation about suitable service types to participate a cross-organisation work flow.
Such an architecture description is stored into the type repository that supports the
business service trader/broker.

30 3 SOFTWARE ENGINEERING WITH ODP VIEWPOINTS

3.5 The toolset

The first cut of Pilarcos toolset provides only tools for entering enterprise and compu-
tational viewpoints and analysing the engineering view.

The Pilarcos toolset offers a graphical editor for each viewpoint for designing new
aspects of the systems.

The enterprise specification provides a rough architecture description for the system
under design and need to be refined with a suitable computational architecture descrip-
tion. The computational design is stored to an organisational design repository. The
repository can be equally used at system development time as a refinement step and at
service usage time for the service deployment process.

For the construction of designs in the computational viewpoint, the concepts of ser-
vice type and binding type are offered. For application programmers, both of these
can under normal circumstances be readily available from the organisational type re-
pository. The application programmer can implement a new component assembly that
implements a service type in a new way. The application programmer can also exploit
other service types directly, trusting on the already implemented component assemblies
available through the organisational trader. It is the task of system designers, platform
developers, and system programmers to introduce new service types and binding types.
The type descriptions and relationships between types are stored to type repositories
using directly or via a graphical user interface to the repository.

In the engineering viewpoint, component assemblies are constructed with platform
specific programming tools, for example the programming tools for EJB components or
CORBA components. The assembly packages contain a required set of metainformation.
The Pilarcos tools package contains a repository into which these packages can be stored.
As part of the process of storing the assembly, the metainformation is used to provide
the required export operations to the assembly trader and checks on the availability of
required type definitions are performed.

Consistency checkers and analysers are needed for each viewpoint specification sep-
arately. This can be done based on extended state transition model analysis tools.
However, in the early phases of the project, the toolset is only designed so that verific-
ation tools are easy to integrate later on.

In addition, conformance with the restrictions and requirements of other viewpoints
need to be checked. As the output of each viewpoint editor is stored in form of its
engineering viewpoint consequences and into the policy repository, these two collec-
tions of information can be searched for inconsistencies after modifications in any of
the viewpoints. However, much of this work requires further development of analysis
methods on action refinements and service equivalence classes. That in itself is a topic
for a whole research project, and thus the Pilarcos tool only lays a requirement for such
work in future.

For performance considerations a separate analyser can be provided to support
design choices [20], if UML is used as a common notation.

In the following, each tool is briefly characterized.

3.5 The toolset 31

3.5.1 Enterprise viewpoint editor and analyser

The purpose of the Pilarcos enterprise viewpoint editor is to produce business architec-
ture descriptions to be stored into the type repository of business service brokers.
Enterprise specification editor supports a graphical method for defining

e communities, in terms of their structure (roles and their relationships), behaviour
and policies;

e domain of control of the specifying organisation;

roles within communities, in terms of behaviour, policies, and assignment rules;
e rules for changing the structure of the communities; and
e enterprise structure in terms of overlapping and federation rules of communities.

The result of the enterprise viewpoint specification process is a set of community
descriptions. The enterprise view does not match to an organisation. An enterprise
specification naturally covers cooperation across multiple organisations.

The enterprise specification can be divided to a set of community specifications.
The editor should support divisions based on an enterprise level structure, like fed-
eration between domains within the enterprise, or on a functional split, for example
pulling accounting and marketing out as separate community descriptions. The enter-
prise viewpoint analyser checks separately the consistency of each community and the
interactions between the communities.

A technique to connect the functional communities together to form the full enter-
prise specification is to require certain roles in these communities to be combined. The
process of combination must involve consistency check for the policies governing objects
in those roles. In the specification tool, each community is stored as a set of finite ex-
tended state transition machines, also any consistency checked combination role. The
enterprise viewpoint analyser checks whether there are contradictions in the policies for
a role or for a combined role over multiple communities.

The domains controlled by an organisation can be made visible in the enterprise
specification. When this is done, the enterprise viewpoint specification can be used
as a design and run-time tool for managing computing within the organisation, as
an essential aspect of the enterprise specification is defining business and computing
policies.

A role defines what interactions an entity in that role is expected to be capable of
participating. The definition of the behaviour in this way requires a shared ontology
on abstract behaviours - such an ontology exists in the set of business service types
commonly agreed on, somewhat standardised, and supported by the type repository
serving business service brokers.

The behaviour associated to a role or a community is described by an extended
state transition machine. A transition denotes an activity into which the role or the
community may participate. The transitions are further guarded by policy statements.
A policy 1s an additional constraint for a transition and denotes whether in a given
situation the state machine is permitted, prohibited, or obliged to initiate or participate
a transition.

32 3 SOFTWARE ENGINEERING WITH ODP VIEWPOINTS

The state transition model is further extended by alternative strategies, that means,
some of the behaviour descriptions can be exchanged to others. Strategies can be
considered as epochs in the lifetime of a role or a community, an epoch change possibly
causing changes in the behaviour or the objective.

A policy choice denotes enabling and disabling various strategies. The policy choice
can be inherited from the enterprise specification, be entered though organisational
policy repository or be triggered by some state internal or external to the system.

Policies can be denoted as additional constraints (prohibitions, obligations, per-
missions) over system state to be used in addition to the pre- and postconditions on
activities in the system. In this form, policies are stored into policy repository, form
which each activity inherits information that affects its engineering level behaviour.

The roles are populated by actual service providing solutions either at design, in-
stallation or run time. The population process is guided by assignment rules.

The assignment rules for roles form a bridge to the computational viewpoint. The
computational object selection must conform to the assignment rules. These rules form
policies for the computational components selected and give guidance when either an
identified component is needed, or related components are needed for the community
roles (e.g., same component must populate several roles in the enterprise).

The entities populating a business architecture can join and leave the formed com-
munity according to some joining and withdrawal rules, dependent on the application
logic. An empty role can be repopulated by using the same assignment rules again.

During the execution of the system, if obliged things do not or prohibited things do
after all happen, sanctions or corrective actions occur. The arbitration policy need to
be presented in the enterprise specification.

It is not necessary for the business architecture descriptions to be static in nature.
There can be rules changing the structure of the community at its life time, i.e., roles
can be added and removed.

The stable phases are called epochs. Each epoch represent a fixed set of services made
available from the community. A change in the community structure that changes the
set of available services, is an epoch change. All other changes in the number and type
of members in the community are considered to be expressions of different cardinalities.
A cardinality expresses the allowed number of simultaneous players of a given role in
the community. A cardinality of zero denotes, that a role is allowed to be empty at
times.

3.5.2 Computational viewpoint editor and analyser

The result of computational viewpoint specification is a set of designs representing
the generic structure of an application that provides a computational service. The
design essentially contains a set of computational objects (comparable to roles in the
enterprise viewpoint, i.e. placeholders for implementing constructs), their interfaces,
and communication relationships between the objects.

The resulting designs from this viewpoint are stored to design repositories. The
repositories can also be used for retrieving already defined designs for reuse and modi-
fication. There can also be federation relationships between design repositories, thus
making it possible to support reuse of designs across organisations. This sharing does

3.5 The toolset 33

not, however, appear in the execution environment, as the process is too heavy for run
time usage.

The computational objects are represented as extended state transition models, in
the similar way as enterprise viewpoint roles, only at a more detailed level.

In the software engineering process, transition from enterprise viewpoint to compu-
tational viewpoint is done by replacing each abstract interaction by a computational
interaction sequence. Pre-designed interaction sequence models can be reused in this
process.

The correspondence between a business architecture role and a design is left for the
designer to decide. There is no automated way of determining the relationship that
would adequately capture semantics of the relationship. The relationship is entered to
the system through the viewpoint correspondence tool once both participants of the
relationship are defined. There can be multiple designs corresponding to one business
architecture role, and multiple business architectures in which a design is applicable
to fulfil a role. The concept used for expressing role related requirements and design
related offers is that of business service type.

The interaction sequences require certain interfaces. The list of required interfaces is
split into suitable groups to form computational objects. A suitable split can be found
for example by taking a required information storage as a starting point and associating
information registration and retrieval interfaces to it.

Computational protocols need to be refined for all permitted and obliged activities,
triggers for violation arbitration should be provided for all prohibited activities. Ad-
ditionally, triggers for all activities initiated by the role under consideration should be
captured.

The interactions in the sequences should be generic and move around artifacts. The
artifacts can then be related to the information viewpoint artifacts. The protocol may
have additional requirements for data that is transferred. That is collected separately
but is not reflected back to the information viewpoint. However, it is passed down to
binding requirements in the contract as an computational management artifact related
to the chosen computational methodology.

For computational bindings the engineering view provides a binding controller. If
there is a breach of a contract, it reports to the enterprise arbitrator that starts a
recovery process selected based on the type of the breach and the type of the contract.
The channel controller also controls QoS aspects.

Computational viewpoint specification provides an architecture view that can be
populated by existing components. Components are chosen based on meta-data that
covers the behaviour, binding type, technical requirements, server/client profile under-
stood, policy information supported.

A computational object may be related to an information viewpoint repository or
artifact, and must be related to at least one role in the enterprise specification as a
member populating a design.

On the verification tool area, the computational viewpoint analyser should check
whether the computational specification for a community is deadlock free, has liveness
properties, etc. However, the Pilarcos tool offers an interface for such a service, but
does not include a verifier.

34 3 SOFTWARE ENGINEERING WITH ODP VIEWPOINTS

3.5.3 Engineering viewpoint editor and system composer

For the production of independent computational components, the engineering view-
point editor allows refinement of computational objects in a similar way as enterprise
viewpoint roles are refined into computational objects.

In practice, the engineering viewpoint editor provides two views to the system un-
der construction. First, a view where components and their configuration is shown.
Second, a closer view for each component separately, for actual programming. The first
view essentially has two kinds of components inherited from the computational view-
point: application elements and binding elements. Both of these can be constructed
in the same way by programming a component assembly package. These packages are
stored (and can be reused from) component assembly repositories that are local for each
organisation.

A complete engineering view of a system essentially consists of two things:

e the computational architecture description and population rules for each com-
putational object; this information is adequate for instantiating the system for
execution and managing the bindings between computational components;

e management objects derived from all other viewpoints; and

e Pilarcos infrastructure services.

3.5.4 Viewpoint correspondence tool

During the specification and design of a new system or application, the viewpoint editors
give projections of individual elements of the system. The viewpoint correspondence
tool is needed to show the relationships between the business communities, service
types, and component assemblies.

The relationships include

e designs can be appropriately used in one or more business architectures; to support
this the business service broker uses the business service types available at its type
repository;

e component assemblies can be appropriately used in multiple designs; to support
this the component assembly traders use computational service types available at
the organisation’s type repository; and

e binding objects are applicable to multiple designs; to support this binding types
each represent a group of technology dependent biding templates which are rep-
resented as references to corresponding implementations stored in the assembly
repository.

The viewpoint correspondence tool therefore is a combination of an editor for cre-
ating type descriptions and storing relationships between these descriptions.

3.5.5 Management tool
The management tool provides means to

e populate the traders with appropriate offers for business services and computa-
tional services;

e install component assemblies; and
e instantiate business services.

These services require the support of new infrastructure services as described in
Clause 4.

Chapter 4

Infrastructure services

This chapter discusses the services and repositories present in the Pilarcos infrastruc-
ture. The infrastructure is an enhancement of the ODP infrastructure model and intro-
duces two new features. First, federation transparent bindings between objects. Second,
implicit binding process resulting to complex bindings.

4.1 ODP infrastructure model from engineering view-
point

The ODP reference model defines an abstract infrastructure to offer basic services like
distribution transparent communication primitives. The infrastructure is described us-
ing some supporting concepts, that give an internal engineering view of the middleware.
However, these concepts are only used for description purposes, not as technology re-
quirements. In the following, we consider the abstract infrastructure from two points of
view, functions supported and the organisation of the supporting, hypothetical objects.
The infrastructure model is an abstract computing engine and does not intend to
prescribe the implementation technique of the platform involved. Therefore, the infra-
structure model allows implementation independent discussions on various services.

Functions

The ODP reference model supports distribution transparent communication with the
four fundamental function classes: management, coordination, security, and repository
functions [12, clause 12].

The management funciions include

e node management function that controls processing, storage and communication
within a node, i.e., nodes support time services, creation of channels between
objects, location of interfaces, and management of processing threads;

e object management function that checkpoints and deletes objects;

38 4 INFRASTRUCTURE SERVICES

e capsule management function that instantiates, recovers, reactivates, and deac-
tivates clusters and deletes capsules; and

e cluster management function that checkpoints, recovers, migrates, deactivates or
deletes clusters.

The coordination functions include

e engineering interface reference tracking function that monitors the transfer of
engineering interface references between engineering objects in different clusters

e cvent notification function that records and makes available event histories (logs),

e checkpointing and recovery function that coordinates creation of cluster check-
points (time, storage), and coordinates the use of the stored checkpoints in recov-
ery of failed clusters,

e deactivation and reactivation function that coordinates cluster deactivation and
reactivation using checkpointing for other reasons than failures,

e migration function that coordinates the migration of a cluster from one capsule
to another,

e transaction function that coordinates and controls a set of transactions to achieve
a specified level of visibility, recoverability and permanence.

The security functions include conventional security related services, i.e., func-
tions for access control, security audit, authentication, integrity, confidentiality, non-
repudiation and key-management.

The repository functions include

e trading function that mediates advertisement and discovery of interfaces, and

e type repository function that manages a repository of type specifications and type
relationships.

The trading function presents an information repository that can be updated by
independent information producers. Trading is not a mapping mechanism like name
services. Instead, it resembles more directory services that allow attribute values to be
used as a search criteria.

Trading activities are described through a trading community that represent the
roles of ‘importer’, ‘exporter’ and ‘trader’ [16]. The object in trader role supports
a repository of ‘offers’. FEach offer describes properties of an entity. The offers are
produced by objects in exporter roles. When an exporter sends an offer for a trader
to be stored, it is said to ‘export’. When an exporter requests an offer to be deleted,
it is said to ‘withdraw’ an offer. The objects in importer roles make queries to the
offer repository, they ‘import’. The import requests have a basic form that is similar to
database queries: the request specifies criteria for selecting the offers to be included to
the response. The objects that use the traded information need not necessarily be the
importers or exporters themselves. The ‘clients’ and ‘servers’ that use the information

4.1 ODP infrastructure model from engineering viewpoint 39

. ~

\

/ .
i client |} service
\ ,

interaction

Figure 4.1: The trading community.

are therefore considered as separate roles. The communication between importers and
clients, or between servers and exporters is not prescribed (but trading mechanism is
recommended).

The ODP trading function is designed to mediate server interface offers. An in-
terface offer contains an abstract service type name, an interface signature, and a set
of attributes. The attributes can describe quality of service aspects or they can de-
scribe the supporting platform features of interest. The trading function specifies only
the mediation mechanism and information structuring rules, not the interpretation of
offers.

A service offer is a set of attribute name - value pairs. Attributes can have static
values, set at the export time, or dynamic values, evaluated at import time.

The service offers are organised according to the service type offered. The service
type also determines the attributes relevant for the offer.

For the binding process, the service type also determines the structure of the binding
contract, as the export - import process forms a simple negotiation protocol sufficient
for technical compatibility checks.

The attributes of interest for the computational component trader are: interface,
location, protocol, QoS, binding type, id.

For binding purposes, the trader needs to carry some realtime properties. To start
with the standard interface allows restricting the query processing by limiting resource
consumption and span of the search, also, an upper limit for the time spent for the
matching process can be given.

The type repository function supports operations for

¢ publishing type descriptions,

e checking conformance of two type descriptions,
e retrieving subtypes and super-types,

e translating types, and

e name management operations for types.

A type description is a tuple of type name, and a set of attribute names with
acceptable value data type. A type can be equal to another type, subtype of it or

40 4 INFRASTRUCTURE SERVICES

supertype of it. The type hierarchy is not interpreted based on inheritance rules but
resemblance of the descriptions.

The basis for the type repository activities is awareness of the target concepts to be
supported. The network of target concepts is called the metamodel for that type system.
For example, take target concepts object and operational interface. All operational
interfaces must have a structure defined for calling and returning results. Also, an
interface must be related to an object, but an object can have multiple interfaces. The
metamodel naturally includes a target concept for relationships between any two types
as well.

Objects

The management and coordination functions are supported by clusters, capsules, nodes,
nuclei, channels, and basic engineering objects with the following definitions:

e "Cluster: A configuration of basic engineering objects forming a single unit for the

purposes of deactivation, checkpointing, reactivation, recovery and migration" [12,
clause 8.1.1].

e "Capsule: A configuration of engineering objects forming a single unit for the
purpose of encapsulation of processing and storage" [12, clause 8.1.4].

e "Node: A configuration of engineering objects forming a single unit for the pur-
pose of location is space, and which embodies a set of processing, storage and
communication functions" [12, clause 8.1.7].

e "Nucleus: An engineering object which coordinates processing, storage and com-
munication functions for use by other engineering objects within the node to which
it belongs" [12, clause 8.1.6].

e "Basic engineering object: An engineering object that requires the support of a
distributed infrastructure" [12, clause 8.1.1].

The concept of channel bridges between the ODP binding model and the actual
infrastructure objects.

Configuration

The configuration of these objects is illustrated in Figure 4.2. A node contains a set of
capsules. One of the capsules has a special role of being a nucleus of that node. All the
other capsules are bound to the nucleus capsule to get the basic services. The nucleus is
responsible for the node management function. Each capsule contains a set of clusters.
One of the clusters has a special role of being a capsule manager. It is responsible for the
capsule management function. For these purposes, it may request the nucleus for some
services. The capsule manager, or another cluster, may perform the tasks of one or more
cluster managers, with the corresponding functions. All objects are instantiated in such
a way that they have prebound connections to the objects that offer the fundamental
functions for them. This means that all objects are encapsulated into the clusters. Each
cluster is bound to a cluster manager, which in turn is able to request the services of

4.1 ODP infrastructure model from engineering viewpoint 41

the capsule manager. The situation can be made more concrete by using an example: a
segment of virtual memory containing data items can be considered to form a cluster,
and a process represents a capsule; a computer with operating system and applications
can be considered to form a node, and an operating system kernel represents a nucleus.

' N
NODE
‘ (nucleus]
LCAPSULES r{ L
Y
CLUSTERS

lzt:l uster capsule J\d uster

manager| | manager manager

CHANNELS

Figure 4.2: RM-ODP infrastructure objects [12].

As each cluster is indivisible, inter-object communication between objects in the
same cluster may take place in any suitable method. The cluster is the smallest possible
unit of migration and activation, so those actions cannot cause problems. Between
objects in different capsules, either in same or different nodes, a channel is required for
communication.

The granularity of these structures is arbitrary. When a system is described using
these terms, the components that use non-ODP communication methods between each
other are encapsulated within a cluster. A node can represent one computer or a set of
them.

For the computational behaviour of objects, the channel creation is the most funda-
mental infrastructure service. Channels are created by nucleus objects in cooperation
with each other. The channel supports distribution transparent interaction between
engineering objects. This includes, for example,

e operation execution between a client object and a server object,
e a group of objects multi-casting to another group of objects, and

e stream interaction involving multiple producer objects and multiple consumer
objects.

42 4 INFRASTRUCTURE SERVICES

4.2 Using and extending the ODP reference model

The ODP infrastructure model gives a group of requirements for management and
coordination functions for an open, distributed system. However, for example CORBA
does not have such interfaces but in vendor dependent form. The reviewed concepts
and functions give a framework for such recommendations. The management standards
are essential for large scale interoperation, whether federations are formed manually
between organisations, or whether automatic federation establishment is connecting
services. The Pilarcos architecture expects such management functions to exist.

The Pilarcos infrastructure services introduce three fundamental extensions to the
ODP reference model:

e type based, platform independent factories for service types and binding types;
e support for implicit complex bindings with federation transparency; and

o automated deployment of business services comprised of a configuration of service
types and binding types.

The extensions are all related to each other. The third can only be achieved through
the second, which requires the first.

The type based factories — application component deployers working with templates
together with a type driven trader to select the templates and nodes to run on and
binding factories — are based on the type repository capability of translating a type
description to a set of equal but implementation-wise different templates separately for
each node. The type based factories also support directly the programmer concepts of
service type and binding type, thus enhancing the expressive power of programming
languages.

The binding factory creates a channel section and the corresponding channel con-
troller, illustrated in Figure 4.3. Channel controller contains the binding contract in-
formation that is formed by the business service deployers negotiating with the remote
system. This information is used to monitor and manage the stubs, binders, protocol
objects and interceptors in the channel.

The channel controller provides means to manage the binding in type abstractions
and thus in platform independent form. This allows a generic infrastructure object to
be formed for implicit establishment and control of the binding.

In the overall system architecture model, the application binder object is added on
top of the channel layers. The application binder is responsible for initiating the business
service deployment process, taking part into the federation establishment protocol, and
pass on the service invocation when the receivers are deployed - all on behalf of the
application object. The application binder also initiates the channel creation. The
application programming interface supported should be able to provide an implicit
biding model for complex bindings, and the model should be symmetrical for clients and
servers. The invocation interface therefore supports a generic call routine for business
services. The application binders at client and server side of a binding are symmetrical,
i.e., the interfaces support operations needed in either case.

The application object also acts as a policy guard on each interaction related to the
binding on which it is running.

4.3 Business service deployer 43

Policy
repository
Channel
controller
Binding contract
(standalone/copy)
Application
binder
I
|
Stub
Binder
Protocol
object
/
Interceptor

Figure 4.3: Channel section with channel controller; application binder and policy re-
pository.

These extensions are located in the ODP infrastructure as follows. The type based
factories become a part of a nucleus, while application binders are used between capsules
either within a node or in separate nodes. The clusters represent for example CORBA
components and capsules correspond for example to CORBA component assemblies. A
node denotes an administrative domain contolled by a shared nucleus, for example, a
distributed middleware platform of certain technology owned by an organisation.

4.3 Business service deployer

The business service deployer is responsible for deploying a business service requested
by a client. The deployment process requires that the service providing elements are
installed and available at the local system, in most cases not in a running state though.
Each organisation has a private business service deployer.

The business service deployer works under the guidance of a named design and
populates it by instantiating suitable component assemblies found via the computational
assembly trader. The structure and dynamic properties of a design resemble much those
of a business architecture description.

44 4 INFRASTRUCTURE SERVICES

The process is platform independent, but exploits further services that are platform
dependent but support a standard interface for the deployer to delegate tasks through.
These services are traders, type repositories, and type based factories for component
assemblies and bindings.

The population process is complex (in generic form, even NP complete). Each role
in the design represent a placeholder for which a player has to be selected. However,
the selections for each role are not independent from each other. In addition of finding
a suitable candidate to fulfill a role, the process needs to check that the candidates in
each role form a configuration that can be connected together with the available binding
techniques.

In practice, the selection process is organised as follows. First, the business ser-
vice deployer imports from the trader (simultaneously) a set of candidate component
assemblies. The import criteria include

e service type that is either directly named in the role description or can be found
via the local type repository;

e QoS requirements for the service; and
e policy rule requirements for the behaviour.

All these items are needed separately for all interaction partners the role is involved
with.
In the import reply from the trader the deployer needs to receive

o identity of the candidate assembly for retrieving location information; and

e for each service interface, the technical requirements for bindings between the
offered assembly and its peer in the interacting role.

The result of these import operations is a set of candidates for each role, over
which a multicomponent optimisation task should be performed for finding the final
configuration. The goal is to select a reasonably low cost binding to connect assemblies
selected to roles. The selection process terminates with an acceptable solution for the
whole design, and does not try to find the best solution.

The deployer forms for each binding in the design a set of alternative suggestions for
the bindings (and roles involved) to be used by combining information from the offers
to the roles.

In the type repository, a cost must be stored for each binding template. If a binding
template involves a lot of interceptors and redirection, the cost is high; the lowest cost
is for a template for local binding.

For each deployment of a design, an individual design controller is created to take
care of the population process and to reflect the life cycle of the created community
later on. The controller is needed to reassign assemblies to roles that become empty, or
to move the whole community to a new epoch.

More technically, the business service deployer supports the operation for preparing a
business service. The operation needs the parameters service type, business architecture
description in which to play a role, the role to play. The business service deployer
algorithm is presented in Figure 4.4.

4.4 Application component deployer 45

— recetve prepare service with parameters

— create new policy context to the local policy repository for the current usage of a
business architecture

— relrieve design
— create design controller
— for each role in the design

* import a component assembly; selection criteria: suitable external interfaces,
suttable binding type support, accepts the current policy context

* feed imported information to application component deployer which returns an
instantiated component assembly and references to its free interfaces

— for each binding in the design

* create application binder for each endpoint of the binding

* bind the application binder to the primary service interface of the component
assembly

* tell each application binder the binding type and the other application binders
involved for the application binder to create bindings

i case of federation send prepare federation contract message as response to the
initiating application binder

Figure 4.4: The business service deployer algorithm.

4.4 Application component deployer

The application component deployer i1s a template based factory for application com-
ponents. An application component is available as a platform dependent component
assembly package and is stored to a platform specific component repository.

The deployment process allocates resources for running the assembly and keeps
record on the location of individual objects within the assembly.

This service is platform dependent; a more detailed design is described in further
documents on Pilarcos.

4.5 Binding factory

Binding factory is a type based factory for channels. The binding factory gets a request
for establishing a binding i.e. at least a channel controller. The factory is given a
reference to the binding type in type repository. For each type there is defined a set of
templates referred to (component assemblies for implementing bindings). The binding
factory chooses the one that is suitable for its own platform environment. Finally,
the binding factory utilises platform dependent factories (like application component
deployers) to instantiate channel components.
Figure 4.5 shows the actions taken by the binding factory.

46 4 INFRASTRUCTURE SERVICES

— search a channel type from the type repository; the channel type should match the
binding type and the platform requirements

— create a channel controller with reference to current policy context

— create a channel section for each endpoint of the channel within the administrative
domain of this binding factory

feed the free interface locations to the appropriate channel controllers
Figure 4.5: The binding factory algorithm.

4.6 Binding components

The infrastructure exploits two binding related component types that support complex
bindings and their implicit management. These components are application binders
and channel controllers.

Channel controllers are essential for any complex bindings; they provide management
facilities for the channel and allow changes between modes of abstract liaison and a
resource reserving implementation of that liaison.

Where present (e.g., between component assemblies and where a channel extends
over administrative domain boundaries), application binders take the responsibility of
using the channel controller interface for managing the binding on behalf of the applica-
tions. The application binder responsibility is to offer implicit creation and management
of complex bindings, with transparent federation support.

4.6.1 Application binder

Application binder is created by business service deployer for each binding the compon-
ent has according to the computational design.

The application programming interface supported should be able to provide an im-
plicit biding model for complex bindings, and the model should be symmetrical for
clients and servers. The invocation interface therefore supports a generic call routine
for business services. For implementing this operation, the application binder is re-
sponsible for initiating the business service deployment process, taking part into the
federation establishment protocol, and pass on the service invocation when the receiv-
ers are deployed - all on behalf of the application object.

The generic call routine (operation prepare service)

e specifies the called entity in terms of business service in question,
o specifies the suggested policies to be used for that business service,

o expresses the client view of the computational interface and computational binding
model to be used for interacting with the selected business service,

e gathers information for constructing the necessary engineering machinery for ful-
filling the tasks of the binding between the business service interface and the

4.6 Binding components 47

caller; much of this is available in the container of the calling object, except of
computational, information and enterprise level interceptors;

¢ initiates instantiation of the binding machinery and also of a controller object for
that machinery; that machinery may involve federation;

e initiates the business activity through the constructed binding;

Figure 4.6 captures the call routine algorithm.

mmport a business service from the business service broker; the imported informa-
tion contains location for the corresponding business service deployer in the service
providing system

send prepare service to the identified business service deployer
— respond to the negotiation with the peer application binder

call binding factory and pass on information about peer application binder location

Figure 4.6: The application binder algorithm for preparing a business service.

The application binders at client and server side of a binding are symmetrical, i.e.,
the interfaces support operations needed in either case. The application binder also
acts as a policy guard on each interaction related to the binding on which it 1s running.
The invocation process should involve security considerations [29, 31].

The application binder supports also a second interface, an interface for application
binders to talk to each other. The interface is used both for creating a federated binding
and for passing on communication between the clients of application binders. Figure 4.7
captures the mutual application binder communication.

— receive/send message prepare federation from the server’s application binder; the
message contains suggested federation contract information for the established fed-
eration

check the consistency of the suggested contract with the policy repository and if
consistent, enter the federation contract to the policy repository; if the suggestion
18 tnappropriate, send a contersuggestion to the server’s application binder

Figure 4.7: The application binder algorithm for federation establishment.

The federation establishment phase involves creation of federation contracts to the
local policy repositories at each involved domain. The federation contract includes

e service type,
e binding type,

e test for contract breaches,

48 4 INFRASTRUCTURE SERVICES

e protocols for failure recovery and contract breach sanctions, and
e contract terminating behaviour.

After the binding has been established, the application binder has the responsibilities
of

e sending (receiving) operation invocations;
e checking with policy repository whether an interaction is acceptable; and
e checking when there is an obliged interaction to take initiative on.

These actions are part of the mutual application binder protocol.

4.6.2 Channel controller

The channel controller is responsible for creating, deleting, monitoring and controlling
the channel between application binder interfaces at each party. The channel structures
are platform dependent and thus also the control interfaces. There is a need to have a
wide variety of channel templates and the corresponding channel controller templates
available.

The channel controller supports operations for

e changing contract and
e terminating contract and binding.

It uses operations related to platform dependent management interfaces of stubs, bind-
ers, protocol objects and interceptors.

The channel controller contains the federated binding contract that is negotiated by
the application binders. The binding contract includes:

e abstract service type identifier, that allows each administrative domain to access
the related parts of the local type system,

e collectively selected behaviour,

e technical descriptions for interface signatures, which can be differently selected at
each administrative domain,

e communication protocol,

e channel class that expresses the type of channel to be instantiated, allowing each
administrative domain to access local details for stub, binder and interceptor
objects,

e service type specific QoS agreement,

e failure detection and recovery protocols, failure defined as not being able to meet
the QoS agreement,

4.7 Repositories 49

e remuneration protocol,
e channel control interface reference separately for each administrative domain, and

e reference to the corresponding role context in the policy repository; this also
indirectly indicates the corresponding community context.

4.7 Repositories

The repositories collect together components and meta-data about them, type informa-
tion about services and interfaces, templates for instantiation, architecture descriptions
and design patterns, etc.

The sources of these items is an open community of developers; each of them in
principle free to register a new information item to a globally accessible repository.
Multiple versions for the same item can be simultaneously available, and it is up to
the user do decide whether to rush for the newest or stick with more experience. A
gradual process of deprecation of older versions is naturally needed, and finally deletion
of deprecated items from the markets.

Security issues are essential for all those repositories that are used in the binding
process. These repositories should accept new items from only trusted providers, and
have means to authenticate the parties accordingly.

The repositories are best suited to be supported separately by each organisation.
This allows fast access to locally supported items, and a natural gateway to the global
market via federation of the same type of repositories.

4.7.1 Business service brokerage

The business service broker, or a set of interworking business service brokers worldwide,
implement an open marketplace for business services. Various organisations are able
to export their offers to the broker and others able to import metainformation about
those services.

Various constellations of broker servers supported by organisations are here omitted.
There are multiple alternatives with differing scalability properties; however, the broker
constellation is not in focus here.

Within the Pilarcos runtime architecture, the metainformation stored in the broker
captures information needed to retrieve a set of applicable service providers in order to
populate a business level architecture description.

Attributes describing the services within the broker are dependent on the service
type they represent, but focus on business decisions. Examples of appropriate attributes
include service type, price of the service, and framework for quality of service attributes.
The full information model required at this spot is already described as a contract
framework in Chapter 2.

The exploiter of broker is the federated binding protocol, thus, the fundamental re-
quirement for each business service offer it to include an address for the service deployer
able to instantiate the offered service.

50 4 INFRASTRUCTURE SERVICES

The communication channels to the business service broker are fixed. In Pilarcos
architecture, the component running the federated binding protocol (application binder,
see Section 4.6.1) holds the necessary broker address(es) as part of its configuration
information.

4.7.2 Policy repository

A policy is a behaviour restricting decision that is decided by a controlling party and
enforced on the controlled objects; a contract is a behaviour restricting decision that is
mutually agreed by several peers that have no controlling power over each other.

A policy framework captures the areas on which such policy decisions can and should
be made. The policy framework effectively guides and restricts application program-
ming: the behaviour of applications is required to take into consideration the policy
rules defined within their runtime environment.

Policy rules for a system include both rules for application area specific behaviours
and for system services. FEach service type is naturally associated with a possibly
different policy framework.

A policy repository is an organisation-wide hierarchy on behaviour restricting de-
cisions. The hierarchy is structured by levels starting from business areas, stepping
down to constellations for supported services and individual activities. The hierarchy
has branches for each currently running service, and at activity level, especially for
federations where contracts between organisations become stored.

The policy repository has a management interface for

e entering policy frameworks,

e structuring the policy repository hierarchy for organisation, service and interaction
levels using the policy frameworks,

e adding and removing policy objects or contract objects, i.e. contexts, at each
level, and

e changing the contents of an existing context.

The contract objects each represent a policy context in which an application object
is doing its interactions. The policy context includes

e an identifier;
e policy decisions in effect;

e an interface for changing the current rule; possibly involving a renegotiation pro-
tocol with references to involved parties;

o references to contexts this context is inheriting rules from; for example,
organisation-wide rules are not copied but inherited via references.

The hierarchy of policy context include

e policies to govern all applications and infrastructure services within the organisa-
tion;

4.7 Repositories 51

e policies to govern certain service type;
e policies to govern certain binding type; and
e policies to govern a currently valid federation.

This view can be compared with contract aware components [6].

The organisations maintaining policy repositories range from companies to indi-
vidual users. Also, organisations can form a hierarchy. For example, a user can inherit
policies from the company by which he or she is employed.

4.7.3 Design repository

The design repository contains the designs, i.e., computational architecture descriptions
used within the organisation. It supports operations for storing, retrieving and deleting
designs.

The structure of design and the routines exploiting the design information are dis-
cussed in Sections 4.3, 3.2.1, 3.5.1, and 3.5.2.

Designs are in many ways close to architecture descriptions of traditional distributed
systems, and can therefore be modelled with similar methods. For formal modelling
of architectures, a number of architecture description languages (ADLs) have been
developed. The central modelling concepts in typical ADLs are [26]:

e components, units of computation and data storage;

e connectors, which represent interactions between components and rules for these
interactions; and

e configurations, topologies of components and connectors representing a system.

These concepts are suitable for modelling the main elements of designs. The place-
holders for component assemblies can be represented as components, the binding types
as connectors, and whole designs as configurations. The same concepts can also be
applied to business architectures, which makes refinement from enterprise to computa-
tional level easier.

An important aspect of architecture description in Pilarcos is modelling of behaviour.
By behaviour, we mean the abstract protocols obeyed by components and connectors.
On the business architecture level, the need for behaviour modelling is obvious, since it
must be possible to express legal workflows and policies related to them. It is also needed
for designs to ensure compatibility of components, proper functioning of the architecture
and adherence to the business architecture. Some ADLs support behaviour modelling.
These ADLs are typically based on a formal semantic model, such as the 7-calculus [28].
The m-calculus is especially interesting in that it supports mobility, which manifests in
the ADLs based on it as support for dynamic configurations.

Most ADLs have not been created with late binding in mind. They therefore do
not offer direct support for assignment rules (Section 2.2). Assignment rules can, for
instance, state dependencies between object identities and roles which must be respected
when populating the roles with objects. The constraints offered by some ADLs come
close, but cannot be used as such. Other criteria included in the assignment rules are

52 4 INFRASTRUCTURE SERVICES

interface and behaviour compatibility, suitability of non-functional attributes (regarding
e.g. QoS), acceptance of current policy context, and technical compatibility.

We may summarise the desirable features for an architecture description language
in Pilarcos as follows:

e implementation independence;

e refinement, at least in the form of compositionality;

e modelling and analysis of behaviour;

e support for dynamic configurations;

e separation of provided and required interfaces for composability;

o freely definable connectors, with a potentially unlimited number of endpoints; and
e constraints for types and identities.

ADLs that are particularly interesting from the Pilarcos point of view are Dar-
win [24], Olan [3], LEDA [7] and Wright [1].

Of these, Darwin is a fairly basic configuration language with support for some
dynamism. A CORBA-based execution environment [25] has been developed for it.

Olan is a distributed component environment that uses an ADL based on Darwin.
It is perhaps the most complete component environment available. Like Darwin, it does
not have any facilities for modelling or analysing behaviour.

LEDA is anew ADL based on the m-calculus, providing for behaviour modelling with
support for dynamic configurations and refinement. However, at the time of writing,
no tools were publicly available for it.

The Wright ADL has good support for static analysis, and unlike Darwin and LEDA,
it clearly separates components and connectors. Wright supports behaviour descriptions
based on CSP [9], as well as architectural families (styles) and constraints for them. As
a downside, it does not support any dynamism in configurations.

The problem with ADLs is that they are relatively immature, as they stem from
academic settings and have not been extensively applied to real-world problems. Tool
support is most often sparse, and different ADLs are largely incompatible. Tt seems
that no one ADL as such is usable for Pilarcos architecture descriptions. Still, they
are valuable sources of experience for developing information models and notations for
architecture descriptions in Pilarcos.

4.7.4 Computational component assembly trader

In the service deployment process within each organisation, a design is populated with
component assemblies. In this population process a trader is used to choose between
available assemblies, thus, the trader collects together logically similar component as-
semblies that are realised on different platforms.

The exports to the trader originate from the organisation supporting the trader and
a prerequisite is that the components exported are already installed and registered to
the assembly repository.

The traded offers include

4.7 Repositories 53

e service interfaces of the assembly,
e service types supported by the assembly,

e QoS information for each service type supported,

technical requirements for the bindings needed to communicate with this assembly,
and

policy rules applied or applicable to this assembly.

4.7.5 Type repository

The type repository services [15] mediate type information that is available at run-time
and at design time. The main users for this kind of metainformation are traders (and
brokers), and type based factories.

For type repositories in Pilarcos architecture, the essential function is to support
information on relationships between types and templates. Types serve as classifiers
for somewhat similar templates. A type description is used in negotiation protocols
instead of templates; it represent a global understanding of an entity. A template
is a relevant implementation related version of the corresponding type; a template is
always associated with a known platform. Thus the type repository maps together the
negotiation language and the implementation instructions across various technology
domains.

To be more precise, traders use type repositories for checking conformance between
object interfaces. Traders could include the type management facilities themselves, but
separation of these tasks to an independent module provides flexibility of configuration
and supports independent evolution of the type systems. Type based factories use
type repositories for selecting a suitable implementation to instantiate for a task. For
example, a binding factory uses type repository for matching generic binding types to
specific channel configurations.

The target concepts described in a type repository include service types, component
types, binding types and their relationships to designs, component templates and chan-
nel templates. The actual templates are stored to assembly repository; the relationships
stored only give references to them. Different type systems may have different sets of
target concepts. For the ODP and CORBA target concepts and their comparison,
see [15].

A service type definition includes

e an interface description interpreted as an abstract interface gathering only the
common and essential features of the real services the type represents (it is a
predicate inducing a group of technically slightly differing services);

e definition of epoch changes if applicable;

QoS attribute framework related to this service type;

policy framework related to this service type.

A binding type definition includes

54 4 INFRASTRUCTURE SERVICES

e set of roles that can be bound together, especially that of the requesting client,
e channel types that can be used,

e attributes for choosing between channel types, i.e., selections for distribution
transparencies, QoS attributes and security attributes.

The channel type in turn includes

o references to a set of channel templates, denoting a configuration of binder, stub
and protocol objects, and

e a reference to a channel controller template.

The templates are stored to the assembly repository.

As the templates representing the same type fall onto multiple technology domains,
the relationship between the type and the template may be decorated with some trans-
lation information or even references to transformation components, i.e., interceptors.
Thus, the federated binding process has support for automatic interceptor insertion to
communication channels, i.e., the architecture gains automated interoperability.

In addition to local relationships between various templates for a type, there are
relationships between type representations in separate type repositories. Mainly, these
relationships are equalities, or require simple transformations like mapping of the type
name from one repository to another. The purpose of these relationships is to facilitate
federation of type repositories, thus enlargening the domain on which type conformance
testing of interfaces can be performed.

A common storage service is to be used as storage for the type repository, exten-
ded with new target concepts required by Pilarcos architecture. These are listed in
Section 4.7.6.

4.7.6 Common storage service for repositories

The Pilarcos architecture introduces a number of metainformation repositories, each of
which is supported with a metamodel.

The metamodel captures some target concepts, structures for storing them and
rules for their relationships. The requirements are equal to those on CORBA MOF
service [35]. In fact, a MOF server with proprietary metamodel suits the purpose.

The repositories in Pilarcos architecture needing such a common storage service are
the business service type repository supporting business service brokers, type repository
that supports a) component trader in the deployment process, b) type based binding
factory, and ¢) type based component assembly factory, and finally design repository.
We can capture the needs of these services into items needed for instantiation and for
binding.

For service instantiation purposes, the Pilarcos repository service need to support
hierarchy of target concepts

e business architecture description,

e service type,

4.7 Repositories %)

e design,
e interface type, and
e interface.

For binding establishment purposes, the Pilarcos repository service need to support
a hierarchy of target concepts

¢ binding type, that defines the set of computational components and the protocol
between them as a set of interfaces,

e channel type, that defines the distribution transparencies supported, QoS attrib-
utes to be agreed and security attributes involved,

e channel template that contain binder, stub and protocol object templates; and
e channel controller template.

The last two form a pair that is stored to the assembly repository and only referred to
from the type repository.
A more detailed design shall define structures for storing these target concepts.

4.7.7 Business type repository

Business type repository is the type repository supporting business service brokerage.
It has the same implementation technique as any other type repository, but its main
responsibility is to store business architecture descriptions.

Each trader or broker in the system is supported by a type repository, but a single
type repository possibly serves multiple traders or brokers.

4.7.8 Component assembly repository

Computational components can be produced either by Pilarcos tools or some other
method. The component concept in itself is technology independent. However, the
engineering aspects and communication capabilities reveal the technology choice (like
EJB [40], CCM [37]).

A component includes

e a set of engineering object templates or references to such templates within a
known repository;

e configuration instructions, i.e., rules for locating the components at instantiation
time;

e meta-data describing the interfaces supported, strategy choices supported, man-
agement interfaces supported, references to architecture roles supported, proper-
ties like QoS attributes, etc.

56 4 INFRASTRUCTURE SERVICES

In Pilarcos architecture, a component assembly is selected to be a primitive building
block. An assembly capsules technology domain dependent aspects of configuration and
communication to a package that is run within a single computer or within a distributed
computing node under single administration. The assembly can even encapsulate legacy
software.

A native Pilarcos software component is managed with identical procedures and
metainformation as, for example, a CORBA component assembly.

4.8 Management services

In general, management services in a distributed system environment cover

o failure management, including failure discovery and recovery, and instrumentation
of managed objects with failure management mechanisms;

e configuration management, including installation, instantiation, activation and
deactivation of various object constellations, and also including dynamic changes
within these constellations;

e accounting management;

e performance management, including instrumentation of communication mechan-
isms and computing mechanisms with performance monitors and controllers that
are able to select configurations for various performance needs;

e security management.

The platform management services (listed in Section 4.1) answering to these needs
are expected to have defined interfaces on all platforms on which Pilarcos services are
implemented. For example, in CORBA environment, it is necessary to develop further
facilities on this area as the solutions provided are vendor dependent.

The entities subject to the listed management services include the distributed plat-
form itself (e.g., ORB), and various components of it (e.g., object adapters, processes,
and other resources in the system), connections, and objects in general.

An essential management service is that of supporting autonomous domains and
their management information in the system. This aspect is addressed by Pilarcos
brokers, service deployers, component traders, and type based factories able to differ-
entiate between various platform types.

The application management services are effectively created by the additional Pil-
arcos services. The same functions now apply specifically on for example application
peer objects, interfaces, designs, and interworking and federation relationships.

4.9 Development issues

The Pilarcos project is by choice developing its pilot tools and services in the CORBA
environment. However, the model is equally well applicable to other component sys-
tems, like Java and EJB (Enterprise Java Beans). In fact, one of the goals for the

presented model is to provide an automated method of creating bridges across techno-
logy boundaries.

A major concern is that of security. The architecture approach uses active com-
ponents that themselves include features for security [23]. In addition to that, further
trust model is needed between repositories that store components. Either a non-trusted
repository can provide defective or destructive components, or a trustful repository can
accept to involuntarily mediate such components. A qualification system [8] is required
to form a network of trusted sources for services [2].

Chapter 5

Conclusion

The Pilarcos architecture supports large, inter-organisational component systems. Es-
sential aspects supported include

e globally understood business architecture descriptions as a basis for cooperation
agreements that support interorganisational applications;

e a protocol for sovereign systems to dynamically form federations based on the
business architecture descriptions;

¢ a locally implementable mechanism for deploying services needed as part of the
business architecture;

e a locally administrable mechanism for managing heterogeneity and distribution
of service implementations within organisational IT systems;

e support for flexible evolution of services; this leads to changes in the way design
time and runtime actions are seen and how they interact;

e more powerful programming primitives offered for programmers, especially for
managing complex communication relationships.

The Pilarcos architecture requires a set of new middleware services to be introduced.
These can be implemented on each applicable platform like any application program,
and therefore, no platform is really contradictory for this design. However, most plat-
form architectures, like CORBA, do not support all concepts essential for the Pilarcos
architecture. For example, explicit difference between type and template concepts, or
differentiation between client and server role interfaces are in most cases missing.

References

[1] ALLeN, R. J. A Formal Approach to Software Architecture. Ph.D. thesis; School
of Computer Science, Carnegie Mellon University, Pittsburgh, May 1997.

[2] ArsuaD, K., ATiF, Y., AND SivaL, M. A CORBA based Framework for Trusted
E-commerce Transactions. In ITEEE Proceedings of Third International Conference
on Enterprise Distributed Object Computing (1999).

[3] BeLLIsSSARD, L., Patma, N. D.; aND FELIOT, D. The Olan architecture definition
language. Tech. rep., INRIA, 2000. C3DS Technical Report 24.

[4] BERRY, A., aAND Kona, Q. A General Resource Discovery System for Open
Distributed Processing. In Open Distributed Processing; Frperiences with distrib-
uted environments, Proc. of the 3rd IFIP TC6/WG 6.1 International Conference
on Open Distributed Processing (Brisbane, Australia, 1995), Chapman and Hall,
pp. 79-90.

[5] BERRY, A., AND Ravymonn, K. The A1V Architecture Model. In Open Distrib-
uted Processing; Frperiences with distributed environments, Proc. of the 3rd IFIP
TC6/WG 6.1 International Conference on Open Distributed Processing (Brisbane,
Australia, 1995), Chapman and Hall, pp. 55-67.

[6] BEUGNARD, A., JEZEQUEL, J.-M., PLouzEAU, N., AND WATKINS, D. Making
components contract aware. IEEE Computer 32, 7 (July 1999), 38 — 45.

[7] CanaL, C., PIMENTEL, E., AND TROYA, J. M. Specification and Refinement of
Dynamic Software Architectures. In First Working IFIP Conference on Software
Architecture (1999), Kluwer Academic Publishers.

[8] GuosH, A. Certifying Security of Components Used in Electronic Commerce.
http://www.rstcopr.com.

[9] Hoare, C. A. R. Communicating Sequential Processes. Prentice-Hall Interna-
tional, Englewood Cliffs, 1990.

[10] ISO/IEC JTC1. Information Technology — Open Systems Interconnection, Dala
Management and Open Distributed Processing. Reference Model of Open Distrib-
uted Processing. Part 1: Querview, 1996. 1S10746-1.

62

[11]

[12]

[22]

REFERENCES

ISO/TEC JTCI1. Information Technology — Open Systems Interconnection, Data
Management and Open Distributed Processing. Reference Model of Open Distrib-
uted Processing. Part 2: Foundations, 1996. 1S10746-2.

ISO/TEC JTCI1. Information Technology — Open Systems Inierconnection, Data
Management and Open Distributed Processing. Reference Model of Open Distrib-
uted Processing. Part 3: Architecture, 1996. 1S10746-3.

ISO/TEC JTCI1. Information Technology — Open Systems Inierconnection, Data
Management and Open Distributed Processing. Reference Model of Open Distrib-
uted Processing. Part 4: Architectural Semantics, 1996. 1S10746-4.

ISO/TEC JTCI1. Information Technology — Open Systems Interconnection, Data
Management and Open Distributed Processing. Reference Model of Open Distrib-
uted Processing, 1996. 1S10746.

ISO/TEC JTCI1. Information Technology — Open Systems Inierconnection, Data
Management and Open Distributed Processing. Reference Model of Open Distrib-
uted Processing. ODP Type repository function, 1997. 1S14746.

ISO/TEC JTCI1. Information Technology — Open Systems Interconnection, Data
Management and Open Distributed Processing. Reference Model of Open Distrib-
uted Processing. ODP Trading function. Part 1: Specification, 1997. 1S13235-1.

ISO/IEC JTCL1. Information Technology — Open Systems Interconnection, Data
Management and Open Distributed Processing — ODP Interface References and
Binding, Jan. 1998. 1S14753.

ISO/TEC JTCL1. Information Technology — Open Systems Interconnection, Data
Management and Open Distributed Processing. ODP FEnterprise Language, June
2000. CD13235.

KAiukipuro, P., MARTTINEN, L., AND KUuTvONEN, L. Reaching Interoperabil-
ity through ODP type framework. In TINA’96 Conference: The Convergence of
Telecommunications and Distributed Computing Technologies (Aug. 1996), VDE
Verlag, pp. 283 — 284. Extended abstract.

KAuKIPURO, P. Performance Modeling Framework for CORBA Based Distributed
Systems. PhD thesis, Department of Computer Science, University of Helsinki,
2000.

Kitson, B. Intercessory Objects within Channels. In The Third International
Conference on Open Distributed Processing — Experiences with distributed envir-
onments (Brisbane, Australia, 1995), K. Raymond and L. Armstrong, Eds., Chap-
mann & Hall, pp. 233 — 244.

LeEprEAU, J., HiBLER, M., ForD, B., aAND Law, J. In-kernel
servers on Mach 3.0: Implementation and performance. In Third
USENIX Mach Symposium (USA, Apr. 1993), pp. 39 — 55, Also
http://www.usenix.org/publications/library/proceedings/mach3/lepreau.html.

REFERENCES 63

[23] Liu, D., AND WIEDERHOLD, G. Chaos: An active security mediation system.

[24] MAGEE, J., Duray, N., EISENBACH, S., AND KRAMER, J. Specifying Distrib-
uted Software Architectures. In Fifth European Software Engineering Conference
ESEC’95 (Barcelona, Sept. 1995).

[25] MaGER, J., TsenG, A., anD Kramer, J. Composing distributed objects in
CORBA. In Proceedings of the Third International Symposium on Autonomous
Decentralized Systems (Berlin, Germany, 9-11 Apr. 1997), IEEE, pp. 257-63.

[26] MEDVIDOVIC, N., AND TAYLOR, R. N. A framework for classifying and comparing
architecture description languages. In ESEC/FSE ’97 (1997), M. Jazayeri and
H. Schauer, Eds., vol. 1301 of Lecture Notes in Computer Science, Springer /
ACM Press, pp. 60-76.

[27] MEeYER, B., aAND Porien, C. Flexible management of ANSAware applications.
In The Third International Conference on Open Distributed Processing — FEzperi-
ences with distributed environments (Brisbane, Australia, 1995), K. Raymond and
L. Armstrong, Eds., Chapmann & Hall, pp. 271 — 282.

[28] MILNER, R., PARROW, J., AND WALKER, D. A calculus of mobile processes.
Information and Computation 100, 1 (Sept. 1992), 1-77.

[29] OBJECT MANAGEMENT GROUP. CORBA Security, Dec. 1995. Document 95-12-1.
Also http://www.omg.org/docs/1995/95-12-01.ps.

[30] OBJECT MANAGEMENT GROUP. OMG Business Application Architecture, Mar.
1995. http://www.tiac.net/users/jsuth/oopsla/bowp2.html.

[31] OBJECT MANAGEMENT GROUP. Common Secure Interoperablity, July 1996. Doc-
ument orbos/96-06-20. Also http://www.omg.org/docs/orbos/96-06-20.ps.

[32] OBJECT MANAGEMENT GROUP. The Common Object Request Broker: Architec-
ture and Specification, May 1996. OMG Document No. 91-12-1 (Revision 2.1).

[33] OBJECT MANAGEMENT GROUP. Common Facilities RFP-5: Meta-Object Facility,
1997. OMG TC Document cf/96-05-02.

[34] OBJECT MANAGEMENT GROUP. UML Semantics, Sept. 1997. OMG Document No.
ad/97-08-04 (Revision 1.1.). Also http://www.omg.org/pub/docs/ad/97-08-04.ps.

[35] OBIECT MANAGEMENT GROUP. Common Facilities RFP-5: Meta-Object Facility,
1998. OMG TC Document cf/96-05-02.

[36] OBJECT MANAGEMENT GROUP. OMG, Workflow Management Facility, 1998.
OMG Document bom /98-06-07.

[37] OBIECT MANAGEMENT GROUP. CORBA Component Model - Volume 1. Fram-
ingham, MA, USA, 1999. OMG Document orbos/99-07-01.

64 REFERENCES

[38] Oskiewicz, E., AND EDwWARDS, N. A Model for Interface Groups. Tech.
Rep. APM.1002.01, APM, May 1994. Also http://www.ansa.co.uk/phase3-doc-
root /approved/APM.1002.01.html.

[39] SLoman, M., MaGEg, J., TwipLE, K., AND KrRAMER, J. An Architecture for
Managing Distributed Systems. In Fourth TEEFE Workshop on Future Trends of
Distributed Computing Systems (Lisbon, Portugal, Sept. 1993), IEEE Computer
Society Press, pp. 40 — 46.

[40] SUN MicrosysTEMS, INC. Enterprise JavaBeans Specification vi.1, 1999.

[41] TorvaLDS, L. Linux: a Portable Operating System. Master’s thesis, Department
of Computer Science, University of Helsinki, Jan. 1997. Report C-1997-12.

[42] VoGEL, A., KERHERVE, B., vON BocHMANN, G., AND GECsEL, J. Distributed
Multimedia Application and Quality of Service — A Survey. TEEFE Multimedia 2,
2 (Summer 1995), 10 - 19.

REFERENCES

65

ISSN -
ISBN -
Helsinki 2001

