
Using Mobile and Intelligent Agents to Support Nomadic Users
Stefano Campadello1, Heikki Helin2, Oskari Koskimies1, Pauli Misikangas1, Mikko Mäkelä1, Kimmo Raatikainen1

1Department of Computer Science, P.O. Box 26 (Teollisuuskatu 23), FIN-00014 UNIVERSITY OF HELSINKI, Finland

2Sonera Ltd, P.O. Box 970 (Teollisuuskatu 13), FIN-00051 SONERA, Finland

Email: {stefano.campadello, oskari.koskimies, pauli.misikangas, mikko.makela,
kimmo.raatikainen}@cs.helsinki.fi, heikki.j.helin@sonera.fi

Abstract

The environment of nomadic computing is very different
from that of traditional distributed systems today. The
variety of mobile workstations, handheld devices, and smart
phones, which nomadic users use to access data services in
the Internet, increases at growing rate. The outcome is new
demands for adaptability of data services. Agent technology
is one of the software solutions that may be used to fulfill
the demand of “anytime-anywhere-anyhow” access to data
services. The research project Monads addresses some of
the fundamental challenges in supporting nomadic
applications: adaptability to available computing and
communication resources that vary in tempo-spatial space
and short-term (1-30 minutes) predictions of available
resources. In addition to adaptability and predictions,
efficient agent communication in wireless environments is a
mandatory prerequisite.

1. Introduction
Current information services based on the Internet,
such as the WWW, are designed for workstations in
fixed wireline networks. Wireless data services—
current GSM Data Service as well as GPRS, UMTS,
IMT-2000, wireless ATM and various satellite
systems—enrich the options for communications.
Unfortunately, the current Internet solutions are not
able to fulfill all the needs of nomadic users.
According to Prof. Leonard Kleinrock [1], “Nomadic
computing and communications will dramatically
change the way people access information—and a
paradigm shift in thinking about applications of the
technologies involved. It exploits the advanced
technologies of wireless, the Internet, global
positioning systems, portable and distributed
computing to provide anytime, anywhere access. It is
beginning to happen, but it makes everything much
harder for the vendors.” The benefits include increased
productivity, “the personal touch”, personal
environment, interactivity, setting.
The environment of mobile computing is in many
respects very different from the environment of the
traditional distributed systems of today. Bandwidth,
latency, delay, error rate, interference, interoperability,
computing power, quality of display, and other non-
functional parameters may change dramatically when
a nomadic end-user moves from one location to

another—from one computing environment to
another, for example from a wired LAN via a wireless
LAN to a GPRS/UMTS network. The variety of
mobile workstations, handheld devices, and smart
phones, which nomadic users use to access Internet
services, increases at a growing rate. The CPU power,
the quality of display, the amount of memory, software
(e.g. operating system, applications), hardware
configuration (e.g. printers, CDs), among other things
ranges from a very low performance equipment (e.g.
hand held organizer, PDA) up to very high
performance laptop PCs. All these cause new demands
for adaptability of data services. For example, palmtop
PCs cannot properly display high quality images
designed to be looked at on high resolution displays,
and as nomadic users will be charged based on the
amount of data transmitted over the GPRS network,
they will have to pay for bits that are totally useless for
them.
Confronted with these circumstances, the nomadic
end-user would benefit from having the following
functionality provided by the infrastructure:
Information about expected performance provided by
agents, intelligent agents controlling the transfer
operations, a condition-based control policy, capability
provided by intelligent agents to work in a
disconnected mode, advanced error recovery methods,
and adaptability.
The ability to automatically adjust to changes in the
environment mentioned above in a transparent and
integrated fashion is essential for nomadicity—
nomadic end-users are usually professionals in other
areas than computing. Furthermore, today’s
distributed systems are already very complex to use as
a productive tool; thus, nomadic end-users need all the
support, which an agent based distributed system could
deliver. Adaptability to the changes in the
environment of nomadic end-users is the key issue.
Intelligent agents could play a significant role in
implementing adaptability. One agent alone is not
always able to make the decision how to adapt, and
therefore adaptation is a co-operation effort carried out
by several agents. Therefore, there should be at least
some level of cooperation between adapting agents.
Software agent technology has gained a lot of interest
in the recent years. It is widely regarded as a

promising tool that may solve many current problems
met in mobile distributed systems. However, agent
technology has not yet been extensively studied in the
context of nomadic users, which exhibits a unique
problem space.
The research project Monads examines adaptation
agents for nomadic users. In the project we have
designed a software architecture based on agents and
we are currently implementing its prototypes. Our goal
is not to develop a new agent system; instead, we are
extending existing systems with mobility-oriented
features. The Monads architecture is based on the
Mowgli communications architecture [2] that takes
care of data transmission issues in wireless
environments. In addition, we have made use of
existing solutions, such as OMG [3] and FIPA
specifications [4] as well as Java RMI [5] as far as
possible. However, direct use was not sufficient but
enhancements for wireless environments were
necessary [6, 7, 8]. Currently we are using Jade [9] as
the underlying agent system.
The research field of agent technology is huge.
Therefore, the Monads project has concentrated on the
needs of nomadic users and on adaptability. By
adaptability we primarily mean the ways in which
services adapt themselves to properties of terminal
equipment and to characteristics of communications.
This involves both mobile and intelligent agents as
well as learning and predicting temporary changes in
the available Quality-of-Service along the
communications paths. The fundamental challenge in
nomadic computing is dynamic adaptation in the triad
service–terminal–connectivity (see Figure 1) according
to preferences of the end-user.
Dynamic adaptation of a service to the properties of
terminal equipment and available communication
infrastructure is an attractive feature. To give an
example: When the connection is slow, an e-mail
agent does not fetch a whole mail folder to a mobile
terminal but only the headers and the user can select
which mail entries are to be fetched. The faster
connection enables mail folders to be fetched
automatically to the mobile terminal. The same kind of
scenario goes with Web browsing. When the network
connection is slow enough, the browser agent may
automatically use different kinds of compression
methods or even refuse to fetch certain objects.
The rest of the paper is organized as follows. In
Sections 2 and 3 we address the key areas of research
and development: optimizing communications in
wireless environments and predicting Quality-of-
Service using intelligent agents. Finally, in Section 4
we state our conclusions.

2. Optimization of Communications
When agents supporting nomadic users are developed,
optimization of agent communication for wireless
environments is one of the key issues. In this section
we discuss agent communication and its optimization.
We also give brief descriptions of some
communication services available in the Monads agent
platform.

adaptativity

Communications Agent

Palvelu-
agentti

Service
Agent

Communications Infrastructure

Service
Terminal

Equipment

adaptativity

adaptativity

co-operation

User
Interface

Agent

User
Interface

Agent

User
Interface

Agent

Terminal
Equipment

Terminal
Equipment

Service
ServiceService

ServiceServiceService
Service

Service
Agent

Service
Agent

Service
Agent

Service
Agent

Service
Agent

Service
Agent

Communications AgentCommunications Agent

Communications Infrastructure
Communications Infrastructure

Figure 1: Monads Adaptation Framework

2.1 Agent Communication in Wireless
Environments

Communication between agents can be divided into
four layers [7]:
1. The Interaction Protocol Layer contains high

level protocols for an interaction between the
communicating parties. Various negotiation
protocols and communication patterns, such as
FIPA interaction protocols [10], belong to this
layer.

2. The Communication Language Layer defines the
content of messages exchanged between the
parties. Examples of agent communication
languages belonging to this layer include FIPA
ACL [10] and KQML [11].

3. The Message Transport Layer deals with
messaging protocols such as HTTP [12], Java
RMI [5], GIOP [13], and higher level WAP [14]
protocols.

4. The Transport and Signaling Protocol Layer
implements network transport mechanisms, such
as TCP/IP, lower level WAP protocols, GSM
Short Message Service, and MDCP [2, 15].

When agent communication is implemented for
wireless environments, optimizations are needed in
each layer. The research project Monads—together
with its companion projects (Mowgli, IWTCP,
wCORBA [16])—addresses optimization of
communication over wireless networks. In FIPA we
are actively involved in nomadic application support

and in bit-efficient ACL. In OMG [3] we participate in
a proposal for wireless access and terminal mobility in
CORBA [17, 18]. In IETF we work in the PILC
working group [19] that address the problems of TCP

in low-bandwidth/long-latency networks. In addition,
we have obtained interesting results in improving the
performance of Java 2 RMI in wireless environments
[8].

MDCP

Wireless
Network

Wireline
Network

Fixed Network HostMobile Host

IIOP
TCP/IP

Agent Platform

IIOP
TCP/IP

Gateway Host

MDCP

Agent
Platform

Agent
Platform

QoS Prediction

Monads Communication
Services

Monads Communication
Services

Agent Agent Agent Agent Agent
Agent

Figure 2: Monads Communication Architecture

On the interaction protocol layer one possibility of
optimizing agent communication is to redesign
communications patterns. Instead of sending many
small messages, coupling several messages together
into a single message can improve the efficiency of
link usage significantly.
Optimization in the communication language layer
includes compression and conversion between media
types. For example, bit-efficient representation of
FIPA ACL may utilize the link usage more efficiently
than string-based representation. In addition to
efficient coding of ACL messages, the actual content
of the message should also be compressed or converted
to a more appropriate form, if possible.
The message transport layer protocols should also be
optimized. Protocols like IIOP or Java RMI can be
used as message transport protocols but they are quite
inefficient in wireless environments. Both of them
have a high protocol overhead.
Location transparency in wireless environments needs
special support. To name an example, disconnections
of a wireless link should be hidden from
communicating agents so that they can be found
efficiently even if the mobile device is reconfigured
after link disconnection. The message transport layer
should allow agents to use the same identifiers even if
the IP-address of the mobile device changes.
The transport layer should provide an efficient and
reliable transport service. It should be transparent to
the agent. The transport layer could, for example,
automatically select the appropriate protocol to use.
When the mobile device is disconnected, the transport

layer may use SMS to deliver messages, if such a
service is available.
Another important feature of a wireless-aware
communication system is failure transparency. The
transport layer should hide transient connection
failures from agents. Although the transport layer
should hide the effects of mobility and a wireless
environment as far as possible, it should enable some
kind of control to agents. That is, if an agent knows
that it is operating in a wireless environment, it should
be able to control its usage of a wireless link.

2.2 Monads Communication Services

The Monads Communication Services are used for
communication between agents, agent systems and
users, and for transporting agents between Monads
agent platforms. Figure 2 depicts the Monads
communication architecture, in which MDCP [2, 15]
is used as a wireless transport and signaling protocol.
On a higher level, ACL communication between
agents is optimized by using bit-efficient, tokenized
FIPA ACL [20]. The tokenized encoding reduces the
overhead of the rather verbose string-encoded ACL
headers to a minimum. Similar syntax-based encoding
techniques are used for example to optimize HTTP
[21] and XML [22]. Additional improvements in ACL
messaging can be obtained by utilizing information
about the communication pattern that can be used to
further optimize communication.
Java RMI is the standard communication method of
distributed computing in Java. It is also utilized by
most Java-based agent platforms as the message

transport layer. Its efficiency in wireless environments
is therefore crucial. Unfortunately, due to its high
protocol overhead, both in data traffic and in round-

trips, Java RMI is poorly suited to wireless
communication. However, it can be optimized without

Client
Agent
Client
Agent

QoS
Prediction

Agent

QoS
Prediction

Agent

Route
Modeler
Agent

Route
Modeler
Agent

QoS
Modeler
Agent

QoS
Modeler
Agent

Perception
Service

Perception
Service

QoS
Management

QoS
Management

Location
Service

Location
Service

LogLog

A B B C

C D D E

A

B

C

D
E

F
G

B

A C

B D G

A:1
C:3

A:1
C:1

C:2

C:1
A:1

C:1

Future QoS?

QoS at given
location and time?

Future location?

QoS?
 Location?
 Time?

Reached
waypoints?

QoS History

Current location:
on straight A..B at
point x

Builds

BuildsBuilds

Location, speed

Waypoint Map

QoS ModelRoute Model

GPS

Figure 3: Learning and predicting Quality-of-Service

breaking compatibility with Java RMI specification,
and with minimal changes to existing software and
network hosts. New software is necessary only at the
mobile terminal and at its access point to the fixed
network. This is possible by utilizing mediator
technology, which is widely exploited in wireless
communications. In our prototype implementation, the
number of round-trips for a simple invocation was
reduced to one third, and the time required to complete
the invocation was reduced by 73%. In addition, we
can hide temporary disconnection from agents, and
mobile-aware agents can attach communication
attributes, such as priority, to invocations.
The Monads Agent Transfer Service allows agents to
move between Monads agent systems. The service is
optimized for wireless links by compressing data and
minimizing protocol overhead, and is used for
transferring agents between a mobile node and the
fixed network. For agent transfers within the fixed
network, the transfer service offered by the underlying
platform is usually used. If transfer to a disconnected
host is attempted, the agent is blocked until the host is
available, or (if the agent is mobile-aware) until a
specified timeout has occurred.

3. Adaptation by Learning
In the Monads adaptation, adaptation is mainly
achieved by learning. So far, our main focus has been
on learning to predict Quality-of-Service (Section 3.1)
[23]. However, various other things about the
environment and behavior of the user can also be
learned and used for adaptation. For instance, by
observing the order in which the user reads his/her e-
mails, we could learn which e-mails should be sent
first.
It is quite easy to find uses for learning, but putting
ideas into practice may be a difficult and time-
consuming task. Learning agents are usually ad hoc
systems, the learning algorithm written directly into
the agent program code and parameters tuned by hand
for certain learning task. The obvious disadvantage of
this kind of programming practice is that the agent
cannot be used for any other learning task without
modifying the program code. We have used a lot of
design efforts to get rid of this problem. As a result,
we have a system architecture that supports learning
and knowledge sharing. The most important
components of the Monads learning services are
briefly described in Section 3.2.

3.1 Predicting Quality-of-Service

Software systems that are to be used in wireless
environments should be able to adapt to sudden
changes in the quality of data transmission over
wireless connections. As a minimum, a system should
detect when current data transmission tasks may not
be completed any longer in a reasonable amount of
time due to temporary changes in the QoS. More
sophisticated systems could try to adapt to the current
QoS by using special data filtering and compression
methods, and to refuse to accept requests that cannot
be fulfilled within a certain time limit. A good
example is a Web browsing agent that automatically
shrinks or ignores large images on the requested Web
pages when the QoS is not good enough. However,
quite often an adaptation that is started right after a
change in QoS is detected comes too late. This is
especially true when the connectivity was just lost—
nothing can be done after detection of a disconnection,
but something could have been done beforehand if the
system would have been able to predict the
disconnection.
Predicting changes in QoS of wireless links will be
one of the fundamental requirements for future
systems that are supposed to do intelligent adaptation
in wireless environments. Estimates of future QoS can
be used, for example,
• in scheduling decisions, e.g. which tasks are

allowed to use bandwidth when the connection is
about to be lost,

• in data prefetching, e.g. download something
beforehand while the connection is still good, and

• in connection management, e.g. close the
connection immediately to save expenses because
the QoS will be inferior during the next 5
minutes.

We believe that predictions of useful accuracy can be
made by learning how quantities like time of day, day
of week, past QoS values, and location of the terminal
affect the QoS.
We have divided the problem of QoS prediction into
two sub-problems: predicting terminal movement, and
predicting QoS at a given location. The sub-problems
are handled by two learning agents, called Route
Modeler Agent and QoS Modeler Agent, that actively
collect data from the environment and build/update
models that are used for prediction; see Figure 3.
Information about the current location and QoS is
produced by Location Service and QoS Management
Service, and is delivered to modeler agents via
Perception Service that is described in the next
section. Both models are based on the use of
waypoints; instead of expressing a location as
coordinates, it is given as a point on a straight line

between two waypoints. This reduces necessary
calculation and speeds up learning.
An intelligent agent called QoS Prediction Agent
combines the predictions of future location and QoS. It
provides answers to questions like
• what is the expected amount of data we can

transfer within the next t seconds?
• what is the expected time to transfer x kilobytes of

data?
• what is the probability that we can successfully

transfer x kilobytes of data within the next t
seconds?

Application agents can then adapt their behavior
according to the answers. For example, an e-mail
agent may decide not to send a large file attached to an
e-mail automatically, because of prediction that
transferring that file would take at least 3 minutes with
90% certainty. The QoS Prediction Agent is also
responsible for choosing between alternative ways to
predict movement and QoS. For example, sometimes a
calendar agent knows best where the user is going.
The QoS Prediction Agent may also inform other
agents when the QoS is about to change significantly.

3.2 Monads Learning Services

The Perception Service is responsible for collecting
values of perceptions within some time intervals and
storing the values. By perception we mean anything
that can be observed and be of use for learning agents.
This may be, for example, information about system
events or the status of some continuous or discrete
quantity such as the battery level of a laptop computer
or communication bandwidth. This centralized
handling of perceptions offers many advantages.
Decisions on which parts of the collected data should
be flushed and when, are much easier to do with
centralized data than if all agents had to do this by
themselves. Further, previously unknown correlations
are more likely to be found with this approach. Also,
refining data (e.g. clustering) and avoiding
overlapping data is easier.
The Learning Service allows the definition of new
learning tasks and offers several learning algorithms
that can be used to solve those tasks. A learning task
consists of one or more input attributes that are used to
decide the value of a single output attribute. Learning
tasks may be traditional classification problems in
which the output value depends only on the given set
of input values, or prediction problems in which the
history of input and output values must also be taken
into account. Actual learning is done by modeler
agents that actively try to build models, such as
decision trees (see e.g. [24]), for some learning task
using data collected with the help of the Perception
Service or given by a client agent.

In practice, there may not be enough data available for
reasonably fast and accurate learning. The most used
solution to this problem is to put all data from several
sources together. However, because we cannot transfer
much data over the wireless, the sharing of data
among modeler agents in different terminals is not
possible. Therefore, we share models instead of data.
Modeler agents of the same type cooperate via
Knowledge Sharing Service by exchanging models and
testing models made by others. Based on the results of
those tests, model combiner agents try to combine the
best parts of each model and build new and improved
models (see e.g. [25]). The Monads architecture also
gives a nice framework for the use of meta-learning
agents that build meta-models by learning from the
output of other models [26].

4. Conclusions
We have introduced the Monads agent architecture
and described the basic set of services available in the
Monads system. The architecture and system services
were designed to fulfill the adaptation requirements
that will be necessary to support nomadic users in the
near future.
The fundamental challenge in nomadic computing is
dynamic adaptation in the triad service–terminal–
connectivity according to preferences of the end-user.
The Monads agent architecture and the Monads
system services as described in this paper is one
possible solution to meet future challenges in nomadic
computing. The communication services together with
a wireless transport and signaling protocol—MDCP
[2, 15] in our case—provide an efficient and reliable
transfer infrastructure that can handle sudden drops of
wireless links and cope with variable throughput and
error rates. Other Monads services are built on that
infrastructure in order to provide an adaptive platform
for agents supporting applications for nomadic users.

5. Acknowledgements
The authors are grateful to their colleagues in the
Monads project, in particular to Markku Tamski from
Nokia Mobile Phones, to Heimo Laamanen from
Sonera, and to Mustafa Abdulla and Sasu Tarkoma
from the Monads group at the University of Helsinki.

6. References
[1] L. Kleinrock, “Nomadicity: Anytime, Anywhere in a

Disconnected World,” Mobile Networks and
Applications, Vol. 1, No.4, January 1997, pp. 351-375.

[2] M. Kojo, K. Raatikainen, M.Liljeberg, J.Kiiskinen, and
T.Alanko, “An Efficient Transport Service for Slow
Wireless Telephone Links,” IEEE Journal on Selected
Areas in Communications, Vol. 15, no. 7, pp. 1337–
1348, Sept. 1997.

[3] Object Management Group, “OMG Home Page,”
http://www.omg.org/.

[4] Foundation for Intelligent Physical Agents, “FIPA
Home Page,” http://www.fipa.org/.

[5] Sun Microsystems, Java Remote Invocation –
Distributed Computing for Java, White Paper, 1998.

[6] M. Liljeberg, K. Raatikainen, M. Evans, S. Furnell, N.
Maumon, E. Veltkamp, B. Wind, and S. Trigila, “Using
CORBA to Support Terminal Mobility,” Proceeding of
TINA’97 Conference, IEEE Computer Society Press,
pp. 56–67, 1998.

[7] H.Helin, H. Laamanen, and K. Raatikainen, “Mobile
Agent Communication in Wireless Networks,”
Proceedings of the European Wireless’99 Conference,
pp. 211-216, October 6–8, 1999, Munich, Germany.

[8] S. Campadello, H. Helin, O. Koskimies, and K.
Raatikainen, “Optimizing Java 2 RMI for Slow
Wireless Links,” Submitted for publication.

[9] F. Bellifemine G. Rimassa, and A. Poggi, “JADE – A
FIPA-compliant Agent Framework,” http://www.
practical-applications.co.uk/PAAM99/abstracts.html.

[10] Foundation for Intelligent Physical Agents, FIPA 97
Specification – Part 2: Agent Communication
Language, Version 2.0, 1998.

[11] Specification of the KQML agent communication
language,
http://www.cs.umbc.edu/kqml/kqmlspec/spec.html.

[12] Internet Engineering Task Force, Hypertext Transfer
Protocol – HTTP/1.1, RFC2068, 1997.

[13] Object Management Group, CORBA 2.2/GIOP
Specification, OMG Document formal/98-07-01, 1998.

[14] Wireless Application Protocol Forum, WAP
Specifications, http://www.wapforum.org/, 1998-9.

[15] J. Kiiskinen, M. Kojo, M. Liljeberg, and K.
Raatikainen, “Data Channel Service for Wireless
Telephone Links,” IEEE-CS Bulletin of TC on
Operating Systems and Applications, Vol. 8, 1, pp. 1-
17, 1996.

[16] The Department of Computer Science in the University
of Helsinki, ”Home Pages of Research Projects,”
http://www.cs.helsinki.fi/research/.

[17] Object Management Group, Telecom DTF White Paper
on Wireless Access and Mobility in CORBA, OMG
Document telecom/98-11-09, 1998.

[18] Object Management Group, Request for Proposals on
Wireless Access and Terminal Mobility in CORBA,
OMG Document telecom/99-05-05.

[19] Internet Engineering Task Force, “PILC (Performance
Implications of Link Characteristics) Home Page,”
http://pilc.grc.nasa.gov/pilc.

[20] Foundation for Intelligent Physical Agents, FIPA 99
Specification – Part 16: Agent Message Transport,
1999, work in progress.

[21] M. Liljeberg, H. Helin, M. Kojo, and K. Raatikainen,
“MOWGLI WWW Software: Improved Usability of
WWW in Mobile WAN Environments,” in Proceedings
of IEEE Global Internet 1996 Conference, 1996, pp. 33-
37.

[22] WAP Forum, “Binary XML Content Format
Specification”, Version 1.1, June 16, 1999.

[23] P. Misikangas, M. Mäkelä, and K. Raatikainen,
“Predicting QoS for Nomadic Applications Using
Intelligent Agents,” Proceedings of IMPACT’99
Workshop, December 2-3, 1999, Seattle, Wash., USA.

[24] J.R. Quinlan, C4.5: Programs for Machine Learning,
Morgan Kaufmann, 1993.

[25] K.M. Ting and B.T. Low, “Model Combination in the
Multiple-Data-Batches Scenario,” in M. van Someren
and G. Widmer (eds.), Machine Learning: ECML-97,
Lecture Notes in Artificial Intelligence 1224. 1997, pp.
250–265, Springer-Verlag.

[26] A.L. Prodromidis, P.K Chan, and SJ. Stolfo, “Meta-
Learning in Distributed Data Mining Systems: Issues
and Approaches,” in Kargupta and Chan (eds.),
Advances in Distributed Data Mining, AAAI Press,
1999.

