

University of Helsinki - Department of Computer Science

Analysis of Concurrent TCP and Streaming Traffic Over a Wireless Link

Tuomas Kulve

tuomas.kulve@cs.Helsinki.FI

Contents

- Target environment
- Link characteristics
- Workloads
- Baseline and Enhancements
- Summary of Results
- Conclusion

Target Environment

- Emulated wireless link from mobile host to last-hop router
- Real end hosts

Link Characteristics

- Symmetric 64kbit/s bandwidth
- Router queue 20 packets
- Link buffers roughly 2*BDP
- Two state error model
 - o Good state: long (mean 15s), no errors
 - Bad state: 0.2-1.5s, 63% packet error rate
 - Link layer retransmissions
 - 700ms delay for each retransmission

Link Characteristics

Optimal link

• No errors

> One link layer retransmission

- Drop packet, if packet loss after 1st retransmission
- Results to delays and packet losses
- Three link layer retransmissions
 - Drop packet, if packet loss after 3rd retransmission
 - Results to delays
 - Persistent enough to avoid packet losses

Link Characteristics

Six link layer retransmissions

- Drop packet, if packet loss after 6th retransmission
- o Different bad state
 - Length: 0.5-4.0s
 - 95% packet error rate
- Results to long delays
- Persistent enough to avoid packet losses
- o Spurious RTOs

Workloads

- 2 TCP connections start at the same time
- 2 TCP connections start with 5s difference
- 2 TCP connections and 1UDP flow
 - UDP: CBR flow with 32kbit/s of payload stream
 - o 512byte payload per UDP packet

Baseline

- Timestamps (with and without)
- Limited transmit
- > SACK
- Initial Window was 2 segments
 - Except with CBI
- Delayed ACKs: 200ms
- No quick ACKs
- No ratehalving
- > No CBI

TCP Enhancements

Forward RTO-recovery (F-RTO)

- If 2 ACKs after RTO advances window, then the RTO is assumed as spurious and the CWND is not set to one segment
- Duplicate-SACK (D-SACK)
 - Receiver explicitly informs about duplicate packets
 - o If all retransmissions were unnecessary, undo

TCP Enhancements

- With timestamps an Eifel-like mechanism is used
 - If first ACK is an acknowledgement to the original packet, undo
- Control Block Interdependence (CBI)
- Random Early Detection (RED)
- RED with Explicit Congestion Notification (ECN)
- Combination of CBI and ECN

Summary of Results

Slow Start Overshoot Recovery

KB

Slow Start With CBI

KB

Summary of Results Optimal Link – 2xTCP, 5sec diff.

Summary of Results Optimal Link – 2xTCP, 1xUDP

Summary of Results One Link Layer Retransmission – 2xTCP Faster: min, 50% percentile and max H Slower: min, 50% percentile and max \mapsto 90 80 ŝ 70 Time Elapsed 60 50 40 30

BI BINATS EPTA DEACH PED ECN OBT ECN-OBT

Summary of Results One Link Layer Retransmission – 2xTCP, 5sec

Summary of Results *One Link Layer Retransmission – 2xTCP,*

Summary of Results Six Link Layer Retransmissions – 2xTCP

Conclusion

Fairness usually poor with baseline TCP

- Especially if connections did not start simultaneously
- CBI improves the fairness because of the absence of the slow start overshoot
 RED
 - Improves the fairness
 - Slows down the connections
- ECN introduces a slight gain compared to pure RED

Conclusion

- Baseline with timestamps and F-RTO recovered spurious RTOs efficiently
 Baseline without timestamps and D-SACK
 - made unnecessary retransmissions and unnecessarily slowed down