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TCP Congestion Control in the Internet

> Internet has grown and TCP congestion control
mechanisms are not sufficient to provide good
service in all circumstances

— Wired vs. Wireless
— The Internet is evolving to support QoS

> Problem: There is a limit to how much control can be
accomplished from the edges of the network

> A possible solution is an advanced form of router
gueue management such as Active Queue
Management (RFC 2309)

> Current router algorithm employed in the Internet:
Tail Drop



Tail Drop buffer

> Principle:

— fix the maximum length for each queue, accept packets
for the queue until the maximum length is reached, then
drop subsequent incoming packets

> Advantages
— easy to implement
> Disadvantages

— Full Queues

* Discriminate against bursty traffic and cause multiple
packets to be dropped

« Synchronization of sources

— Lock-Out: a single connection or few flows manage to
monopolize the available queue resources



Active Queue Management (AQM)

> Based on a proactive approach:
— drop packets before buffer becomes full
— use the average queue length as congestion indicator
> Can provide the following advantages for responsive flows

— Control the average gueuing delay and reduce end-to-end
latency

— Guarantee more equity in resources utilization (fairness)
— Reduce the number of packets dropped in routers

— Provide greater capacity to absorb bursts without dropping
packets

— Avoid global synchronization of sources
— Avoid Lock-Out behaviour

> The most famous example of AQM is the Random Early
Detection (RED) algorithm



¥

RED - Algorithm

Calculate the average queue size (avg) by a low pass filtering

with weight Wy, 0<Wq<l
avgn +1=(1- Wg)avgn + WqQist
g =instantaneous queue length

If avg<min,, do nothing

If avg>max,, drop the packet —

—

Else drop (or mark) packet with
probability:

P' =maxp(avg- minm)/(maxn- Minm)
p=p'/(1- count-p’)

count =number of unmarked packets

Dropping/Marking

Probability, p'

A

p=1

since the last time a packet was <
dropped or since avg exceeded min,, avg

max,

min,



Test Arrangements

Source Destination

ﬂ |ntermediate Last-hop
= Router Router

-

=i yy . 1
= 100M bit/s 10Mbit/s} N‘ 140 Kkhit/s
‘ | ' bottleneck

Simple scenario (Each scenario is tested with 20 replications)

— PC with Linux Operating System (kernel version 2.4.17)

— Standard Linux TCP Implementation with SACK option (Timestamps: OFF

— The Intermediate Router employs Tail Drop with a huge buffer size

— The Last-hop Router employs Tail Drop or RED without ECN

— RED Parameters: buffer size=20kbytes, min,=5kbytes, max,=18kbytes,
max,=0.1

— Metrics: Elapsed Time, Num Retx Packets, Fairness, etc..
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Test Arrangements - Test Environment

> The last-hop router implements a DiffServ (DS) PHB using

HTB (Hierarchical Token Bucket) packet scheduler with two
service classes

> Each service class employs Tail Drop or RED

> Queuing allocates bandwidth and buffer space:
— Bandwidth: which packet to serve next (scheduling)
— Buffer Space: which packet to drop next (buffer management)

Traffic Traffic

Sources Classes Tail Drop/RED
TCP Class HTB
TCP Top I I ©:>
UDP —
TCP Class I I < I
UDP UDP DI’Op
UDP
Scheduling Buffer M anagement
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Test Arrangements - Test Case 1

Workload: 3 competing TCP flows
> 1 service class — bottleneck bandwidth =140kbit/s

2> 2 TCP connections start simultaneously (data traffic
sent=292kbytes)

2 The third connection starts with a delay varying from
O up to 7 seconds (data traffic sent= 46.7kbytes)

E E bottleneck
N

140kbit/s ™ TCP 3

TCP3

data sent = 292kbytes
data sent= 46.7kbytes
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Test Arrangements - Test Case 2
Workload: TCP and UDP traffic with DiffServ

> The UDP traffic starts later and has different duration
1. The UDP traffic lasts for the entire duration of the TCP transfe
2. The UDP traffic ends before the TCP connection ends

> Effects derived from the introduction of service differentiation:

1. Unique service class for TCP and UDP traffic (available
bandwidth=140kbit/s)

2. Separate service classes for TCP traffic and higher-priority
UDP traffic (class bandwidth=70Kkbit/s)

bottleneck (140kbit/s)
70/140kDbit/s
BB
70/100kDbit/s
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Results — Test Case 1

> 3 competing TCP connections
> Results of the third connection for different starting points

Elapsed Time Three-way Handshake Phase

, - 25 - T 5 -
@) 1 - T
3 = A —e—RED - 3 4 ——RED |
o 1 / \ —&—TailDrop | | | & —&—Tail Drop
E v / 3
= 15 / ) .- I @ / \
; <, / \
gl >~ |||5
‘_5 ];L'“‘?' Y*\“ -c% 1 \ )
o T, %

0 2 4 5 55 0 l 2 4 5 55

starting time of the third flow (sec) starting time of the third flow (sec)

> Stable results and improved performance when RED is employed
> Tail Drop
— Scenario after 2 seconds: the elapsed time doubles the RED’s one!
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Results — Test Case 1

3 competing TCP connections — Elapsed Time of the 3rd flow

Tail Drop RED
Min 25% Percentile Min 25% Percentile
—— Medlan —a&— 75% Percentile === \edian —d— 75% Percentile
ax Max
45 N
o 40 O 4
0
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> Wide variation range > Limited variation range
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Test Case 1 - Lock-Out of Tail Drop

> Talil Drop: example from the scenario after 2 seconds

> The Initial flows monopolize most of the bandwidth
(phenomenon of Lock-Out)
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Results - Test Case 1

»> 3 competing TCP flows
Third flow’s data load is 4/25 of the initial flows’ data load

>
>

RED
guarantees to
the third flow
Improved and
stable
performance

RED drops
packets in
proportion to
the amount of
bandwidth the
flow uses on
the output link

Tail Drop - Elapsed Time
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RED - Elapsed Time
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Results - Test Case 2

> Single TCP flow competing with UDP traffic lasting 5sec

Elapsed Time of the TCP flow Num of Received UDP Pkts
e T 3| Drop el RED =——g—=Tail Drop el RED
Tail Drop + DS RED + DS Tail Drop + DS RED + DS
26 - : 300
| [4
~—~ 255 £
8 % C———C———T =
o % $ 200
Q 245 e —aT— x
£ /;' %S 150 -
= 24 =
W 235 — 2 100 -
23 ; 1 50 T T T T
0 2 7 i) 16 18 o 2 7 © 6 18
starting time of the UDP flow (sec) starting time of the UDP flow (sec)

> 1 service class :
— Tail Drop: unstable results for both TCP and UDP traffic

— RED: performance close to the results with 2 service classes

> 2 service classes (Higher priority UDP traffic)
— Tail Drop and RED achieve the same performance
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Test Case 2 - Unfairness of Tail Drop

» TCP traffic competing with UDP traffic of equal priority
> The performance changes by varying the starting point

of the UDP traffic
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Results — Test Case 2

> Time Sequence Graph of Traffic TCP competing with higher-
priority UDP traffic starting after 0.5s

X - xplot |E||E||E| — xplot <2>
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> Talil Drop: el. time=8.3s > RED: el. time=4.9s

> Timeout expiration > 3 DUPACKS

> Start to drop packets late > Start to drop packets early

> Discard consecutive > Discard randomly + SACK
packets option
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Results — Test Case 2

> 1 TCP flow + UDP traffic (starting after 3 seconds) in presence
of service differentiation

Tail Drop: el.time=35.9s; rtx pkts=1 RED: el.time=35,8s; rtx pkts=7
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> The dropped packets are evenly distributed over a wide range

> The Recovery phase with Tail Drop is roughly the double of the RED’s on
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Conclusions

> RED fairness
— Fair sharing of resources
— Avoid Lock-Out
— Stable results

> RED drops more packets than Tail Drop, BUT

— By starting to drop packets early it manages to
recover quickly from congestion and provides
Improved performance

— It drops packets from each flow in proportion to the
amount of bandwidth the flow uses on the output
link
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Future Work

DiffServ DiffServ
[ Router Router
= > Y =
Source Destination

Emulate various wireless link characteristics on the last-hop link
Add background traffic

Advanced use of DiffServ with different traffic mixes

Use of TCP variants

Use of ECN (Explicit Congestion Notification) in combination with
RED

Tuning of RED parameters
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