I think you have it slightly wrong there. By snipping away the first digit
from a number leaves you with, not Benford's distribution, but
uniform distribution, for which the Shannon entropy is naturally roughly
the bitcount.
Benford's distribution as presented (1 being the first digit 30% of the
time) concerns firstly base 10 and secondly randomly upper bound sets.
For base 2 the Benford's leading digit distribution naturally narrows down
to 1 being the first digit 100% of the time. Benford's law says little
about the remaining digits. Thus by snipping that first bit away leaves us
with a set that reflects the properties of the choice. Assuming it's
random, we get uniform distribution.
Wether the bit count of the smallest of the three deltas is
actually sufficient to guarantee us that amount of randomness in the
choice is another question. Like stated here already, it can be easily
fooled, and there's a strong possibility that it gets "fooled" already.
Clearly periodic but not delta-wise detectable sequences would pass the
delta checks. If interrupts get timed like, 1 3 11 50 1 3 11 50 1 3 11 50,
the deltas would indicate more entropy than there's present.
Some level of fourier analysis would be necessary to go further than what
we can with the deltas.
(For the record, I'm not one bit worried about the kernel rng, perhaps
the entropy bit count may be theoretically a bit off from time to time, but
remarks like "If someone then breaks SHA-1, he can do this and that..."
only amuze me. If someone breaks SHA-1 we're bound to change the hash
then, eh? Not mention that we'd be in deep shit not just kernelwise.)
-- Tommi Kynde Kyntola kynde@ts.ray.fi "A man alone in the forest talking to himself and no women around to hear him. Is he still wrong?"- To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majordomo@vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/