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ABSTRACT
The Internet is overloading its users with excessive informa-
tion flows, so that effective content-based filtering becomes
crucial in improving user experience and work efficiency.
Latent semantic analysis has long been demonstrated as a
promising information retrieval technique to search for rel-
evant articles from large text corpora. We build Kvasir, a
semantic recommendation system, on top of latent seman-
tic analysis and other state-of-art technologies to seamlessly
integrate an automated and proactive content provision ser-
vice into web browsing. We utilize the processing power
of Apache Spark to scale up Kvasir into a practical Inter-
net service. Herein we present the architectural design of
Kvasir, along with our solutions to the technical challenges
in the actual system implementation.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—clustering, information filtering

1. INTRODUCTION
Currently, the Internet is overloading its users with exces-
sive information flows. Therefore, smart content provision
and recommendation become more and more crucial in im-
proving user experience and efficiency in using Internet ap-
plications. For a typical example, many users are most likely
to read several articles on the same topic while surfing on
the Web. Hence many news websites (e.g., The New York
Times, BBC News and Yahoo News) usually group simi-
lar articles together and provide them on the same page
so that the users can avoid launching another search for the
topic. However, most of such services are constrained within
a single domain, and cross-domain content provision is usu-
ally achieved by manually linking to the relevant articles on
different sites. Meanwhile, companies like Google and Mi-
crosoft take advantage of their search engines and provide
customizable keywords filters to aggregate related articles
across various domains for users to subscribe. However, to
subscribe a topic, a user needs to manually extract keywords
from an article, then to switch between different search ser-
vices while browsing the web pages.

In general, seamless integration of intelligent content pro-
vision into web browsing at user interface level remains an
open research question. No universally accepted optimal de-
sign exists. Herein we propose Kvasir1, a system built on
1Kvasir is the acronym for Knowledge ViA Semantic Infor-

top of latent semantic analysis (LSA). We show how Kvasir
can be integrated with the state-of-art technologies (e.g.,
Apache Spark, machine learning, etc.). Kvasir automati-
cally looks for the similar articles when a user is browsing a
web page and injects the search results in an easily accessi-
ble panel within the browser view for seamless integration.
The ranking of the results is based on the cosine similarity
in LSA space, which was proposed as an effective informa-
tion retrieval technique almost two decades ago [6]. Despite
some successful applications in early information systems,
two technical challenges practically prevent LSA from be-
coming a scalable Internet service. First, LSA relies on
large matrix multiplications and singular value decompo-
sition (SVD), which become notoriously time and memory
consuming when the document corpus is huge. Second, LSA
is a vector space model, and fast search in high dimensional
spaces tends to become a bottle-neck in practice.

We must emphasize that Kvasir is not meant to replace the
conventional web search, recommender systems, or other ex-
isting technologies discussed in Section 2. Instead, Kvasir
represents a potential solution to enhancing user experience
in future Internet applications. In this paper, by presenting
the architectural components, we show how we tackle the
scalability challenges confronting Kvasir in building and in-
dexing high dimensional language database. To address the
challenge in constructing the database, we adopt a rank-
revealing algorithm for dimension reduction before actual
SVD. To address the challenge in high dimensional search,
we utilize approximate nearest neighbor search to trade off
accuracy for efficiency. The corresponding indexing algo-
rithm is optimized for parallel implementation.

Specifically, our contributions are: (1) we present the archi-
tecture of Kvasir, which is able to seamlessly integrate LSA-
based content provision in web browsing by using state-of-
art technologies. (2) we implement the first stochastic SVD
on Apache Spark, which can efficiently build LSA-based lan-
guage models on large text corpora. (3) we propose a paral-
lel version of the randomized partition tree algorithm which
provides fast indexing in high dimensional vector spaces us-
ing Apache Spark.2

mation Retrieval, it is also the name of a Scandinavian god
in Norse mythology who travels around the world to teach
and spread knowledge and is considered extremely wise.
2The source code of the key components in Kvasir are pub-
licly accessible and hosted on Github. We will release all the
Kvasir code after the paper is accepted.



2. BACKGROUND AND RELATED WORK
There are several parallel efforts in integrating intelligent
content provision and recommendation in web browsing. They
differentiate between each other by the main technique used
to achieve the goal. The initial effort relies on the semantic
web stack proposed in [5], which requires adding explicit on-
tology information to all web pages so that ontology-based
applications (e.g., Piggy bank [20]) can utilize ontology rea-
soning to interconnect content semantically. Though se-
mantic web has a well-defined architecture, it suffers from
the fact that most web pages are unstructured or semi-
structured HTML files, and content providers lack of mo-
tivation to adopt this technology to their websites. Col-
laborative Filtering (CF) [8, 24], which was first coined in
Tapestry [16], is a thriving research area and also the second
alternative solution. Recommenders built on top of CF ex-
ploit the similarities in users’ rankings to predict one user’s
preference on a specific content. CF attracts more research
interest these years due to the popularity of online shop-
ping (e.g., Amazon, eBay, Taobao, etc.) and video services
(e.g., YouTube, Vimeo, Dailymotion, etc.). However, rec-
ommender systems need user behavior rather than content
itself as explicit input to bootstrap the service, and is usu-
ally constrained within a single domain. Cross-domain rec-
ommenders [11,25] have made progress lately, but the com-
plexity and scalability need further investigation. Search en-
gines can be considered as the third alternative though a user
needs explicitly extract the keywords from the page then
launch another search. The ranking of the search results is
based on link analysis on the underlying graph structure of
interconnected pages (e.g., PageRank [30] and HITS [23]).
As the fourth alternative, Kvasir takes another route by
utilizing information retrieval (IR) [14, 27]. Kvasir belongs
to the content-based filtering and emphasizes the semantics
contained in the unstructured web text. In general, a text
corpus is transformed to the suitable representation depend-
ing on the specific mathematical models (e.g., set-theoretic,
algebraic, or probabilistic models), based on which a nu-
meric score is calculated for ranking. Context awareness is
the most significant advantage in IR, which has been inte-
grated into Hummingbird – Google’s new search algorithm.

Inside Kvasir, the design covers a wide range of different
topics, each topic has numerous related work. In the follow-
ing, we constrain the discussion only on the core techniques
used in the system. Due to the space limit, we cannot list
all related work, we recommend using the references men-
tioned in this section as a starting point for further reading.
The initial idea of using linear algebraic technique to derive
latent topic model was proposed in [6]. As the core opera-
tion of LSA, SVD is a well-established subject and has been
intensively studied over three decades. Recent efforts have
been focusing on efficient incremental updates to accommo-
date dynamic data streams [7] and scalable algorithms to
process huge matrices.

Efficient nearest neighbor search in high dimensional spaces
has attracted a lot of attention in machine learning com-
munity. There is a huge body of literature on this subject
which can be categorized as graph-based [17, 35], hashing-
based [19, 34, 36], and partition tree-based solutions [12, 22,
28,32]. The graph-based algorithms construct a graph struc-
ture by connecting a point to its nearest neighbors in a data

set. These algorithms suffer from the time-consuming con-
struction phase. As the best known hashing-based solution,
locality-sensitive hashing (LSH) [4,26] uses a large number of
hash functions with the property that the hashes of nearby
points are also close to each other with high probability. The
performance of a hashing-based algorithm highly depends on
the quality of the hashing functions, and it is usually out-
performed by partition tree-based methods in practice [28].
In particular the Randomized Partition tree (RP-tree) [12]
method have been shown to be very successful in practice,
while it was also recently shown [13] that its probability to
fail is bounded when the data are documents from a topic
model. RP-tree was initially introduced as an improvement
over the k-d tree method that is more appropriate for use in
high dimensional spaces, drawing inspiration from LSH [26].
In this work, inspired by a recent application of the random
projection method [33], we take advantage of the simplicity
of the RP-tree method to further develop its parallel version.

There are also abundant software toolkits with different em-
phasises on machine learning and natural language process-
ing. We only list the most relevant ones: scikit-learn [3],
FLANN [29], Gensim [31], and ScalaNLP [2]. scikit-learn
includes many general-purpose algorithms for data mining
and analysis, but the toolkit is only suitable for small and
medium problems. Gensim and ScalaNLP have a clear fo-
cus on language models. ScalaNLP’s linear algebra library
(Breeze) is not yet mature enough, which limits its scalabil-
ity. On the other hand, Gensim scales well on large corpora
using a single machine, but fails to provide efficient indexing
and searching. Though FLANN provides fast nearest neigh-
bor search, it requires loading the full data set in to memory
therefore severely limits the problem size [21]. None of the
aforementioned toolkits provides a horizontally scalable so-
lution on big data frameworks. The default machine learning
library MLlib in Apache Spark misses the stochastic SVD
and effective indexing algorithms [37].

3. KVASIR ARCHITECTURE
At the core, Kvasir implements an LSA-based index and
search service, and its architecture can be divided into two
subsystems as frontend and backend. Figure 1 illustrates
the general workflow and internal design of the system. The
frontend is currently implemented as a lightweight extension
in Chrome browser. The browser extension only sends the
page URL back to the KServer whenever a new tab/window
is created. The KServer running at the backend retrieves
the content of the given URL then responds with the most
relevant documents in a database. The results are formatted
into JSON strings. The extension presents the results in a
friendly way on the page being browsed. From user perspec-
tive, a user only interacts with the frontend by checking the
list of recommended articles that may interest him.

To connect the frontend, the backend exposes one simple
REST API as below, which gives great flexibility to all pos-
sible frontend implementations. By loosely coupling with
the backend, it becomes easy to mash-up new services on
top of Kvasir. Line 1 and 2 give an example request to
Kvasir service. type=0 indicates that info contains a URL,
otherwise info contains a piece of text if type=1. Line 4-9
present an example response from the server, which con-
tains the metainfo of a list of similar articles. Note that
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Figure 1: Kvasir architecture – there are five major components in the backend system, and they are numbered based on their
order in the workflow. Frontend is implemented in a Chrome browser, and connects the backend with a RESTful API.

the frontend can refine or rearrange the results based on the
metainfo (e.g., similarity or timestamp).

1 POST

2 https://api.kvasir/query?type=0&info=url

3

4 {"results": [

5 {"title": document title,

6 "similarity": similarity metric,

7 "page_url": link to the document,

8 "timestamp": document create date}

9 ]}

The backend system implements indexing and searching func-
tionality which consist of five components: Crawler, Cleaner,
DLSA, PANNS and KServer. Three components (i.e., Cleaner,
DLSA and PANNS) are wrapped into one library since all
are implemented on top of Spark. The library covers three
phases as text cleaning, database building, and indexing. We
briefly present the main tasks in each component as below.

Crawler collects raw documents from the Web then com-
piles into two data sets. One is the English Wikipedia dump,
and another is compiled from over 300 news feeds of the high-
quality content providers. Table 1 summarizes the basic
statistics of the data sets. Multiple instances of the Crawler
run in parallel on different machines. Simple fault-tolerant
mechanisms like periodical backup have been implemented
to improve the robustness of crawling process. In addition
to the text body, the Crawler also records the timestamp,
URL and title of the retrieved news as metainfo, which can
be further utilized to refine the search results.

Cleaner cleans the unstructured text corpus and converts
the corpus into term frequency-inverse document frequency
(TF-IDF) model. In the preprocessing phase, we clean the
text by removing HTML tags and stopwords, deaccenting,
tokenization, etc. The dictionary refers to the vocabulary
of a language model, its quality directly impacts the model

performance. To build the dictionary, we exclude both ex-
tremely rare and extremely common terms, and keep 105

most popular ones as features. More precisely, a term is
considered as rare if it appears in less than 20 documents,
while a term is considered as common if it appears in more
than 40% of documents.

DLSA builds up an LSA-based model from the previously
constructed TF-IDF model. Technically, the TF-IDF itself
is already a vector space language model. The reason we sel-
dom use TF-IDF directly is because the model contains too
much noise and the dimensionality is too high to process
efficiently even on a modern computer. To convert a TF-
IDF to an LSA model, DLSA’s algebraic operations involve
large matrix multiplications and time-consuming SVD. Since
MLlib is unable to perform SVD on a data set of 105 fea-
tures with limited RAM, we implemented our own stochastic
SVD on Spark using rank-revealing technique. Section 4.1
discusses DLSA in details.

PANNS builds the search index to enable fast k-NN search
in high dimensional LSA vector space. Though dimension-
ality has been significantly reduced from TF-IDF (105 fea-
tures) to LSA (103 features), k-NN search in a 103-dimension
space is still a great challenge. Naive linear search using
one CPU takes over 6 seconds to finish in a database of 4
million entries, which is unacceptably long for any realistic
services. PANNS implements a parallel RP-tree algorithm
which makes a reasonable tradeoff between accuracy and
efficiency. Section 4.2 presents PANNS in details.

KServer runs within a web server, processes the users re-
quests and replies with a list of similar documents. KServer
uses the index built by PANNS to perform fast search in
the database. The ranking of the search results is based on
the cosine similarity metric. A key performance metric for
KServer is the service time. We deployed multiple KServer
instances on different machines and implemented a simple
round-robin mechanism to balance the request loads.



Data set # of entries Raw text size Article length

Wikipedia 3.9 × 106 47.0 GB Avg. 782 words
News 3.3 × 105 1.4 GB Avg. 648 words

Table 1: Two data sets are used in the evaluation.
Wikipedia represents relatively static knowledge, while
News represents constantly changing dynamic knowledge.
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Figure 2: DLSA uses rank-revealing to effectively reduce
dimensionality to perform in-memory SVD.

4. PROPOSED ALGORITHMS
Due to the space limit, we only sketch out the key ideas in
DLSA and PANNS algorithms rather than present the code
line by line. Since the code of the key components in Kvasir
are publicly accessible on Github, those who have interest
can read the code to further study the algorithmic details [1].

4.1 Distributed Stochastic SVD
The vector space model belongs to algebraic language mod-
els, where each document is represented with a row vector.
Each element in the vector represents the weight of a term
in the dictionary calculated in a specific way. E.g., it can be
simply calculated as the frequency of a term in a document,
or slightly more complicated TF-IDF. The length of the vec-
tor is determined by the size of the dictionary (i.e., number
of features). A text corpus containing m documents and a
dictionary of n terms will be converted to an A = m × n
row-based matrix. Informally, we say that A grows taller
if the number of documents (i.e., m) increases, and grows
fatter if we add more terms (i.e., n) in the dictionary. LSA
utilizes SVD to reduce n by only keeping a small number
of linear combinations of the original features. To perform
SVD, we need calculate the covariance matrix C = AT ×A,
which is a n×n matrix and is usually much smaller than A.

We can easily parallelize the calculation of C by dividing A
into k smaller chunks of size [m

k
]×n, so that the final result

can be obtained by aggregating the partial results as C =
AT ×A =

∑k
i=1A

T
i ×Ai. However, a more serious problem

is posed by a large number of columns, n. The SVD function
in MLlib is only able to handle tall and thin matrices up to
some hundreds of features. For most of the language models,
there are often hundreds of thousands features (e.g., 105 in
our case). The covariance matrix C becomes too big to fit
into the memory, hence the native SVD operation in MLlib
of Spark fails as the first subfigure of Figure 2 shows.

In linear algebra, a matrix can be approximated by an-
other matrix of lower rank while still retaining approxi-
mately properties of the matrix that are important for the
problem at hand. In other words, we can use another thin-
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Figure 3: We can continuously project the points on random
vectors and use mean value to divide the space for clustering.

ner matrix B to approximate the original fat A. The cor-
responding technique is referred as rank-revealing QR es-
timation [18]. A TF-IDF model having 105 features often
contains a lot of redundant information. Therefore, we can
effectively thin the matrix A then fit C into the memory.
Figure 2 illustrates the algorithmic logic in DSLA, which is
essentially a distributed stochastic SVD implementation.

4.2 Parallel Randomized Partition Tree
With an LSA model at hand, finding the most relevant doc-
ument is equivalent to finding the nearest neighbors for a
given point in the derived vector space. The distance is
usually measured with the cosine similarity of two vectors.
However, neither naive linear search nor conventional k-d
tree is capable of performing efficient search in such high
dimensional space even though the dimensionality has been
significantly reduced from 105 to 103 by LSA.

Nonetheless, we need not locate exact nearest neighbors in
practice. In most cases, slight numerical error (reflected
in the language context) is not noticeable at all, i.e., the
returned documents still look relevant from the user’s per-
spective. By sacrificing some accuracy, we can obtain a sig-
nificant gain in search speed. The general idea of RP-tree
algorithm used here is clustering the points by partitioning
the space into smaller subspaces recursively. Technically,
this can be achieved by tree-based algorithms. Given a tree
built from a database, we answer a nearest neighbor query
q in an efficient way, by moving q down the tree to its ap-
propriate leaf cell, and then return the nearest neighbor in
that cell. However in several cases q’s nearest neighbor may
well lie within a different cell. Figure 3 gives a naive exam-
ple on a 2-dimension vector space. First, a random vector
x is drawn and all the points are projected onto x. Then
we divide the whole space into half at the mean value of all
projections (i.e., the blue circle on x) to reduce the prob-
lem size. For each new subspace, we draw another random
vector for projection, and this process continues recursively
until the number of points in the space reaches the prede-
fined threshold on cluster size. We can construct a binary
tree to facilitate the search. As we can see in the first sub-
figure of Figure 3, though the projections of A, B, and C
seem close to each other on x, C is actually quite distant
from A and B. However, it can be shown that such misclas-
sifications become arbitrarily rare as the iterative procedure
continues by drawing more random vectors and performing
splits. For example, in Figure 3, y successfully separates C
from A and B.

Another kind of misclassification is that two nearby points
are unluckily divided into different subspaces, e.g., B and D
in the left panel of Figure 3. To get around this issue, the



authors in [26] proposed a tree structure (spill tree) where
each data point is stored in multiple leaves, by following
overlapping splits. Although the query times remain essen-
tially the same, the required space is significantly increased.
In this work we choose to improve the accuracy by building
multiple RP-trees. However, in this case one would need
to store a large number of random vectors, introducing sig-
nificant storage overhead as well. For a corpus of 4 million
documents, if we use 105 random vectors (i.e., a cluster size
of 20), and each vector is a 103-dimension real vector (32-
bit float number), the induced storage overhead is about
381.5 MB for each RP-tree.

One possible solution to reduce the index size is reusing
the random vectors. Namely, we generate a pool of ran-
dom vectors once, then randomly choose one from the pool
each time one is needed. However, the immediate challenge
emerges when we try to parallelize the tree building on mul-
tiple nodes. Because we need broadcast the pool of vectors
onto every node, which causes significant network traffic.

To address this challenge, we propose to use a pseudo ran-
dom seed in building and storing search index. Instead of
maintaining a pool of random vectors, we just need a ran-
dom seed for each RP-tree. The computation node can build
all the random vectors on the fly from the given seed. From
the model building perspective, we can easily broadcast sev-
eral random seeds instead of a large matrix in the network,
therefore we improve the computation efficiency. From the
storage perspective, we only need store one 4-byte random
seed for each RP-tree. In such a way, we successfully reduce
the storage overhead from 47.7 GB to 512 B for a search
index consisting of 128 RP-trees (with cluster size 20).

4.3 Caching to Scale Up
Even though our indexing algorithm is able to significantly
reduce the index size, the index will eventually become too
big to fit into memory when the corpus grows from millions
to trillions of documents. One engineering solution is using
MMAP provided in operating systems which maps the whole
file from hard-disk to memory space without actually load-
ing it into the physical memory. The loading only happens
when a specific chunk is accessed. Loading and eviction are
handled automatically by the operating system.

Search performance may degrade if the access is truly ran-
dom on a huge index. In practice, this is highly unlikely
since the pattern of user requests follows a clear Zipf-like
distribution. In other words, (i) most users are interested in
a relatively small amount of articles; (ii) most of the articles
that an individual user is reading at any given time are sim-
ilar. These two observations imply that only a small part
of the index trees is frequently accessed at any given time,
which leads to the actual performance being much better
than that of a uniformly distributed access pattern.

5. PRELIMINARY EVALUATION
Because scalability is the main challenge in Kvasir, the eval-
uation revolves around two questions: (i) how fast we can
build a database from scratch using the library we developed
for Apache Spark; (ii) how fast the search function in Kvasir
can serve users’ requests. In the following, we present the
results of our preliminary evaluation.

# of CPUs Cleaner DLSA PANNS Total
1 1.32 20.23 13.99 35.54
5 0.29 6.14 2.86 9.29
10 0.19 4.22 1.44 5.85
15 0.17 3.14 0.98 4.29
20 0.16 2.61 0.77 3.54

Table 2: The time needed (in hours) for building an LSA-
based database from Wikipedia raw text corpus. The time
is decomposed to component-wise level. Search index uses
128 RP-trees with cluster size of 20.

The evaluation is performed on a small testbed of 10 Dell
PowerEdge M610 nodes. Each node has 2 quad-core CPUs,
32GB memory, and is connected to a 10-Gbit network. All
the nodes run Ubuntu SMP with a 3.2.0 Linux kernel. AT-
LAS (Automatically Tuned Linear Algebra System) is in-
stalled on all the nodes to support fast linear algebra op-
erations. Three nodes are used for running Crawlers, five
for running our Spark library, and the rest two for running
KServer to serve users’ requests as web servers. Due to the
space limit, we only report the results on using Wikipedia
data set. News data set leads to consistently better perfor-
mance due to its smaller size.

5.1 Database Building Time
We evaluate the efficiency of the backend system using our
Spark library, which includes text cleaning, model building,
and indexing the three phases. We first perform a sequential
execution on a single CPU to obtain a benchmark. With one
CPU, it takes over 35 hours to process the Wikipedia data
set. Using 5 CPUs to parallelize the computation, it takes
about 9 hours which is almost 4 times improvement. From
Table 2, we can see that total building speed is improved
sublinearly. The reason is because the overhead from I/O
and network operations eventually replace CPU overhead
and become the main bottleneck in the system.

By zooming in the time usage and checking the component-
wise overhead, DSLA contributes most of the computation
time while Cleaner contributes the least. Cleaner’s tasks are
easy to parallelize due to its straightforward structure, but
there are only marginal improvements after 10 CPUs since
most of the time is spent in I/O operations and job schedul-
ing. For DLSA, the parallelism is achieved by dividing a
tall matrix into smaller chunks then distributing the com-
putation on multiple nodes. The partial calculations need
to be exchanged among the nodes to obtain the final result,
and therefore the penalty of the increased network traffic
will eventually overrun the benefit of parallelism. Further
investigation reveals that the percent of time used in trans-
mitting data increases from 10.5% to 37.2% (from 5 CPUs
to 20 CPUs). On the other hand, indexing phase scales very
well by using more computation nodes because PANNS does
not require exchanging too much data among the nodes.

5.2 Accuracy and Scalability of Searching
Service time represents the amount of time needed to pro-
cess a request, which can also be used to calculate server
throughput. Throughput is arguably the most important
metric to measure the scalability of a service. We tested
the service time of KServer by using one of the two web
servers in the aforementioned testbed. We model the con-



(c, t) (20,16) (20,32) (20,64) (20,128) (20,256) (80,16) (80,32) (80,64) (80,128) (80,256)
Index (MB) 361 721 1445 2891 5782 258 519 1039 2078 4155

Precision (%) 68.5 75.2 84.7 89.4 94.9 71.3 83.6 91.2 95.6 99.2
α1 = 1.0 ms 2.2 3.7 5.1 5.9 6.8 4.6 7.9 11.2 13.7 16.1
α2 = 0.9 ms 3.4 4.3 6.0 6.8 7.6 7.2 9.5 14.9 15.3 17.1
α3 = 0.8 ms 4.3 4.9 6.7 7.9 8.4 9.1 11.7 15.2 17.4 17.9
α4 = 0.7 ms 5.5 6.3 7.4 8.5 9.3 11.6 13.4 16.1 17.7 18.5
α5 = 0.6 ms 6.1 6.7 7.9 8.8 9.8 13.9 16.0 18.5 19.8 21.1
α6 = 0.5 ms 6.7 7.3 8.2 9.0 10.3 16.6 17.8 19.9 20.4 23.1

Table 3: Scalability test on KServer with different index configurations and request patterns. (c, t) in the first row, c represents
the maximum cluster size, and t represents the number of RP-trees. Zipf-(α, n) is used to model the content popularity.

tent popularity with a Zipf distribution, whose probability
mass function is f(x) = 1

xα
∑n
i=1 i−α , where x is the item

index, n is the total number of items in the database, and
α controls the skewness of the distribution. Smaller values
of α lead to more uniform distributions while large α val-
ues assign more mass to elements with small i. It has been
empirically demonstrated that in real-world data following
a power-law, the α values typically range between 0.9 and
1.0 [9, 10]. We plug in different α to generate the request
stream. The next request is sent out as soon as the results
of the previous one is successfully received. Round trip time
(RTT) depends on network conditions and is irrelevant to
the efficiency of the backend, hence is excluded from total
service time. Table 3 summarizes our results.

We also experiment with various index configurations to un-
derstand how index impacts the server performance. The in-
dex is configured with two parameters: the maximum cluster
size c and the number of search trees t. Note c determines
how many random vectors we will draw for each search tree,
which further impacts the search precision. The first row in
Table 3 lists all the configurations. In general, for a realistic
α = 0.9 and index (20, 256), the throughput can reach 1052
requests per second (i.e., 1000

7.6
× 8) on a node of 8 CPUs.

From Table 3, we can see that including more RP-trees im-
proves the search accuracy but also increases the index size.
Since we only store the random seed for all random vectors
which is practically negligible, the growth of index size is
due to storing the tree structures. The time overhead of
searching also grows sublinearly with more trees. However,
since searching in different trees are independent and can be
easily parallelized, the performance can be further improved
by using more CPUs. Given a specific index configuration,
the service time increases as α decreases, which attests our
arguments in Section 4.3. Namely, we can exploit the highly
skewed popularity distribution to scale up the system. As
we mentioned, increasing cluster size is equivalent to reduc-
ing the number of random projections, and vice versa. We
increase the maximum cluster size from 20 to 80 and present
the result in the right half of Table 3. Though the intuition
is that the precision should deteriorate with less random
projections, we notice that the precision is improved instead
of degrading. The reason is two-fold: first, large cluster size
reduces the probability of misclassification for those projec-
tions close to the split point. Second, since we perform lin-
ear search within a cluster, larger cluster enables us explore
more neighbors which leads to higher probability to find ac-
tual nearest ones. Nonetheless, also due to the linear search
in larger clusters, the gain in the accuracy is at the price of

inflated searching time.

6. DISCUSSIONS & FUTURE WORK
We mainly focused on the implementation issues in the present
paper. It is worth noting that we can improve the current
design in many ways. E.g., new content keeps flowing into
Kvasir. However, we need not necessarily to rebuild the LSA
model and index from scratch whenever new documents ar-
rive. LSA space can be adjusted on the fly for incremental
updates [7]. Then, the trees are updated by adding the new
points to the corresponding leaf cell.

The results from KServer are ranked based on cosine similar-
ity at the moment. However, finer-grained and more person-
alized re-ranking can be implemented by taking users’ both
long-term and short-term preferences into account. Such
functionality can be achieved by extending one-class SVM
or utilizing other techniques like reinforcement learning [15].
As we also mentioned, the frontend is not constrained within
a browser and can be implemented in various ways on dif-
ferent platforms. Kvasir provides a scalable Internet service
via a RESTful API. Content providers can integrate Kvasir
service on their website to enhance users’ experience by au-
tomatically providing similar articles on the same page. Be-
sides, more optimizations can be done at frontend side via
caching and compression to reduce the traffic overhead.

Currently, Kvasir does not provide full-fledged security and
privacy support. For security, malicious users may launch
DDoS attacks by submitting a huge amount of random re-
quests quickly. Though limiting the request rate can mit-
igate such attacks to some extent, DDoS attacks are diffi-
cult to defend against in general. For privacy, Kvasir needs
tracking a user’s browsing history to provide personalized
results. However, a user may not want to store such private
information on the server. Finer-grained policy is needed
to provide flexible privacy configuration. Security and pri-
vacy definitely deserve more thorough investigations in our
future work. Besides, we are also planning to perform ex-
tensive user-studies to evaluate the usefulness of the system.

7. CONCLUSION
In this paper, we presented Kvasir which provides seamless
integration of LSA-based content provision into web brows-
ing. We proposed a parallel RP-tree algorithm and imple-
mented stochastic SVD on Spark to tackle the scalability
challenges. The proposed solutions were evaluated on the
testbed and scaled well on multiple CPUs. The key compo-
nents of Kvasir are implemented as an Apache Spark library,
and the source code is publicly accessible on Github.
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