Approximate Proximity Problems
In High Dimensions
via Locality-Sensitive Hashing

Piotr Indyk

Helsinki, May 2007

Recap

Recap:

Nearest Neighbor in R®

— Motivation: learning, retrieval, compression,..
Exact: curse of dimensionality

— Either O(dn) query time, or n®(9 space
Approximate (factor c=1+¢)

— Kd-trees: optimal space, O(1/¢)4 log n query
time

Helsinki, May 2007

Today

 Algorithms with polynomial dependence
on d

— Locality-Sensitive Hashing
* Experiments etc

Helsinki, May 2007

Approximate Near Neighbor

« c-Approximate r-Near Neighbor: build data
structure which, for any query q:
— If there is a point peP, ||p-q|| =
— itreturns p'eP, ||p-q||l =cr

O

 Reductions:
— c-Approx r-Close Pair

— c-Approx Nearest Neighbor reduces to c-Approx O
Near Neighbor

(log overhead)
— One can enumerate all approx near neighbors
— can solve exact near neighbor problem

— Other apps: c-approximate Minimum Spanning
Tree, clustering, etc.

Helsinki, May 2007

Approximate algorithms

Space/time exponential in d [Arya-Mount-et al,
[Kleinberg’97], [Har-Peled'02], [Arya-Mount-..]

Space/time polynomial in d [Kushilevitz-Ostrovsky-
Rabani’98], [Indyk-Motwani’98], [Indyk’98], [Gionis-Indyk-Motwani’99],
[Charikar’'02], [Datar-Immorlica-Indyk-Mirrokni’04], [Chakrabarti-

Regev’'04], [Panigrahy’06], [Ailon-Chazelle’06]...

Space Time Comment Norm Ref

dn+n%e? d*logn/e?or1 | c=1+¢ Hamm, |, | [KOR'98, IM'98]

nQ(1/e?) 0(1) [AIP’06]

dn+n?+e() dne(©) p(c)=1/c Hamm, I, | [IM'98], [GIM’98],[Cha’02]
p(c)<1/c l, [DIIM’04]

dn * logs dno(©) o(c)=0(log c/c) Hamm, I, | [Ind’01]

dn+n?*e() dne(©) p(c)=1/c? + o(1) 1, [Ar06]
a(c)=0(1/c) l, [Pan’06]

Helsinki, May 2007

Locality-Sensitive Hashing
» Idea: construct hash o
functions g: RY — U such that " ®
for any points p,q:

—If [|p-q|| =, then Pr[g(p)=9g(q)] Lol 1®
£

Is-high” “not-so-small”

O
@

O
®

— If ||p-ql| >cr, then Pr[g(p)=g(q)] [%®

IS “small’ O

 Then we can solve the
problem by hashing

Helsinki, May 2007

LSH [Indyk-Motwani’98]

A family H of functions h: RY — U is called
(P,,P,,r.cr)-sensitive, if for any p,q:
—if [[p-q|| <r then Pr[h(p)=h(q)]> P,
—if ||p-q|| >cr then Pr[h(p)=h(q) 1 < P,

« Example: Hamming distance
— LSH functions: h(p)=p;, i.e., the i-th bit of p
— Probabillities: Pr[h(p)=h(q) | = 1-D(p,q)/d

p=10010010

Helsinki, Ma392=010;01 0110

Algorithm

 \We use functions of the form

g(p)=<h4(p).ho(p),....h(p)>
* Preprocessing:
— Selectg,...g,
— For all peP, hash p to buckets g.(p)...g,(p)

* Query:
— Retrieve the points from buckets g,(q), 9,(q), ..., until

 Either the points from all L buckets have been retrieved, or
« Total number of points retrieved exceeds 3L

— Answer the query based on the retrieved points
— Total time: O(dL)

Helsinki, May 2007

Analysis [IM'98, Gionis-Indyk-Motwani’99]

 Lemma: the algorithm solves c-
approximate NN with:

— Number of hash fun: L=nr,
p=log(1/P1)/log(1/P2)

— Constant success probability per query g

 Lemma 2: for Hamming LSH functions, we
have p=1/c

Helsinki, May 2007

Proof of Lemma 1 by picture

» Points in {0,1}d

* Collision prob. for k=1..3, L=1..3 (recall: L=#indices, k=#h’s)
« Distance ranges from 0O to d=10

probability

Co

1.2

1 4

0.8

0.6

0.4

0.2

A

— k=1
— k=2
k=3

0 1 1 1 1 1 1 I

12 3 45 6 7 8 910
Distance

Collision probability

1.2

1 4

o
oo
!

o
o

o
~

o
(&

o

— k=1
—k=2
k=3

Helsinki, May 2007

Collision Probability

-_—
o

—_
|

o
oo
I

o
o

©
~

©
()

o

Distance

—k=1
—k=2
k=3

Proof

e Define:
— p: a point such that ||p-q|| = r
—FAR(q)={ p’eP: |[p-q|[>cr }
- Bi(q)={ p'eP: gi(p')=gi(q) }
* Will show that both events occur with >0
probability:
—E;: 0/(p)=0i(q) for some i=1...L
- E,: %;|B(a) N FAR(q)] < 3L

Helsinki, May 2007

Proof ctd.

Set k=log,p, N
For p'eFAR(Q),
Pr{gi(p’)=g(q)] < P,* =1/n
E[[Bi(a)"FAR(q)|] = 1
E[2; [Bi(a)"FAR(q)|] = L
Pr[2. |B.(q)nFAR(q)|=23L 1< 1/3

Helsinki, May 2007

* Pr|
' gi(p)#ai(q), i=1..L] = (1-1/L)-< 1/e

Proof, ctd.

9i(p)=gi(a)] 2 1/P* = 1/nP =1/L

Helsinki, May 2007

Proof, end

* Pr[E, not true]+Pr[E, not true]
<1/3+1/e =0.7012.
 Prl[E,nE,]21-(1/3+1/e) =0.3

Helsinki, May 2007

Proof of Lemma 2

o Statement: for
— P1=1-r/d
— P2=1-cr/d
we have p=log(P1)/log(P2) = 1/c
* Proof:

— Need P1¢ = P2
— But (1-x)°¢ = (1-cx) for any 1>x>0, c>1

Helsinki, May 2007

Recap

* LSH solves c-approximate NN with:
— Number of hash fun: L=n°, p=log(1/P1)/log(1/P2)
— For Hamming distance we have p=1/c

e Questions:

— Can we extend this beyond Hamming distance ?

* Yes:
— embed |, into |, (random projections)
— |, into Hamming (discretization)

— Can we reduce the exponent p ?

Helsinki, May 2007

Projection-based LSH

[Datar-Immorlica-Indyk-Mirrokni’'04]

» Define hy ,(p)=L(p*X+b)/w.:
— W~ r
— X=(X,...Xy) , where X is ® W

chosen from: \

« Gaussian distribution
(for I, norm)*

— b is a scalar

" For |, norm use “s-stable” distribution, where p*X has same distribution as
Iplls Z, where Zis s-stable giinki, May 2007

Analysis

 Need to:

— Compute Pr[h(p)=n(q)] as a function of ||p-ql
and w; this defines P, and P,

— For each ¢ choose w that minimizes

p=logqp,(1/P4)
 Method:

— For |,: computational
— For general |_: analytic

Helsinki, May 2007

0.9

0.8

0.7

0.6

0.5

— rho
- 1lc

i
2

4 5 6 7 8 9 10
Approximation factor ¢

Helsinki, May 2007

New LSH scheme
[Andoni-Indyk’06]

Instead of projecting onto R, ; y
project onto R!, for constant t ® W
Intervals — lattice of balls \
— Can hit empty space, so hash until "

Y

a ball is hit
Analysis:
— p=1/c2+ O(log t/t1?2)
— Time to hash is t°® ®

— Total query time: dn'/c*+o(1)

[Motwani-Naor-Panigrahy’006]:
LSH in |, must have p = 0.45/c?

Helsinki, May 2007

New LSH scheme, ctd.

 How does it work in practice ?

 The time t°dn1c*+f() js not very
practical
— Need t=30 to see some improvement

 |dea: a different decomposition of R!

— Replace random balls by Voronoi 6
diagram of a lattice
— For specific lattices, finding a cell 6

containing a point can be very fast
—fast hashing

Helsinki, May 2007

Leech Lattice LSH

« Use Leech lattice in R?4 | t=24
— Largest kissing number in 24D: 196560
— Conjectured largest packing density in 24D
— 24 is 42 inreverse...

* Very fast (bounded) decoder: about 519
operations [Amrani-Beery’94]

 Performance of that decoder for c=2:

— 1/c? 0.25
— 1/c 0.50
— Leech LSH, any dimension: p~0.36

— Leech LSH, 24D (no projection): p=0.26

Helsinki, May 2007

LSH Zoo

Hamming metric
L, norm, se(0,2]
Vector angle [Charikar02] based on [GW94]

Jaccard coefficient [Broder et al’97]
JA,B)=|ANB|/|AuB|

Helsinki, May 2007

Experiments

Helsinki, May 2007

Experiments (with ‘04 version)

- E?LSH: Exact Euclidean LSH (with Alex Andoni)

— Near Neighbor

— User sets r and P = probability of NOT reporting a point within
distance r (=10%)

— Program finds parameters k,L,w so that:
* Probability of failure is at most P
« Expected query time is minimized
* Nearest neighbor: set radius (radiae) to accommodate
90% queries (results for 98% are similar)
— 1 radius: 90%
— 2 radiae: 40%, 90%
— 3 radiae: 40%, 65%, 90%
— 4 radiae: 25%, 50%, 75%, 90%

Helsinki, May 2007

Data sets

MNIST OCR data, normalized (LeCun)
— d=784

— n=60,000

Corel_hist

— d=64

— n=20,000

Corel_uci

— d=64

— n=68,040

Aerial data (Manjunath)
— d=60

— n=275,476

Helsinki, May 2007

Other NN packages

* ANN (by Arya & Mount):
— Based on kd-tree
— Supports exact and approximate NN

* Metric trees (by Moore et al):
— Splits along arbitrary directions (not just x,y,..)
— Further optimizations

Helsinki, May 2007

E2LSH-1
E2LSH-2
E2LSH-3
E2LSH-4
ANN

MT

Running times

MNIST Speedup Corel hist Speedup Corel uci Speedup |Aerial Speedup

0.00960
0.00851

0.25300 29.72274
0.20900 24.55357

0.00024
0.00018

0.00018 1.011236
0.00130 7.303371

Helsinki, May 2007

0.00070
0.00055

0.00274 4.954792
0.00650 11.75407

0.07400
0.00833
0.00668
0.00741 1.109281
0.01700 2.54491

LSH vs kd-tree (MNIST)

0.2
0.18

0.16

0.14

0.12

0.1

0

0.08
0.06 -
0.04 /
0.02 -
0) .

&
*

10

20

30 40

50

60

70

Helsinki, May 2007

Caveats

 For ANN (MNIST), setting e=1000% results in:

— Query time comparable to LSH

— Correct NN in about 65% cases, small error otherwise
 However, no guarantees

« LSH eats much more space (for optimal
performance):
— LSH: 1.2 GB
— Kd-tree: 360 MB

Helsinki, May 2007

Conclusions

 Locality-Sensitive Hashing
— Very good option for near neighbor
— Worth trying for nearest neighbor

- E?LSH [pivro4) available — check my web
page for more info

Helsinki, May 2007

Refs

« LSH web site (with references):
http://web.mit.edu/andoni/www/LSH/index.html

* M. Charikar, Similarity estimation
techniques from rounding algorithms,
STOC'02.

 A. Broder, On the resemblance and

containment of documents,
SEQUENCES'97.

Helsinki, May 2007

