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Recap

Recap:

Nearest Neighbor in R®

— Motivation: learning, retrieval, compression,..
Exact: curse of dimensionality

— Either O(dn) query time, or n®(9 space
Approximate (factor c=1+¢)

— Kd-trees: optimal space, O(1/¢)4 log n query
time
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Today

 Algorithms with polynomial dependence
on d

— Locality-Sensitive Hashing
* Experiments etc
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Approximate Near Neighbor

« c-Approximate r-Near Neighbor: build data
structure which, for any query q:
— If there is a point peP, ||p-q|| =
— itreturns p'eP, ||p-q||l =cr

O

 Reductions:
— c-Approx r-Close Pair

— c-Approx Nearest Neighbor reduces to c-Approx O
Near Neighbor

(log overhead)
— One can enumerate all approx near neighbors
— can solve exact near neighbor problem

— Other apps: c-approximate Minimum Spanning
Tree, clustering, etc.
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Approximate algorithms

Space/time exponential in d [Arya-Mount-et al,
[Kleinberg’97], [Har-Peled'02], [Arya-Mount-.. ]

Space/time polynomial in d [Kushilevitz-Ostrovsky-
Rabani’98], [Indyk-Motwani’98], [Indyk’98], [Gionis-Indyk-Motwani’99],
[Charikar’'02], [Datar-Immorlica-Indyk-Mirrokni’04], [Chakrabarti-

Regev’'04], [Panigrahy’06], [Ailon-Chazelle’06]...

Space Time Comment Norm Ref

dn+n%e? d*logn/e?or1 | c=1+¢ Hamm, |, | [KOR'98, IM'98]

nQ(1/e?) 0(1) [AIP’06]

dn+n?+e() dne(©) p(c)=1/c Hamm, I, | [IM'98], [GIM’98],[Cha’02]
p(c)<1/c l, [DIIM’04]

dn * logs dno(©) o(c)=0(log c/c) Hamm, I, | [Ind’01]

dn+n?*e() dne(©) p(c)=1/c? + o(1) 1, [Ar06]
a(c)=0(1/c) l, [Pan’06]
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Locality-Sensitive Hashing
» Idea: construct hash o
functions g: RY — U such that " ®
for any points p,q:

—If [|p-q|| =, then Pr[g(p)=9g(q)] Lol 1®
£

Is-high” “not-so-small”

O
@

O
®

— If ||p-ql| >cr, then Pr[g(p)=g(q)] [%®

IS “small’ O

 Then we can solve the
problem by hashing
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LSH [Indyk-Motwani’98]

A family H of functions h: RY — U is called
(P,,P,,r.cr)-sensitive, if for any p,q:
—if [[p-q|| <r then Pr[ h(p)=h(q)]> P,
—if ||p-q|| >cr then Pr[ h(p)=h(q) 1 < P,

« Example: Hamming distance
— LSH functions: h(p)=p;, i.e., the i-th bit of p
— Probabillities: Pr[ h(p)=h(q) | = 1-D(p,q)/d

p=10010010
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Algorithm

 \We use functions of the form

g(p)=<h4(p).ho(p),....h(p)>
* Preprocessing:
— Selectg,...g,
— For all peP, hash p to buckets g.(p)...g,(p)

* Query:
— Retrieve the points from buckets g,(q), 9,(q), ..., until

 Either the points from all L buckets have been retrieved, or
« Total number of points retrieved exceeds 3L

— Answer the query based on the retrieved points
— Total time: O(dL)

Helsinki, May 2007



Analysis [IM'98, Gionis-Indyk-Motwani’99]

 Lemma: the algorithm solves c-
approximate NN with:

— Number of hash fun: L=nr,
p=log(1/P1)/log(1/P2)

— Constant success probability per query g

 Lemma 2: for Hamming LSH functions, we
have p=1/c
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Proof of Lemma 1 by picture

» Points in {0,1}d

* Collision prob. for k=1..3, L=1..3 (recall: L=#indices, k=#h’s )
« Distance ranges from 0O to d=10

probability
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Proof

e Define:
— p: a point such that ||p-q|| = r
—FAR(q)={ p’eP: |[p-q|[ >cr }
- Bi(q)={ p'eP: gi(p')=gi(q) }
* Will show that both events occur with >0
probability:
—E;: 0/(p)=0i(q) for some i=1...L
- E,: %;|B(a) N FAR(q)] < 3L
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Proof ctd.

Set k=log,p, N
For p'eFAR(Q),
Pr{gi(p’)=g(q)] < P,* =1/n
E[ [Bi(a)"FAR(q)| ] = 1
E[2; [Bi(a)"FAR(q)| ] = L
Pr[2. |B.(q)nFAR(q)|=23L 1< 1/3
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* Pr|
' gi(p)#ai(q), i=1..L] = (1-1/L)-< 1/e

Proof, ctd.

9i(p)=gi(a) ] 2 1/P* = 1/nP =1/L
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Proof, end

* Pr[E, not true]+Pr[E, not true]
<1/3+1/e =0.7012.
 Prl[E,nE,]21-(1/3+1/e) =0.3
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Proof of Lemma 2

o Statement: for
— P1=1-r/d
— P2=1-cr/d
we have p=log(P1)/log(P2) = 1/c
* Proof:

— Need P1¢ = P2
— But (1-x)°¢ = (1-cx) for any 1>x>0, c>1
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Recap

* LSH solves c-approximate NN with:
— Number of hash fun: L=n°, p=log(1/P1)/log(1/P2)
— For Hamming distance we have p=1/c

e Questions:

— Can we extend this beyond Hamming distance ?

* Yes:
— embed |, into |, (random projections)
— |, into Hamming (discretization)

— Can we reduce the exponent p ?
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Projection-based LSH

[Datar-Immorlica-Indyk-Mirrokni’'04]

» Define hy ,(p)=L(p*X+b)/w.:
— W~ r
— X=(X,...Xy) , where X is ® W

chosen from: \

« Gaussian distribution
(for I, norm)*

— b is a scalar

" For |, norm use “s-stable” distribution, where p*X has same distribution as
Iplls Z, where Zis s-stable  giinki, May 2007



Analysis

 Need to:

— Compute Pr[h(p)=n(q)] as a function of ||p-ql
and w; this defines P, and P,

— For each ¢ choose w that minimizes

p=logqp,(1/P4)
 Method:

— For |,: computational
— For general |_: analytic
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New LSH scheme
[Andoni-Indyk’06]

Instead of projecting onto R, ; y
project onto R!, for constant t ® W
Intervals — lattice of balls \
— Can hit empty space, so hash until "

Y

a ball is hit
Analysis:
— p=1/c2+ O(log t/t1?2)
— Time to hash is t°® ®

— Total query time: dn'/c*+o(1)

[Motwani-Naor-Panigrahy’006]:
LSH in |, must have p = 0.45/c?
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New LSH scheme, ctd.

 How does it work in practice ?

 The time t°dn1c*+f() js not very
practical
— Need t=30 to see some improvement

 |dea: a different decomposition of R!

— Replace random balls by Voronoi 6
diagram of a lattice
— For specific lattices, finding a cell 6

containing a point can be very fast
—fast hashing
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Leech Lattice LSH

« Use Leech lattice in R?4 | t=24
— Largest kissing number in 24D: 196560
— Conjectured largest packing density in 24D
— 24 is 42 inreverse...

* Very fast (bounded) decoder: about 519
operations [Amrani-Beery’94]

 Performance of that decoder for c=2:

— 1/c? 0.25
— 1/c 0.50
— Leech LSH, any dimension: p~0.36

— Leech LSH, 24D (no projection): p=0.26
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LSH Zoo

Hamming metric
L, norm, se(0,2]
Vector angle [Charikar02] based on [GW94]

Jaccard coefficient [Broder et al’97]
JA,B)=|ANB|/|AuB|
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Experiments
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Experiments (with ‘04 version)

- E?LSH: Exact Euclidean LSH (with Alex Andoni)

— Near Neighbor

— User sets r and P = probability of NOT reporting a point within
distance r (=10%)

— Program finds parameters k,L,w so that:
* Probability of failure is at most P
« Expected query time is minimized
* Nearest neighbor: set radius (radiae) to accommodate
90% queries (results for 98% are similar)
— 1 radius: 90%
— 2 radiae: 40%, 90%
— 3 radiae: 40%, 65%, 90%
— 4 radiae: 25%, 50%, 75%, 90%
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Data sets

MNIST OCR data, normalized (LeCun)
— d=784

— n=60,000

Corel_hist

— d=64

— n=20,000

Corel_uci

— d=64

— n=68,040

Aerial data (Manjunath)
— d=60

— n=275,476
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Other NN packages

* ANN (by Arya & Mount):
— Based on kd-tree
— Supports exact and approximate NN

* Metric trees (by Moore et al):
— Splits along arbitrary directions (not just x,y,..)
— Further optimizations
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E2LSH-1
E2LSH-2
E2LSH-3
E2LSH-4
ANN

MT

Running times

MNIST Speedup Corel hist Speedup Corel uci Speedup |Aerial Speedup

0.00960
0.00851

0.25300 29.72274
0.20900 24.55357

0.00024
0.00018

0.00018 1.011236
0.00130 7.303371
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0.00070
0.00055

0.00274 4.954792
0.00650 11.75407

0.07400
0.00833
0.00668
0.00741 1.109281
0.01700  2.54491



LSH vs kd-tree (MNIST)
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Caveats

 For ANN (MNIST), setting e=1000% results in:

— Query time comparable to LSH

— Correct NN in about 65% cases, small error otherwise
 However, no guarantees

« LSH eats much more space (for optimal
performance):
— LSH: 1.2 GB
— Kd-tree: 360 MB
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Conclusions

 Locality-Sensitive Hashing
— Very good option for near neighbor
— Worth trying for nearest neighbor

- E?LSH [pivro4) available — check my web
page for more info
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