
Mining the graph structures of the web

Aristides Gionis

Yahoo! Research, Barcelona, Spain, and
University of Helsinki, Finland

Summer School on Algorithmic Data Analysis (SADA07)
May 28 – June 1, 2007

Helsinki, Finland

Graphs in the web

A large wealth of data in the web can be represented as graphs

Rich amounts of information

Complex interactions among the entities they represent

To extract the information represented in those graphs need

Understanding of the generating processes

Analysis of graphs at different levels

Efficient data mining algorithms

Graphs in the web

Internet graph

Web graph

Blogs

Collaborative topical discussions

Social networks

friendship networks, buddy lists, orkut, 360o

Photo/video sharing and tagging

Flickr, You Tube

Yahoo! answers

Query logs

How to take advantage

Information dissemination

Retrieve information for tasks otherwise “too difficult”

Recommendations, suggestions

Personalization

Listen and explore music as a member of a community

Find a photo of a ’Dali painting’ in Flickr

Graph datasets are universal

Protein interaction networks

Gene regulation networks

Gene co-expression networks

Neural networks

Food webs

Citation graphs

Collaboration graphs (scientists, actors)

Word co-occurrence graphs

Agenda

Thu 31/5: Tutorial on mining graphs:
models and algorithms

Fri 1/6: Applications:
Spam detection and reputation prediction

1 Properties of graphs

2 Finding communities

Basic notation

Graph G = (V ,E)

V a set of n vertices

E ⊆ V × V a set of m edges

Directed or undirected graphs

N(u) = {v | (u, v) ∈ E} neighbors of u

d(u) = |N(u)| degree of u

In-degree and out-degree in the directed case

Basic notation

u = x0, x1, . . . , xk−1, xk = v path of length k from u to v ,
if (xi , xi+1) ∈ E

u and v are connected if there is a path from u to v

Connected component: a subset of vertices each pair of which
are connected

d(u, v): shortest path from u to v

DG = maxu,v d(u, v): diameter of the graph

Extensions

Weights on the vertices and/or the edges

Types on the vertices and/or the edges

Feature vectors, e.g., text

Properties of graphs at different levels

Diverse collections of graphs arising from different phenomena

Are there any typical patterns?

At which level should we look for commonalities?

Degree distribution — microscopic

Communities — mesoscopic

Small diameters — macroscopic

Degree distribution

Consider Ck the number of vertices u with degree d(u) = k.
Then

Ck = ck−γ ,

with γ > 1, or
lnCk = ln c − γ ln k

So, plotting lnCk versus ln k gives a straight line with
slope −γ

Heavy-tail distribution: there is a non-negligible fraction of
nodes that has very high degree (hubs)

Degree distribution

Degree distribution

Indegree distributions of Web graphs within national domains

Greece Spain

[Baeza-Yates and Castillo, 2005]

Degree distribution

...and more “straight” lines

In-degrees of UK hostgraph Out-degrees of UK hostgraph

fr
e

q
u

e
n

c
y

degree

fr
e

q
u

e
n

c
y

degree

Community structure

Intuitively a subset of vertices that are more connected to
each other than to other vertices in the graph

A proposed measure is clustering coefficient

C1 =
3× number of triangles in the network

number of connected triples of vertices

Captures “transitivity of clustering”

If u is connected to v and
v is connected to w , it is also likely that
u is connected to w

Community structure

Alternative definition

Local clustering coefficient

Ci =
number of triangles connected to vertex i

number of triples centered at vertex i

Global clustering coefficient

C2 =
1

n

∑
i

Ci

Community structure is captured by large values of clustering
coefficient

Small diameter

Diameter of many real graphs is small (e.g., D = 6 is famous)

Proposed measures

Hop-plots: plot of |Nh(u)|, the number of neighbors of u at
distance at most h, as a function of h
[M. Faloutsos, 1999] conjectured that it grows exponentially
and considered hop exponent

Effective diameter: upper bound of the shortest path of 90%
of the pairs of vertices

Average diameter: average of the shortest paths over all pairs
of vertices

Characteristic path length: median of the shortest paths over
all pairs of vertices

Measurements on real graphs

Graph n m α C1 C2 `
film actors 449 913 25 516 482 2.3 0.20 0.78 3.48
Internet 10 697 31 992 2.5 0.03 0.39 3.31
protein interactions 2 115 2 240 2.4 0.07 0.07 6.80

[Newman, 2003b]

Random graphs

Erdös-Rényi random graphs have been used as point of
reference

The basic random graph model:

n : the number of vertices

0 ≤ p ≤ 1

for each pair (u, v), independently generate the edge (u, v)
with probability p

Gn,p a family of graphs, in which a graph with m edges

appears with probability pm(1− p)(
n
2)−m

z = np

Random graphs

Do they satisfy properties similar with those of real graphs?

Typical distance d = ln n
ln z

Number of vertices at distance l is ' z l , set zd ' n

Poisson degree distribution

pk =

(
n

k

)
pk(1− p)n−k ' zke−z

k

highly concentrated around the mean (z = np)
probability of very high degree nodes is exponentially small

Clustering coefficient C = p

probability that two neighbors of a vertex are connected is
independent of the local structure

Other properties

Degree correlations

Distribution of size of connected components

Resilience

Eigenvalues

Distribution of motifs

Properties of evolving graphs

[Leskovec et al., 2005] discovered two interesting and
counter-intuitive phenomena

Densification power law

|Et | ∝ |Vt |α 1 ≤ α ≤ 2

Diameter is shrinking

Next...

Delve deeper into the above properties of graphs

Power laws on degree distribution
Communities
Small diameters

Generative models and algorithms

Power law distributions

“A Brief History of Generative Models for Power Law and
Lognormal Distributions” [Mitzenmacher, 2004]

A random variable X has power law distribution, if

Pr[X ≥ x] ∼ cx−α for c > 0, and α > 0.

Random variable X has Pareto distribution, if

Pr[X ≥ x] = (
x

k
)−α for α > 0, and k > 0, where X ≥ k.

Density function of Pareto

f (x) = αkαx−(α+1)

Scale-free distributions

Or scaling distributions.
Since

Pr[X ≥ x] = cx−α

then
Pr[X ≥ x |X ≥ w] = c1x

−α

Thus the conditional distribution Pr[X ≥ x |X ≥ w] is
identical to Pr[X ≥ x], except from a change in scale

Signature of a power law

From Pr[X ≥ x] = (x
k)−α we get

ln(Pr[X ≥ x]) = −α(ln x − ln k)

So, a straight line on a log-log plot (slope −α)

Similarly for the density function (slope −α− 1)

Usually 0 ≤ α ≤ 2

if α ≤ 2 infinite variance

if α ≤ 1 infinite mean

A process that generates power law

Preferential attachment

The main idea is that “the rich get richer”

First studied by [Yule, 1925]

to suggest a model of why the number of species in genera
follows a power-law

Generalized by [Simon, 1955]

applications in distribution of word frequencies, population of
cities, income, etc.

Revisited in the 90s as a basis for Web-graph models

[Barabási and Albert, 1999, Broder et al., 2000,
Kleinberg et al., 1999]

Preferential attachment

The basic theme

Start with a single vertex, with a link to itself

At each time step a new vertex u appears with outdegree 1
and gets connected to an existing vertex v

With probability α < 1, vertex v is chosen uniformly at
random

With probability 1− α, vertex v is chosen with probability
proportional to its degree

Process leads to power law for the indegree distribution, with
exponent 2−α

1−α

Lognormal distribution

Random variable X has lognormal distribution
if Y = ln X has normal distribution. Since

f (y) =
1√
2πσ

e−(y−µ)2/2σ2
, it is f (x) =

1√
2πσx

e−(ln x−µ)2/2σ2
.

Always finite mean and variance

But it also appears a straight line on a log-log plot

ln f (x) = ln x − ln
√

2πσ − (ln x − µ)2

2σ2

= −(ln x)2

2σ2
+ (

µ

σ2
− 1) ln x − ln

√
2πσ − µ2

2σ2

So, if σ2 is large, then quadratic term is small for a large
range of values of x

Lognormal distribution

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100 1000 10000

mu = 0, sigma = 10
mu = 0, sigma = 3

Multiplicative models

Let two independent random variables Y1 and Y2 have normal
distribution with means µ1 and µ2 and variances σ2

1 and σ2
2,

resp.

Then Y = Y1 + Y2 has normal distribution, too, with mean
µ1 + µ2 and variance σ2

1 + σ2
2

So the product of two lognormally distributed independent
random variables follows a lognormal distribution

Multiplicative models

Assume a generative process

Xj = FjXj−1,

e.g., the size of a population might grow or shrink according
to a random variable Fj . Then

lnXj = ln X0 +

j∑
k=1

lnFk

If (lnFk) are i.i.d. with mean µ and finite variance σ2, then by
Central Limit Theorem, for large values of j , Xj can be
approximated by a lognormal

Proposed to model the growth of sites of the Web, as well as
the growth of user traffic on Web sites
[Huberman and Adamic, 1999]

Power law or lognormal?

Distribution of income

Start with some income X0

At time t with probability 1/3 double the income, with
probability 2/3 cut the income in half

Then, income distribution is lognormal

Power law or lognormal?

Assume now a “reflective barrier”:

At X0 maintain the same income with prob. 2/3

Call “having income X = X02
k−1” as “being in state k”

Equilibrium probability of being in state k is 1/2k

Probability of being in state ≥ k is 1/2k−1

Pr[X ≥ X02
k−1] = 1/2k−1, or

Pr[X ≥ x] =
X0

x

a power law!

A look back at the data..

Graph n m α C1 C2 `
(×1000) (×1000)

film actors 449 25 516 2.3 0.20 0.78 3.48
internet 10 31 2.5 0.03 0.39 3.31
protein interactions 2 2 2.4 0.07 0.07 6.80
word co-occurrence 460 17 000 2.8 0.44
telephone call graph 47 000 80 000 2.1
www altavista 203 549 2 130 000 2.1/2.7
sexual contacts 2 3.2

[Newman, 2003b]

Clustering coefficient

C =
3× number of triangles in the network

number of connected triples of vertices

How to compute it?

How to compute the number of triangles in a graph?

Assume that the graph is very large, stored in disk

[Buriol et al., 2006]

Count triangles, when graph is seen as a data stream

Two models:

edges are stored in any order
edges in order — all edges incident to one vertex are stored
sequentially

Counting triangles

Brute-force algorithm is checking every triple of vertices

Obtain an approximation by sampling triples

Let T be the set of all triples and
Ti the set of triples that have i edges, i = 0, 1, 2, 3

By Chernoff bound, to get an ε-approximation, with
probability 1− δ, the number of samples should be

N ≥ O(
|T |
|T3|

1

ε2
log

1

δ
)

but |T | can be very large compared to |T3|

Counting triangles — incidence stream model

SampleTriangle [Buriol et al., 2006]
1st Pass

Count the number of paths of length 2 in the stream
2nd Pass

Uniformly choose one path (a, u, b)
3rd Pass

if ((a, b) ∈ E) β = 1 else β = 0
return β

We have E[β] = 3|T3|
|T2|+3|T3| , with |T2|+ 3|T3| =

∑
u

du(du−1)
2 , so

|T3| = E[β]
∑
u

du(du − 1)

6

and space needed is O((1 + |T2|
|T3|)

1
ε2 log 1

δ)

Counting triangles

The previous idea can be also applied to

Count triangles when edges are stored in arbitrary order

Obtain one-pass algorithm

Count other minors

Diameter

How to compute the diameter of a graph?

Matrix multiplication in O(n2.376) time,
but O(n2) space

BFS from a vertex takes O(n + m) time,
but need to do it from every vertex, so O(mn)

Resort to approximations again

Approximating the diameter

[Palmer et al., 2002], see also [Cohen, 1997]

Define:

Individual neighborhood function

N(u, h) = |{v | d(u, v) ≤ h}|

Neighborhood function

N(h) = |{(u, v) | d(u, v) ≤ h}| =
∑
u

N(u, h)

N(h) can be used to obtain diameter, effective diameter, etc.

Approximating the diameter

Define: M(u, h) = {v | d(u, v) ≤ h}, e.g., M(u, 0) = {u}
Algorithm based on the idea that
x ∈ M(u, h) if (u, v) ∈ E and x ∈ M(v , h − 1)

Anf [Palmer et al., 2002]
M(u, 0) = {u} for all u ∈ V
for each distance h do

M(u, h) = M(u, h − 1) for all u ∈ V
for each edge (u, v) do

M(u, h) = M(u, h) ∪M(v , h − 1)

Keep M(u, h) in memory, make a passes over the edges

How to maintain M(u, h)?

Approximating the diameter

How to maintain M(u, h) that it counts distinct vertices?

The problem of counting distinct elements in data streams

ANF uses the sketching algorithm of
[Flajolet and Martin, 1985] with O(log n) space
(but other counting algorithms can be used
[Bar-Yossef et al., 2002])

What if the M(u, h) sketches do not fit in memory?

Split M(u, h) sketches into in-memory blocks,
load one block at the time,
and process edges from that block

Conclusions

Real graphs coming from applications and generated from different
processes have many commonalities

Power law distribution of the degree sequences

Communities

Small diameters

Power law distribution of size of connected components

Resilience

Eigenvalues

1 Properties of graphs

2 Finding communities

Finding communities

A set of related Web pages

A group of scientists collaborating with each other

A set of blog posts discussing a specific topic

A set of related queries

Formulated as a graph clustering problem

Graph clustering

Graph G = (V ,E)

Edge (u, v) denotes similarity between u and v

weighted edges can be used to denote degree of similarity

We want to partition the vertices in clusters so that:

vertices within clusters are well connected, and
vertices across clusters are sparsely connected

Most graph partitioning problems are NP hard

Graph clustering

Measuring connectivity

minimum cut: The minimum number of edges whose removal
disconnects the graph

c(S) = minS⊆V |{(u, v) ∈ E | u ∈ S and v ∈ V − S}

G1 G2

Measuring connectivity

minimum cut: The minimum number of edges whose removal
disconnects the graph

c(S) = minS⊆V |{(u, v) ∈ V | u ∈ S and v ∈ V − S}

G1

V−S

S

G2

S

V−S

Graph expansion

Normalize the cut by the size of the smallest component

Define cut ratio

α(G ,S) =
c(S)

min{|S |, |V − S |}

And graph expansion

α(G) = min
S

c(S)

min{|S |, |V − S |}

Other similar normalized criteria have been proposed

Related to the eigenvalues of the adjacency matrix of the
graph, thus with the expansion properties of the graph

Spectral analysis

Let A be the adjacency matrix of the graph G

Define the Laplacian matrix of A as

L = D − A,

D = diag(d1, . . . , dn), a diagonal matrix

di the degree of vertex i

Lij =


di if i = j
−1 if (i , j) ∈ E , i 6= j
0 if (i , j) 6∈ E , i 6= j

L is symmetric positive semidefinite

The smallest eigenvalue of L is λ1 = 0, with
corresponding eigenvector w1 = (1, 1, . . . , 1)T

Spectral analysis

For the second smallest eigenvector λ2 of L

λ2 = min
xT w1=0
||x||=1

xTLx = minP
xi=0

∑
(i ,j)∈E (xi − xj)

2∑
i x

2
i

Corresponding eigenvector w2 is called Fielder vector

The ordering according to the values of w2 will group similar
(connected) vertices together

Physical interpretation: The stable state of springs placed on
the edges of the graph, when graph is forced to 1 dimension

Spectral partition

Partition the nodes according to the ordering induced by the
Fielder vector

Some partitioning rules:

Bisection: s is the median value in w2

Cut ratio: find the partition that minimizes α

Sign: Separate positive and negative values

Gap: Separate according to the largest gap in the values of w2

Spectral partition works very well in practice

However, not scalable

Spectral algorithms

[Kannan et al., 2004]: Use conductance instead of graph
expansion (weight vertices by their degree)

Bicriterion: Find a clustering in which all clusters have large
conductance and the number of across-cluster edges is small

Apply spectral partition to cluster the graph recursively

Polylogarithmic quality guarantees

[Cheng et al., 2006]: Enhance previous algorithm by a
merging post-processing phase:

Merge using dynamic programming in order to find a
tree-respecting clustering that optimizes a given objective
function

http://eigencluster.csail.mit.edu/

METIS graph partition

Popular family of algorithms and software
[Karypis and Kumar, 1998]

Multilevel algorithm

Coarsening phase in which the size of the graph is successively
decreased

Followed by bisection (based on spectral or KL method)

Followed by uncoarsening phase in which the bisection is
successively refined and projected to larger graphs

Top down algorithms

[Newman and Girvan, 2004]

A set of algorithms based on removing edges from the graph,
one at a time

The graph gets progressively disconnected, creating a
hierarchy of communities

Top down algorithms

Select edge to remove based on “betweeness”

Three definitions

Shortest-path betweeness: Number of shortest paths that the
edge belongs to

Random-walk betweeness: Expected number of paths for a
random walk from u to v

Current-flow betweeness: Resistance derived from considering
the graph as an electric circuit

Top down algorithms — overview

TopDown 0 [Newman and Girvan, 2004]
1. Compute betweeness value of all edges
2. Remove the edge with the highest betweeness
3. Repeat until no edges left

Problem with “ties”:

TopDown [Newman and Girvan, 2004]
1. Compute betweeness value of all edges
2. Remove the edge with the highest betweeness
3. Recompute betweeness value of all remaining edges
4. Repeat until no edges left

Shortest-path betweeness

How to compute shortest-path betweeness?

BFS from each vertex

Leads to O(mn) for all edge betweeness

OK if there are single paths to all vertices

s

42

1 1 2

1

1/2

1/2

1/2

1/2

s

Shortest-path betweeness

s

Overall time of TopDown is O(m2n)

Shortest-path betweeness

1

1

11

2

3

s

Overall time of TopDown is O(m2n)

Shortest-path betweeness

1

1

11

2

3
1/32/3 1

7/3
5/6

5/6

11/6 25/6

s

Overall time of TopDown is O(m2n)

Random-walk betweeness

v
ts u

Stochastic matrix of random walk is M = D−1 · A
with D = diag(d1, . . . , dn), so row i divided by di

Let Mt be M after removing the t-th row and the t-th column

and s be the vector with 1 at position s and 0 elsewhere

Probability distribution over vertices at time n is s ·Mn
t

Expected number of visits at each vertex is∑
n s ·Mn

t = s · (1−Mt)
−1

cu = E[# times passing from u to v] =
(
s · (1−Mt)

−1
)
u
· 1

du

c = s · (1−Mt)
−1 · D−1 = s · (Dt − At)

−1

Define random-walk betweeness at (u, v) as |cu − cv |

Random-walk betweeness

Random-walk betweeness at (u, v) is |cu − cv |
with c = s · (Dt − At)

−1

The choice of vertex t does not matter

Required one matrix inversion O(n3) and additional O(nm)
time to calculate the betweeness values on all edges

In total O(n3m) time with recalculation

Not scalable

Current-flow betweeness is equivalent!

According to [Newman and Girvan, 2004] shortest-path
betweeness works the best

Top down

How to select where to cut the cluster hierarchy?

How to decide if a given clustering is a good one?

Modularity

[Newman and Girvan, 2004] suggested notion of modularity

Given a clustering of G

Let E be a cluster×cluster (k × k) matrix, where

Eij is the fraction of edges from cluster i to cluster j , and

Ai =
∑

j Eij

Define modularity as

Q =
∑

i

(Eii − A2
i) = Tr(E)− ||E 2||

Values:
0 random structure, 1 strong community structure,
typical [0.3..0.7], can be negative, too

Q measure is not monotone with k

Optimizing modularity

[Newman, 2003a] proposed an agglomerative algorithm for
optimizing modularity directly

[White and Smyth, 2005] proposed two spectral algorithms

Comparable results, but spectral is much faster

Still not scalable

Can we do better? Faster algorithms? Approximation
guarantees?

Maximizing modularity is NP-hard [Brandes et al., 2006]

Modularity and swap randomization

Assessing results of data mining algorithms via swap
randomization [Gionis et al., 2006]

Compare the result of a data mining algorithm on data D
with the result obtained by the same algorithm on data D′

that has the same margins as D

1

1...

...

...
...

... ...
...

...

0

0

1 0

10...

...

...
...

... ...
...

...

B A B

u u

v

A

v

i

k

j

l

i

k

j

l

Same idea used by [Milo et al., 2004] to find significant motifs
in biological networks

Modularity and swap randomization

Recall: Q =
∑

i (Eii − A2
i),

where Eij is the fraction of edges from cluster i to cluster j ,
and Ai =

∑
j Eij

Appears to take account the total number of edges out of
clusters, not the degrees of individual vertices

Fix the degree of each vertex u to du

Under independence, the probability of having an edge
within cluster i is∑

u∈Ci

du

2m

 ∑
v∈Ci

dv

2m

 =

∑
u∈Ci

du

2m

2

=

∑
j

Eij

2

= A2
i

Scaling up

How to find communities on a large graph, say, the Web?

Web communities are characterized by dense directed bipartite
graphs [Kumar et al., 1999]

Idea similar to hubs and authorities

Example: Pages of sport cars (Lotus, Ferrari, Lamborghini)
and enthusiastic fans

Bipartite cores: Complete bipartite cliques contained in a
community

Support from random graph theory: If G = (U,V ,E) is a
dense bipartite graph, then w.h.p. there is a Ki ,j , for some i
and j

Detecting communities by trawling

fans

centers

Many pruning phases

1. Heuristic pruning (quality consideration)

fans should point to at least 6 different hosts
canters should be pointed by at most 50 fans

2. Degree-based pruning

for a fan to participate in a Ki,j it should have
out-degree at least j
for a center to participate in a Ki,j it should
have in-degree at least i
prune iteratively fans and centers
can be done efficient by sorting edges
sort edges by src to prune fans
sort edges by dst to prune centers

Detecting communities by trawling

3. Inclusion-exclusion pruning

either a core is output or a vertex is pruned

x

j c

c

c

1

2

3
|N(c1) ∩ N(c2) ∩ N(c3)| ≥ i

computation can be organized so that pruning is done with
successive passes on the data

4. A-priori pruning

cores satisfy monotonicity
if (X ,Y) is a Ki,j then every (X ′,Y) with X ′ ⊆ X a Ki ′,j

a-priori algorithm: start with (1, j), (2, j), ...
most computationally demanding phase, but the graph is
already heavily pruned

Conclusions

Finding communities in graphs:

What is the right objective?

Designing scalable algorithms is challenging

How to evaluate the results?

Acknowledgments

The following people have contributed directly or indirectly to
some of the content in this presentation

Ricardo Baeza-Yates

Carlos “Chato” Castillo

Panayiotis Tsaparas

. . .

Baeza-Yates, R. and Castillo, C. (2005).

Link analysis in national Web domains.

In Beigbeder, M. and Yee, W. G., editors, Workshop on Open Source
Web Information Retrieval (OSWIR), pages 15–18, Compiegne,
France.

Bar-Yossef, Z., Jayram, T. S., Kumar, R., Sivakumar, D., and
Trevisan, L. (2002).

Counting distinct elements in a data stream.

In Proceedings of the 6th International Workshop on Randomization
and Approximation Techniques (RANDOM), pages 1–10,
Cambridge, Ma, USA. Springer-Verlag.

Barabási, A. L. and Albert, R. (1999).

Emergence of scaling in random networks.

Science, 286(5439):509–512.

http://www.dcc.uchile.cl/%7Eccastill/papers/baeza_05_link_analysis_national_web_domains_countries.pdf
http://portal.acm.org/citation.cfm?id=711822
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed% &dopt=Abstract&list_uids=10521342

Brandes, U., Delling, D., Gaertler, M., Görke, R., Höfer, M.,
Nikoloski, Z., and Wagner, D. (2006).

Maximizing modularity is hard.

Technical report, DELIS – Dynamically Evolving, Large-Scale
Information Systems.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S.,
Stata, R., Tomkins, A., and Wiener, J. (2000).

Graph structure in the web: Experiments and models.

In Proceedings of the Ninth Conference on World Wide Web, pages
309–320, Amsterdam, Netherlands. ACM Press.

Buriol, L. S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A.,
and Sohler, C. (2006).

Counting triangles in data streams.

In PODS ’06: Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 253–262, New York, NY, USA. ACM Press.

http://www9.org/w9cdrom/160/160.html

Cheng, D., Kannan, R., Vempala, S., and Wang, G. (2006).

A divide-and-merge methodology for clustering.

ACM Trans. Database Syst., 31(4):1499–1525.

Cohen, E. (1997).

Size-estimation framework with applications to transitive closure and
reachability.

Journal of Computer and System Sciences, 55(3):441–453.

Flajolet, P. and Martin, N. G. (1985).

Probabilistic counting algorithms for data base applications.

Journal of Computer and System Sciences, 31(2):182–209.

Gionis, A., Mannila, H., Mielikäinen, T., and Tsaparas, P.
(2006).

Assessing data mining results via swap randomization.

In KDD ’06: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 167–176,
New York, NY, USA. ACM Press.

http://research.att.com/~edith/Papers/tcest.ps
http://research.att.com/~edith/Papers/tcest.ps
http://citeseer.ist.psu.edu/flajolet85probabilistic.html

Huberman, B. A. and Adamic, L. A. (1999).

Growth dynamics of the world-wide web.

Nature, 399.

Kannan, R., Vempala, S., and Vetta, A. (2004).

On clusterings: Good, bad and spectral.

J. ACM, 51(3):497–515.

Karypis, G. and Kumar, V. (1998).

A fast and high quality multilevel scheme for partitioning irregular
graphs.

SIAM J. Sci. Comput., 20(1):359–392.

Kleinberg, J. M., Kumar, R., Raghavan, P., Rajagopalan, S., and
Tomkins, A. S. (1999).

The Web as a graph: measurements, models and methods.

In Proceedings of the 5th Annual International Computing and
Combinatorics Conference (COCOON), volume 1627 of Lecture
Notes in Computer Science, pages 1–18, Tokyo, Japan. Springer.

http://www.hpl.hp.com/research/idl/papers/webgrowth/nature9sept99.pdf
http://www.cs.cornell.edu/home/kleinber/web-graph.ps

Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A. (1999).

Trawling the Web for emerging cyber-communities.

Computer Networks, 31(11–16):1481–1493.

Leskovec, J., Kleinberg, J., and Faloutsos, C. (2005).

Graphs over time: densification laws, shrinking diameters and
possible explanations.

In KDD ’05: Proceeding of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, pages 177–187,
New York, NY, USA. ACM Press.

M. Faloutsos, P. Faloutsos, C. F. (1999).

On power-law relationships of the internet topology.

In SIGCOMM.

Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S.,
Ayzenshtat, I., Sheffer, M., and Alon, U. (2004).

Superfamilies of evolved and designed networks.

Science, 303(5663):1538–1542.

file:citeseer.ist.psu.edu/kumar99trawling.html
http://portal.acm.org/citation.cfm?id=1081870.1081893
http://portal.acm.org/citation.cfm?id=1081870.1081893
http://dx.doi.org/10.1126/science.1089167

Mitzenmacher, M. (2004).

A brief history of generative models for power law and lognormal
distributions.

Internet Mathematics, 1(2):226–251.

Newman, M. E. J. (2003a).

Fast algorithm for detecting community structure in networks.

Newman, M. E. J. (2003b).

The structure and function of complex networks.

Newman, M. E. J. and Girvan, M. (2004).

Finding and evaluating community structure in networks.

Physical Review E, 69(2).

Palmer, C. R., Gibbons, P. B., and Faloutsos, C. (2002).

ANF: a fast and scalable tool for data mining in massive graphs.

In Proceedings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 81–90, New York,
NY, USA. ACM Press.

http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/history-revised.pdf
http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/history-revised.pdf
http://arxiv.org/abs/cond-mat/0309508
http://arxiv.org/abs/cond-mat/0303516
http://dx.doi.org/10.1145/775047.775059

Simon, H. A. (1955).

On a class of skew distribution functions.

Biometrika, 42(3/4):425.

White, S. and Smyth, P. (2005).

A spectral clustering approach to finding communities in graph.

In SDM.

Yule, G. U. (1925).

A mathematical theory of evolution based on the conclusions of Dr.
J. C. Willis.

Philosophical transactions of the Royal Society of London,
213:21–87.

file:citeseer.ist.psu.edu/734075.html

	Properties of graphs
	Finding communities

