
1

I/O-Efficient Algorithms and Data Structures

Lars Arge

University of Aarhus

May 28-29, 2007

Lars Arge

I/O-efficient algorithms and data structures

2

Massive Data
• Pervasive use of computers and sensors
• Increased ability to acquire, store and process data
→ Massive data collected everywhere

Examples (2002):
• Phone: AT&T 20TB phone call

database, wireless tracking
• Consumer: WalMart 70TB

database, buying patterns
• WEB/Network: Google index

8*109 pages, internet routers
• Geography: NASA satellites

generate TB each day

Lars Arge

I/O-efficient algorithms and data structures

3

Random Access Machine Model

• Standard theoretical model of computation:
– Infinite memory
– Uniform access cost

• Simple model crucial for success of computer industry

R
A
M

Lars Arge

I/O-efficient algorithms and data structures

4

Hierarchical Memory

• Modern machines have complicated memory hierarchy
– Levels get larger and slower further away from CPU
– Data moved between levels using large blocks

• Bottleneck often transfers between largest memory levels in use

L
1

L
2

R
A
M

Lars Arge

I/O-efficient algorithms and data structures

5

Slow I/O

– Disk systems try to amortize large access time transferring large
contiguous blocks of data (8-16Kbytes)

• Important to store/access data to take advantage of blocks (locality)

• Disk access is 106 times slower than main memory access

track

magnetic surface

read/write arm
read/write head

“The difference in speed
between modern CPU and

disk technologies is
analogous to the difference

in speed in sharpening a
pencil using a sharpener on

one’s desk or by taking an
airplane to the other side of

the world and using a
sharpener on someone else’s

desk.” (D. Comer)

Lars Arge

I/O-efficient algorithms and data structures

6

Scalability Problems
• Most programs developed in RAM-model

– Run on large datasets because
OS moves blocks as needed

• Moderns OS utilizes sophisticated paging and prefetching strategies
– But if program makes scattered accesses even good OS cannot

take advantage of block access

⇓

Scalability problems!

data size

ru
nn

in
g

tim
e

2

Lars Arge

I/O-efficient algorithms and data structures

7

N = # of items in the problem instance
B = # of items per disk block
M = # of items that fit in main memory

T = # of items in output

I/O: Move block between memory and disk

We assume (for convenience) that M >B2

D

P

M

Block I/O

External Memory Model

Lars Arge

I/O-efficient algorithms and data structures

8

Fundamental Bounds
Internal External

• Scanning: N
• Sorting: N log N
• Permuting
• Searching:

• Note:
– Linear I/O: O(N/B)
– Permuting not linear
– Permuting and sorting bounds are equal in all practical cases
– B factor VERY important:
– Cannot sort optimally with search tree

NBlog

B
N

B
N

B
Mlog

B
N

NB
N

B
N

B
N

B
M <<< log

}log,min{ B
N

B
N

B
MNN

N2log

Lars Arge

I/O-efficient algorithms and data structures

9

Scalability Problems: Block Access Matters
• Example: Traversing linked list (List ranking)

– Array size N = 10 elements
– Disk block size B = 2 elements
– Main memory size M = 4 elements (2 blocks)

• Difference between N and N/B large since block size is large
– Example: N = 256 x 106, B = 8000 , 1ms disk access time
⇒ N I/Os take 256 x 103 sec = 4266 min = 71 hr
⇒ N/B I/Os take 256/8 sec = 32 sec

Algorithm 2: N/B=5 I/OsAlgorithm 1: N=10 I/Os

1 5 2 6 73 4 108 9 1 2 10 9 85 4 76 3

Lars Arge

I/O-efficient algorithms and data structures

10

Outline

1. Introduction
2. Fundamental algorithms

a) Sorting
b) searching

3. Buffered data structures
4. Range searching
5. List ranking

Note: Find references in handouts

D

P

M

Lars Arge

I/O-efficient algorithms and data structures

11

Queues and Stacks
• Queue:

– Maintain push and pop blocks in main memory

⇓
O(1/B) Push/Pop operations

• Stack:
– Maintain push/pop blocks in main memory

⇓
O(1/B) Push/Pop operations

Push Pop

Lars Arge

I/O-efficient algorithms and data structures

12

Merging
• <M/B sorted lists (queues) can be merged in O(N/B) I/Os

M/B blocks in main memory

• Unsorted list (queue) can be distributed using <M/B split elements
in O(N/B) I/Os

3

Lars Arge

I/O-efficient algorithms and data structures

13

Sorting
• Merge sort:

– Create N/M memory sized sorted lists
– Repeatedly merge lists together Θ(M/B) at a time

⇒ phases using I/Os each ⇒ I/Os)(B
NO)(log M

N
B

MO)log(B
N

B
N

B
MO

)(M
NΘ

)/(B
M

M
NΘ

))/((2
B
M

M
NΘ

1

Lars Arge

I/O-efficient algorithms and data structures

14

Sorting
• Distribution sort (multiway quicksort):

– Compute M/B splitting elements
– Distribute unsorted list into M/B unsorted lists of equal size
– Recursively split lists until fit in memory

• We cannot compute M/B splitting elements in O(N/B) I/O
– But we can compute elements

⇒ phases using I/Os each)(B
NO)(log)(log M

N
M
N

B
M

B
M OO =

)(B
MΘ

Lars Arge

I/O-efficient algorithms and data structures

15

Searching
• Storing binary trees arbitrarily on disk ⇒ O(log N+T) query/update

– blocking B nodes together ⇒ O(logB N+T/B)
• B-tree

– All leaves – consisting of Θ(B) input elements – on same level
– Internal nodes degree Θ(B)
⇒ O(N) space, O(logB N+T/B) range query

Lars Arge

I/O-efficient algorithms and data structures

16

Searching: B-tree update
• Blocking hard to maintain using e.g rotations
• Rebalancing using split/fuse (and share):

⇒ O(logB N) update bound

Insert Delete

Lars Arge

I/O-efficient algorithms and data structures

17

Summary: Fundamental Algorithms
• M/B-way merge/distribution in O(N/B) I/Os ⇒
• External merge or distribution sort takes I/Os

• Fanout Θ(B) search tree ⇒ B-tree
– O(logB N) I/O search/update
– O(logB N+T/B) I/O query

Refs: [A] sec. 1-2, [AV] sec. 1-3, 5

)log(B
N

B
N

B
MO

Lars Arge

I/O-efficient algorithms and data structures

18

Outline

1. Introduction
2. Fundamental algorithms
3. Buffered data structures

a) Buffer-tree
b) Buffered priority queue

4. Range searching
5. List ranking

D

P

M

4

Lars Arge

I/O-efficient algorithms and data structures

19

Buffered Data Structures
• Use of the (on-line) efficient B-tree in external memory algorithms

does not lead to efficient algorithms

• Example: Sorting using search tree
– Insert all elements in search tree one-by-one (construct tree)
– Output in sorted order using in-order traversal
⇒ Optimal O(N log N) time in internal memory
⇒ non-optimal I/Os in external memory

• Need operations to obtain efficient algorithms
–)log()log()(1

B
N

B
N

B
N

B B
M

B
M OONO =⋅
)log(1

B
N

B B
MO

)log(NNO B

Lars Arge

I/O-efficient algorithms and data structures

20

• Main idea: Logically group nodes together and add buffers
– Insertions done in a “lazy” way – elements inserted in buffers.
– When a buffer runs full elements are pushed one level down.
– Buffer-emptying in O(M/B) I/Os
⇒ every block touched constant number of times on each level
⇒ inserting N elements (N/B blocks) costs I/Os.)log(B

N
BMB

NO

Buffer-tree

B

B

M elements
fan-out M/B

)(log B
N

BMO

Lars Arge

I/O-efficient algorithms and data structures

21

Buffer-tree
• Insert (and deletes) on buffer-tree takes I/Os amortized
⇒ Buffer tree can be used in sorting algorithm

• One-dim. rangesearch operations can also be supported in
I/Os amortized

– Search elements handle lazily like updates
– All elements in relevant sub-trees

reported during buffer-emptying
– Buffer-emptying in O(X/B+T’/B),

where T’ is reported elements

)log(1
B
N

BMBO
)log(B

N
BMB

NO

m blocks

)log(1
B
T

B
N

BMBO +

Lars Arge

I/O-efficient algorithms and data structures

22

Buffered Priority Queue

• Buffer-tree can also be used in external priority queue
• To delete minimal element

– Empty all buffers on leftmost path
– Delete M elements in leftmost leaves

and keep in memory
(Insertions checked against minimal elements)

⇓
I/Os every O(M) delete ⇒ amortized

• Buffer technique can also be used on heap and tournament tree

)(B
MΘ

B

)log(B
N

BMB
MO)log(1

B
N

BMBO

Lars Arge

I/O-efficient algorithms and data structures

23

Summary: Buffered Data Structures
• Lazy operations using buffers
⇒ I/O amortized operations

• Can for example be used to obtain
– I/O B-tree construction algorithm
– Efficient (on line) priority queue

Refs: [A] sec 5

)log(1
B
N

BMBO

)log(B
N

BMB
NO

Lars Arge

I/O-efficient algorithms and data structures

24

Outline

1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching
5. List ranking

D

P

M

5

Lars Arge

I/O-efficient algorithms and data structures

25

Exercises
1) Design an algorithm for removing duplicates from a multiset.

The output from the algorithm should be the K distinct elements
among the N input elements in sorted order.
The algorithm should use
I/Os, where Ni is the number of copies of the i’th element
– Hint: Modify merge-sort to remove copies as soon as found

2) Design a I/O-efficient version of a heap that supports insert and
deletemin operations in I/Os amortized.
– Hint/one idea: Let the heap have fanout M/B (rather than 2) and

store M minimal elements in each node (rather than one). Buffer
M inserts in memory before performing them.

)}loglog,(max{
1∑=

−
K

i B
N

B
N

B
N

B
N

B
N i

B
M

i

B
MO

)log(1
B
N

BMBO

Lars Arge

I/O-efficient algorithms and data structures

26

External Planar Range Searching
• B-tree solves one-dimensional range searching problem

– Linear space, query, O(logB N) updates

• Cannot be obtained for orthogonal planar range searching:
– query requires space
– space requires query

q3

q2q1

q4

)(log B
T

B NO +

)(loglog
log

N
N
BB

BNΩ)(log B
T

B NO +
)(NO)(B

T
B

N +Ω

Lars Arge

I/O-efficient algorithms and data structures

27

Outline
1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching

– External priority search tree
* Weight-balanced B-tree
* Persistent B-trees

– External Range tree
– External kd-tree

5. List ranking

D

P

M

q3

q2q1

q3

q2q1

q4

Lars Arge

I/O-efficient algorithms and data structures

28

Weight-balanced B-trees
• We will use multilevel structure

– Attach O(w(v)) size structure to weight w(v) node v in B-tree
– Rebuild secondary structure using O(w(v)) I/Os when v split/fuse

• B-tree inefficient since heavy nodes can split/fuse often

• Weight-balanced B-tree:
– B-tree but with weight rather than degree balancing constraint
– Balanced with split/fuse as B-tree

⇓
Node ν only split/fuse for every Ω(w(ν)) updates below it

Lars Arge

I/O-efficient algorithms and data structures

29

Persistent B-trees
• We will use (partial) persistent B-tree

– Update current version, query all previous versions

• Partial persistent B-tree (multi-version B-tree)
can be obtained using standard techniques
– O(logB N) update, O(logB N+T/B) query, O(N) space
– N is total number of operations performed
– Batch of N updates in I/Os using buffer technique

• Idea:
– Elements and nodes augmented with existence intervals
– Maintain that every node contains Θ(B) alive elements in its

existence interval

)log(B
N

BMB
NO

Lars Arge

I/O-efficient algorithms and data structures

30

Three-Sided Range Queries
• Report all points (x,y) with q1 ≤ x ≤ q2 and y ≥ q3
• Static solution:

– Sweep top-down inserting
x in persistent B-tree at (x,y)

– Answer query by performing
range query with [q1,q2] in
B-tree at q3

• Optimal:
– O(N) space
– O(logB N+T/B) query
– construction

• Dynamic? … in internal memory priority search tree
)log(B

N
BMB

NO

q

q
1 2

3

q

6

Lars Arge

I/O-efficient algorithms and data structures

31

• Base tree on x-coordinates with nodes augmented with points
• Heap on y-coordinates

– Decreasing y values on root-leaf path
– (x,y) on path from root to leaf holding x
– If v holds point then parent(v) holds point
⇒ Linear space and O(log N) update (traversal of root-leaf path)

Internal Priority Search Tree
9

16.20

16
19,9

13
13,3

19
20,3

4
5,6

5
9,4

1
1,2

20191613954
4,1

1

Lars Arge

I/O-efficient algorithms and data structures

32

Internal Priority Search Tree

• Query with (q1, q2, q3) starting at root v:
– Report point in v if satisfying query
– Visit both children of v if point reported
– Always visit child(s) of v on path(s) to q1 and q2

⇒ O(log N+T) query

9
16.20

16
19,9

13
13,3

19
20,3

4
5,6

5
9,4

1
1,2

20191613954
4,1

1

4

194

Lars Arge

I/O-efficient algorithms and data structures

33

• Natural idea: Block tree
• Problem:

– I/Os to follow paths to to q1 and q2

– But O(T) I/Os may be used to visit other nodes (“overshooting”)
⇒ query

Externalizing Priority Search Tree
9

16.20

16
19,9

13
13,3

19
20,3

4
5,6

5
9,4

1
1,2

20191613954
4,1

1

)(log NO B

)(log TNO B +

Lars Arge

I/O-efficient algorithms and data structures

34

Externalizing Priority Search Tree

• Solution idea:
– Store B points in each node ⇒

* O(B2) points stored in each supernode
* B output points can pay for “overshooting”

– Bootstrapping:
* Store O(B2) points in each supernode in static structure

9
16.20

16
19,9

13
13,3

19
20,3

4
5,6

5
9,4

1
1,2

20191613954
4,1

1

Lars Arge

I/O-efficient algorithms and data structures

35

External Priority Search Tree
• Base tree: Weight-balanced B-tree on x-coordinates
• Points in “heap order”:

– Root stores B top points for each of the child slabs
– Remaining points stored recursively

• Points in each node stored in “O(B2)-structure”
– Persistent B-tree structure for static problem

⇓
Linear space

)(BΘ

)(BΘ

Lars Arge

I/O-efficient algorithms and data structures

36

External Priority Search Tree
• Query with (q1, q2, q3) starting at root v:

– Query O(B2)-structure and report points satisfying query
– Visit child v if

* v on path to q1 or q2

* All points corresponding to v satisfy query

7

Lars Arge

I/O-efficient algorithms and data structures

37

External Priority Search Tree
• Analysis:

– I/Os used to visit node v
– nodes on path to q1 or q2

– For each node v not on path to q1 or q2 visited, B points reported
in parent(v)

⇓
query

)1()(log 2
B

T
B

T
B

vv OBO +=+
)(log NO B

)(log B
T

B NO +

Lars Arge

I/O-efficient algorithms and data structures

38

External Priority Search Tree
• Insert (x,y) (ignoring insert in base tree - rebalancing):

– Find relevant node v:
* Query O(B2)-structure to find

B points in root corresponding
to node u on path to x

* If y smaller than y-coordinates
of all B points then recursively
search in u

– Insert (x,y) in O(B2)-structure of v
– If O(B2)-structure contains >B points for child u, remove lowest

point and insert recursively in u
• Delete: Similarly

u

Lars Arge

I/O-efficient algorithms and data structures

39

• Analysis:
– Query visits nodes
– O(B2)-structure queried/updated in each node

* One query
* One insert and one delete

• O(B2)-structure analysis:
– Query:
– Update in O(1) I/Os using update

block and global rebuilding in
I/Os

⇓
I/Os

External Priority Search Tree

u

)(log NO B

)1()/(log 2 OBBBO B =+

)(log NO B

)()log(
22

/ BOO B
B

BMB
B =

Lars Arge

I/O-efficient algorithms and data structures

40

Dynamic Base Tree
• Deletion:

– Delete point as previously
– Delete x-coordinate from base

tree using global rebuilding
⇒ I/Os amortized

• Insertion:
– Insert x-coordinate in base tree

and rebalance (using splits)
– Insert point as previously

• Split: Boundary in v becomes boundary in parent(v)

)(log NO B

v

v’’v’

Lars Arge

I/O-efficient algorithms and data structures

41

Dynamic Base Tree
• Split: When v splits B new points needed in parent(v)

• One point obtained from v’ (v’’) using “bubble-up” operation:
– Find top point p in v’
– Insert p in O(B2)-structure
– Remove p from O(B2)-structure of v’
– Recursively bubble-up point to v’

• Bubble-up in I/Os
– Follow one path from v to leaf
– Uses O(1) I/O in each node

⇓
Split in I/Os

v’’v’

))((log vwO B

))(())(log(vwOvwBO B =

Lars Arge

I/O-efficient algorithms and data structures

42

Dynamic Base Tree
• O(1) amortized split cost:

– Cost: O(w(v))
– Weight balanced base tree: inserts

below v between splits
⇓
• External Priority Search Tree

– Space: O(N)
– Query:
– Updates: I/Os amortized

• Amortization can be removed from update bound in several ways
– Utilizing lazy rebuilding

))((vwΩ

)(log NO B

)(log B
T

B NO +

v’’v’

q3

q2q1

8

Lars Arge

I/O-efficient algorithms and data structures

43

Summary: External Priority Search Tree
• Problem in externalizing internal priority search tree

– Large fanout and “overshooting”

• Solution
– B2 points in each node
– Bootstrapping with persistent B-tree
– Dynamization using weight-balanced B-tree

⇓
query, update

Refs: [A] sec. 3-4, 7

q3

q2q1

)(log NO B)(log B
T

B NO +

Lars Arge

I/O-efficient algorithms and data structures

44

Outline
1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching

– External priority search tree
* Weight-balanced B-tree
* Persistent B-trees

– External Range tree
– External kd-tree

5. List ranking

D

P

M

q3

q2q1

q4

Lars Arge

I/O-efficient algorithms and data structures

45

• Structure:
– Binary base tree on x-coordinates (blocked as B-tree)
– Two priority search trees for 3-sided queries

in each node v on points below v
⇓

space

• Query:
– Search for top node v with q1 and q2 below different children
– Answer 3-sided queries in children of v
⇓

query

External Range Tree

)(log B
T

B NO +

)log(NNO

x

q3

q2q1

q4

Lars Arge

I/O-efficient algorithms and data structures

46

• Increased fanout to
⇒ Space improved to

• Extra external priority search tree in each node
– to find bottom relevant point in

slabs spanned by query
⇒ Query answered in I/Os

• Dynamic with update bound using weight-balanced tree

Refs: [A] sec. 8.1

External Range Tree

)()log(loglog
log

log N
N

N BB

B
B

NONNO =
)(log NBΘ

)(log B
T

B NO +
)(log NO B

)(loglog
log2

N
N
BB

BO

)(log NBΘ

Lars Arge

I/O-efficient algorithms and data structures

47

Outline
1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching

– External priority search tree
* Weight-balanced B-tree
* Persistent B-trees

– External Range tree
– External kd-tree

5. List ranking

D

P

M

q3

q2q1

q4

Lars Arge

I/O-efficient algorithms and data structures

48

External kd-tree

• kd-tree:
– Recursive subdivision of point-set into two half using

vertical/horizontal line
– Horizontal line on even levels, vertical on uneven levels
– One point in each leaf

⇓
Linear space and logarithmic height

9

Lars Arge

I/O-efficient algorithms and data structures

49

External kd-Tree

• kd-tree Query
– Recursively visit nodes corresponding to regions intersecting query
– Report point in trees/nodes completely contained in query

• kd-tree Query analysis
– Horizontal line intersect Q(N) = 2+2Q(N/4) = regions
– Query covers T regions
⇒ I/Os worst-case

)(NO

)(TNO +

Lars Arge

I/O-efficient algorithms and data structures

50

External kd-tree

• External kd-tree:
– Blocking of kd-tree but with B point in each leaf

• Query as before
– Analysis as before except that each region now contains B points
⇒ I/O query

• Dynamic:
– Deletes relatively easily in I/Os using global rebuilding
– Insertions also in I/Os using logarithmic method

)(B
T

B
NO +

)(log2 NO B
)(log2 NO B

Lars Arge

I/O-efficient algorithms and data structures

51

Summary: External kd-tree
• Basically kd-tree with B points in each leaf

– Updates using logarithmic method
⇓
O(N) space, query, update

• Update bound can be improved to O(logB N) using O-trees
• Easily extended to d-dimensions with query bound

Refs: [A] sec. 8.2

)(B
T

B
NO +)(log2 NO B

q3

q2q1

q4

))((
11

B
T

B
N dO +−

Lars Arge

I/O-efficient algorithms and data structures

52

Summary: 3 and 4-sided Range Search
• 3-sided 2d range searching: External priority search tree

– query, space, update

• General (4-sided) 2d range searching:
– External range tree: query, space,

update
– O-tree: query, space, update

q3

q2q1

q3

q2q1

q4

)(loglog
log

N
N
BB

BNO)(log B
T

B NO +

)(NO)(B
T

B
NO +

)(log NO B)(log B
T

B NO +

)(log NO B

)(loglog
log2

N
N
BB

BO

)(NO

Lars Arge

I/O-efficient algorithms and data structures

53

Range Searching Tools and Techniques
• Tools:

– B-trees
– Persistent B-trees
– Buffer trees
– Weight-balanced B-trees
– Global rebuilding

• Techniques:
– Bootstrapping
– Filtering

q3

q2q1

q3

q2q1

q4

Lars Arge

I/O-efficient algorithms and data structures

54

Other Data Structure Results
• Many other results for e.g.

– Higher dimensional range searching
– Range counting, range/stabbing max, and stabbing queries
– Halfspace (and other special cases) of range searching
– Queries on moving objects
– Proximity queries (closest pair, nearest neighbor, point location)
– Structures for objects other than points (bounding rectangles)

• Many heuristic structures in database community
• Implementation efforts:

– LEDA-SM (MPI)
– STXXL (Karlsruhe)
– TPIE (Duke/Aarhus)

10

Lars Arge

I/O-efficient algorithms and data structures

55

Point Enclosure Queries
• Dual of 2d range searching problem

– Report all rectangles containing query point (x,y)

• Internal memory:
– Can be solved in O(N) space and O(log N + T) time

x

y

Lars Arge

I/O-efficient algorithms and data structures

56

Point Enclosure Queries
• Similarity between internal and external results (space, query)

– in general tradeoff between space and query I/O

(N, log N + T)2d point enclosure

2d range search

(N, logB N + T/B)(N, log N + T)3-sided 2d range search

(N, logB N + T/B)(N, log N + T)1d range search
ExternalInternal

()TNN N
N +log,loglog

log ()B
T

BN
N NN
BB

B +log,loglog
log

()TNN +, ()B
T

B
NN +,

(N, log N + T/B)?
2B

(N, log N+T/B)
(NBε, logB N+T/B)

Lars Arge

I/O-efficient algorithms and data structures

57

Outline

1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching
5. List ranking

D

P

M

Lars Arge

I/O-efficient algorithms and data structures

58

List Ranking
• Problem:

– Given N-vertex linked list stored in array
– Compute rank (number in list) of each vertex

• One of the simplest graph problem one can think of

• Straightforward O(N) internal algorithm
– Also use O(N) I/Os in external memory

• Much harder to get external algorithm

3 4 5 9 68 27 101 5 2 6 73 4 108 9

)log(B
N

BMB
NO

Lars Arge

I/O-efficient algorithms and data structures

59

List Ranking
• We will solve more general problem:

– Given N-vertex linked list with edge-weights stored in array
– Compute sum of weights (rank) from start for each vertex

• List ranking: All edge weights one

• Note: Weight stored in array entry together with edge (next vertex)

1 5 2 6 73 4 108 9

1 1 11 1
11 1

1 1

Lars Arge

I/O-efficient algorithms and data structures

60

List Ranking

• Algorithm:
1. Find and mark independent set of vertices
2. “Bridge-out” independent set: Add new edges
3. Recursively rank resulting list
4. “Bridge-in” independent set: Compute rank of independent set

• Step 1, 2 and 4 in I/Os
• Independent set of size αN for 0 < α ≤ 1

⇒ I/Os

11 111 1 1 11 1
2 2 2

1 3 4 6 8 9 102 5 7

)log(B
N

BMB
NO

)log()log())1(()(B
N

BMB
N

B
N

BMB
N OONTNT =+−= α

11

Lars Arge

I/O-efficient algorithms and data structures

61

List Ranking: Bridge-out/in

• Obtain information (edge or rang) of successor
– Make copy of original list
– Sort original list by successor id
– Scan original and copy together to obtain successor information
– Sort modified original list by id

⇒ I/Os

11

2 3 4 5 9 68 27 102 3 4 95 86 7 103 4 5 9 68 27 103 4 8 9 627 10

)log(B
N

BMB
NO

Lars Arge

I/O-efficient algorithms and data structures

62

List Ranking: Independent Set
• Easy to design randomized algorithm:

– Scan list and flip a coin for each vertex
– Independent set is vertices with head and successor with tails

⇒ Independent set of expected size N/4

• Deterministic algorithm:
– 3-color vertices (no vertex same color as predecessor/successor)
– Independent set is vertices with most popular color

⇒ Independent set of size at least N/3

• 3-coloring ⇒ I/O algorithm)log(B
N

BMB
NO)log(B

N
BMB

NO

)log(B
N

BMB
NO

3 4 5 9 68 27 10

Lars Arge

I/O-efficient algorithms and data structures

63

List Ranking: 3-coloring
• Algorithm:

– Consider forward and backward lists (heads/tails in two lists)
– Color forward lists (except tail) alternately red and blue
– Color backward lists (except tail) alternately green and blue

⇓
3-coloring

3 4 5 9 68 27 10

Lars Arge

I/O-efficient algorithms and data structures

64

List Ranking: Forward List Coloring
• Identify heads and tails
• For each head, insert red element in priority-queue (priority=position)
• Repeatedly:

– Extract minimal element from queue
– Access and color corresponding element in list
– Insert opposite color element corresponding to successor in queue

• Scan of list
• O(N) priority-queue operations
⇒ I/Os

`3 4 5 9 68 27 10

)log(B
N

BMB
NO

Lars Arge

I/O-efficient algorithms and data structures

65

Summary: List Ranking
• Simplest graph problem: Traverse linked list

• Very easy O(N) algorithm in internal memory
• Much more difficult external memory

– Finding independent set via 3-coloring
– Bridging vertices in/out

• Permuting bound best possible
– Also true for other graph problems

Refs: [Z] sec. 2, 4.2

)log(B
N

BMB
NO

})log,(min{ B
N

B
N

B
MNO

3 4 5 9 68 27 101 5 2 6 73 4 108 9

Lars Arge

I/O-efficient algorithms and data structures

66

Summary: List Ranking
• External list ranking algorithm similar to PRAM algorithm

– Sometimes external algorithms by “PRAM algorithm simulation”

• Forward list coloring algorithm example of “time forward processing”
– Use external priority-queue to send information “forward in time”

to vertices to be processed later

3 4 5 9 68 27 10

12

Lars Arge

I/O-efficient algorithms and data structures

67

Other Graph Algorithm Results
• Most tree problems solved in I/Os
• Most planar graph problems solved in I/Os

• Most other problems on general graphs not satisfactory solved
– Directed DFS/BFS: or
– Undirected BFS: or
– MSF: or
– SSSP:

• No other than permutation lower bound known

)log(B
N

BMB
NO

)log(B
N

BMB
NO

)(M
V

B
EVO +)log)(2 VVO B

E+
)log(B

E
B
E

B
MVO +)log(B

E
B
E

B
VE

B
MO +

)loglog(log 22 B
E

B
E

E
VB

B
MO ⋅)log(B

E
B
E

B
MVO +

)log(2 B
E

B
EVO +

})log,(min{ B
E

B
E

B
MEO

Lars Arge

I/O-efficient algorithms and data structures

68

Exercise
Given a grid terrain model (an height grid)

design an I/O algorithm for computing flow
accumulation grid:

– Initially one unit of water in each grid cell
– Water (initial and received) distributed from each cell to lowest

lower neighbor cell (if existing)
– Flow accumulation of cell is total flow through it

)log(B
N

BMB
NO

NN ×

Lars Arge

I/O-efficient algorithms and data structures

69

Flow Accumulation
• Problem can easily be solved in O(N log N) time:

• Process (sweep) points by decreasing height. At each cell:
– Read flow from flow grid and neighbor heights from height grid
– Update flow (flow grid) for downslope neighbors
⇓
One sweep ⇒ O(N log N) time algorithm

Lars Arge

I/O-efficient algorithms and data structures

70

Geometric I/O-bottleneck Example
• Computed for Appalachian Mountains (800km x 800km) by Duke

University environmental researchers
– 100m resolution ⇒ ~ 64M cells
⇒ ~128MB raw data (~500MB processing)
⇒ 14 days (on 512MB machine)

• Dataset could me much larger:
– ~ 1.2GB at 30m resolution

(80% of earth covered by NASA SRTM mission)
– ~ 12GB at 10m resolution (much of US available)
– ~ 1.2TB at 1m resolution

• Problem: Scattered access to grid cells ⇒ Ω(N) I/Os)log(B
N

BMB
NO• Use of implementation of algorithm

⇒ Appalachian Mountains in 3 hours!

Lars Arge

I/O-efficient algorithms and data structures

71

Exercise
Given a grid terrain model (an height grid)

design an I/O algorithm for computing flow
accumulation grid:
Hints:

1. Store all neighbor heights with each cell
2. Distribute water to neighbors using time forward processing

)log(B
N

BMB
NO

NN ×

Lars Arge

I/O-efficient algorithms and data structures

72

Cache-Oblivious Algorithms

• Block access important on all levels of memory hierarchy
– But complicated to model whole hierarchy

• I/O-model can be used on all levels
– But dominating level can change during computation
– Characteristics of hierarchy may not be known

13

Lars Arge

I/O-efficient algorithms and data structures

73

Cache-Oblivious Algorithms
• N, B, and M as in I/O-model

• M and B not used in algorithm description
• Block transfers (I/O) by optimal paging strategy

Analyze in two-level model
↓
Efficient on one level, efficient of all levels!

• Surprisingly many cache-oblivious algorithms developed recently
− Much more fundamental work to be done!

Lars Arge

I/O-efficient algorithms and data structures

74

Conclusions
• I/O often bottleneck when processing massive data
• Discussed

– Fundamental algorithms: Sorting and searching
– Buffered data structures
– Structures for planar orthogonal range searching
– List ranking

• Many exciting problems remain open in the area

Acknowledgments
• US Army Research Office
• Danish National Science Research Council
• Danish National Strategic Research Council
• MADALGO center – funded by

Lars Arge

I/O-efficient algorithms and data structures

75

• $10M center at University of Aarhus, initially funded for 5 years
• High level objectives:

– Advance knowledge in massive data algorithms
– Train researchers in world-leading environment
– Be catalyst for multidisciplinary collaboration

• Research focus areas:
– I/O-efficient, streaming, cache-oblivious
– Algorithm engineering

• Three institution collaboration
– AU: I/O, cache and algorithm engineering
– MPI: I/O (graph) and algorithm engineering
– MIT: Cache and streaming Demaine Indyk

Arge Brodal

Meyer Mehlhorn

Lars Arge

I/O-efficient algorithms and data structures

76

Activities
• Exchange of faculty, post docs, students between core institutions

• Short/long visits of faculty, post docs, students from other institutions

• Various workshops

• Symposium on Algorithms for Massive Datasets (yearly from 2008)

• Summer Schools:
– 2007: Streaming data algorithms
– 2008: Cache-oblivious algorithms
– …..

Lars Arge

I/O-efficient algorithms and data structures

77

Summer School

• Data Stream Algorithms: www.madalgo.au.dk/streamschool07
• August 20-23, 2007
• June 15 registration deadline; no registration fee
• Lectures:

– Sudipto Guha (U. Penn)
– Sariel Har-Peled (UIUC)
– Piotr Indyk (MIT)
– T.S. Jayram (IBM Almaden)
– Ravi Kumar (Yahoo!)
– D. Sivakumar (Google)

Lars Arge

I/O-efficient algorithms and data structures

78

Inauguration
• Inauguration event: www.madalgo.au.dk
• August 24, 2007
• Morning scientific speakers:

– Jeff Vitter (Purdue): I/O-efficient algorithms
– Charles Leiserson (MIT): Cache-oblivious algorithms
– Peter Sanders (Karlsruhe): Algorithm engineering

• Afternoon formal speakers:
– National Research Foundation chairman Klaus Bock
– Dean of Science Erik Meineche Schmidt
– Center Leader Lars Arge

….. and more
• Beer!

