fl/O-Efficient Algorithms and Data Structures \

Lars Arge
manarGo “-"-=-."

University of Aarhus

May 28-29, 2007

IRACSE GO "=

1/O-efficient algorithms and data structures

Massive Data
« Pervasive use of computers and sensors
« Increased ability to acquire, store and process data
— Massive data collected everywhere

More New Information Chver Next 2

Years Than in All Prevsous History
8*10° pages, internet routers

S ﬁz
- :'“mz'g
* Geography: NASA satellites

Examples (2002):

database, wireless tracking

» Consumer: WalMart 70TB
database, buying patterns

\ generate TB each day

* Phone: AT&T 20TB phone call

* WEB/Network: Google index

~

J

Lars Arge TSRS LR " =

2

1/O-efficient algorithms and data structures

(Random Access Machine Model \

=

\NF— a

« Standard theoretical model of computation:
— Infinite memory
— Uniform access cost

Qmple model crucial for success of computer industry J

Lars Arge ACREDNET GO - " 3

V/O-efficient algorithms and data structures

(Hierarchical Memory

=

* Modern machines have complicated memory hierarchy

> R

\aiur
1l |2

— Levels get larger and slower further away from CPU
— Data moved between levels using large blocks

« Bottleneck often transfers between largest memory levels in use

Lars Arge IO G -

1/O-efficient algorithms and data structures

4 Slow 1/0 I

 Disk access is 10° times slower than main memory access

read/write head
T“W»?Tﬁﬁf?)’ence in speed
tween modern CPU and
disk technologies is
analogous to the difference
in speed in sharpening a
pencil using a sharpener on
one’s desk or by taking an
airplane to the other side of
the world and using a

— Disk systems try to amortize large acsqgﬁﬁl}m;tgwggﬂm&lg&%

track

magnetic surface

contiguous blocks of data (8-16Kbytes) desk.” (D. Comer)
Qﬂportant to store/access data to take advantage of blocks (locality

Lars Arge Do) - - 5

1/O-efficient algorithms and data structures

(Scalability Problems

* Most programs developed in RAM-model
— Run on large datasets because
OS moves blocks as needed

« Moderns OS utilizes sophisticated paging and prefetching strategies
— But if program makes scattered accesses even good OS cannot

~

take advantage of block access

running time

Scalability problems!

data size

>

Lars Arge ADALGr

6

1/O-efficient algorithms and data structures

f External Memory Model \

N= # of items in the problem instance
¥l B = # of items per disk block
Block| /O

\
~

M= # of items that fit in main memory

T= # of items in output

I/0: Move block between memory and disk

\ We assume (for convenience) that M >B?)

Lars Arge IRACSE GO "= 7

1/O-efficient algorithms and data structures

Internal External
* Scanning: N %
* Sorting: Nlog N %logus ‘%
* Permuting N min{N,ﬂlog% %}
« Searching: log, N logz N
* Note:

— Linear I/O: O(N/B)
— Permuting not linear

— Permuting and sorting bounds are equal in all practical cases

— B factor VERY important: % < %’logﬂ,x % << N

Lars Arge TSRS LR " =

f Fundamental Bounds \

— Cannot sort optimally with search tree)

8

1/O-efficient algorithms and data structures

Scalability Problems: Block Access Matters \

« Example: Traversing linked list (List ranking)
— Array size N =10 elements
— Disk block size B =2 elements
— Main memory size M = 4 elements (2 blocks)

T N o\
[1]s5]2]6]3]8]o]4]7fao] [1]2ro]o][5 [6]3[4]e 7]
— = —— e —

Algorithm 1: N=10 I/Os Algorithm 2: N/B=5 I/Os
« Difference between N and N/B large since block size is large
— Example: N = 256 x 10% B = 8000, Ims disk access time

= N I/Os take 256 x 10° sec = 4266 min = 71 hr

\ = N/B I/Os take 256/8 sec = 32 sec J

Lars Arge ACREDNEY G - " 9

V/O-efficient algorithms and data structures

1. Introduction

2. Fundamental algorithms
a) Sorting
b) searching

3. Buffered data structures
4. Range searching M

5. List ranking

Lars Arge IO G -

7 g ™~

\ Note: Find references in handouts J

1/O-efficient algorithms and data structures

Queues and Stacks \

— Maintain push and pop blocks in main memory

]:]]]l]—»Pop

* Queue:

Push — [

U
O(1/B) Push/Pop operations

« Stack:
— Maintain push/pop blocks in main memory

U
\O(I/B) Push/Pop operations)
Lars Arge Do) - - 11

1/O-efficient algorithms and data structures

Merging
* <M/B sorted lists (queues) can be merged in O(N/B) 1/Os

(A

1| M/B blocks in main memory

H

* Unsorted list (queue) can be distributed using <M/B split elements
in O(N/B) 1/0s

N\ [

Lars Arge ADALGr

1/O-efficient algorithms and data structures

f Sorting \

* Merge sort:
— Create N/M memory sized sorted lists
— Repeatedly merge lists together @(M/B) at a time

[]

""""" oG
rrrrrrrrr o/
I O o4y

I 1

QO(log w, 47) phases using O(%/;) I/0s each = ot logu, Xy I/(y

13

Lars Arge IRACSE GO "=

1/O-efficient algorithms and data structures

/ Searching \

« Storing binary trees arbitrarily on disk = O(log N+7) query/update

T

|IS1sTsls (sfelals s ate]s s |s)atsl

EEEREEER

— blocking B nodes together = O(log, N+1/B)

1/O-efficient algorithms and data structures

. - ™

Distribution sort (multiway quicksort):
— Compute M/B splitting elements
— Distribute unsorted list into M/B unsorted lists of equal size
— Recursively split lists until fit in memory
» We cannot compute M/B splitting elements in O(N/B) 1/0

— But we can compute ©(/*/;) elements

[]

@(logm +7) = O(log,, +F)phases using O(Y;)1/Os each)

TSNS LR " = 14

Lars Arge

V/O-efficient algorithms and data structures

Searching: B-tree update \

* Blocking hard to maintain using e.g rotations
* Rebalancing using split/fuse (and share):

l:serl i I)elete i

} |
FARER | E R
\: O(log, N) update boun-d J

IDADST G~ "~

Lars Arge

¢ B-tree
— All leaves — consisting of @(B) input elements — on same level
— Internal nodes degree ©(B)
= O(N) space, O(logz N+T/B) range query J
Lars Arge AN G - - 15

1/O-efficient algorithms and data structures

/ Summary: Fundamental Algorithms \

* M/B-way merge/distribution in O(N/B) 1/0s =
+ External merge or distribution sort takes O(£ log v,)1/0s

@@@@@% d52s 2
oty

« Fanout O(B) search tree = B-tree
— O(logg N) 1/0 search/update
— O(logz N+1/B) 1/O query

1/O-efficient algorithms and data structures

7 e ™~

1. Introduction
2. Fundamental algorithms
3. Buffered data structures
a) Buffer-tree
b) Buffered priority queue
4. Range searching M
5. List ranking

™ - o

\ Refs: [A] sec. 1-2, [AV] sec. 1-3, 5)

Do) - -

Lars Arge

Lars Arge

DaDal e - -

1/O-efficient algorithms and data structures

Buffered Data Structures
does not lead to efficient algorithms
» Example: Sorting using search tree
— Output in sorted order using in-order traversal

= Optimal O(N log N) time in internal memory
= non-optimal O(N log; N) 1/Os in external memory

* Need O(% log 4 %) operations to obtain efficient algorithms

t O(N)-O(Llog,y, 3 = 0% log,y,)

* Use of the (on-line) efficient B-tree in external memory algorithms

— Insert all elements in search tree one-by-one (construct tree)

~

1/O-efficient algorithms and data structures

f Buffer-tree \
P

M elements
O(log, /5 %)

fan-out M/{

P g

* Main idea: Logically group nodes together and add buffers

— Insertions done in a “lazy” way — elements inserted in buffers.
— When a buffer runs full elements are pushed one level down.
— Buffer-emptying in O(M/B) 1/0s

= every block touched constant number of times on each level

J

Lars Arge IRACSE GO "=

19

\ = inserting N elements (N/B blocks) costs O(5 log ;5 4) l/y

Lars Arge TNEDEL G~ 20

1/O-efficient algorithms and data structures

(Buffer-tree

* One-dim. rangesearch operations can also be supported in
oG5 logM/B 2 +2) V/Os amortized
— Search elements handle lazily like updates
— All elements in relevant sub-trees
reported during buffer-emptying
— Buffer-emptying in O(X/B+T"/B),
where T is reported elements

« Insert (and deletes) on buffer-tree takes 0(% log s %) 1/0s amortized

= Buffer tree can be used in O(4 log /5 &) sorting algorithm

Lars Arge ACREDNEY G - "

V/O-efficient algorithms and data structures

(Buffered Priority Queue \

* Buffer-tree can also be used in external priority queue

* To delete minimal element
— Empty all buffers on leftmost path
— Delete M elements in leftmost leaves
and keep in memory
(Insertions checked against minimal elements)
U B

O 1og /5 5) V/Os every O(M) delete = O(Llog &) amortized

N
M[B B

* Buffer technique can also be used on heap and tournament tree

Lars Arge INARDRET R~ " 22

1/O-efficient algorithms and data structures

(Summary: Buffered Data Structures

« Lazy operations using buffers
N

» »5) 1/O amortized operations

= O(3log
« Can for example be used to obtain

- 0(% log/p %’) I/0 B-tree construction algorithm

— Efficient (on line) priority queue

\ Refs: [A] sec 5

s
o Ead e ad

1/O-efficient algorithms and data structures

7 e ™~

1. Introduction

2. Fundamental algorithms
3. Buffered data structures
4. Range searching

5. List ranking

J

Lars Arge frat= e T e ey

23

. /

Lars Arge ADALGr 2

1/O-efficient algorithms and data structures

f Exercises \

1) Design an algorithm for removing duplicates from a multiset.

The output from the algorithm should be the K distinct elements

among the N input elements in sorted order. P
The algorithm should use O(max {%_,% log., X Zi:l%log,wg %})
I/Os, where N, is the number of copies of the i’th element

— Hint: Modify merge-sort to remove copies as soon as found

2) Design a I/O-efficient version of a heap that supports insert and
deletemin operations in O(IEIOgM / B%) 1/Os amortized.
— Hint/one idea: Let the heap have fanout M/B (rather than 2) and
store M minimal elements in each node (rather than one). Buffer

\ M inserts in memory before performing them.)

Lars Arge IRACSE GO "= 25

1/O-efficient algorithms and data structures

f External Planar Range Searching \

* B-tree solves one-dimensional range searching problem
— Linear space, O(log ; N +7/;) query, O(log, N) updates

q; - q:
+ Cannot be obtained for orthogonal planar range searching:

— O(logz N +7/;) query requires Q(N%) space
— O(N)space requires Q(,/ Y/, +1/;) query)
Lars Arge TSN GR e = %

1/O-efficient algorithms and data structures

e e ™~

1. Introduction

2. Fundamental algorithms
3. Buffered data structures

4. Range searching
— External priority search tree

* Weight-balanced B-tree
* Persistent B-trees

— External Range tree

— External kd-tree
5. List ranking

N y

Lars Arge AMRELNET G - " 27

V/O-efficient algorithms and data structures

(Weight-balanced B-trees \

* We will use multilevel structure
— Attach O(w(v)) size structure to weight w(v) node v in B-tree
— Rebuild secondary structure using O(w(v)) I/Os when v split/fuse

B-tree inefficient since heavy nodes can split/fuse often

Weight-balanced B-tree:
— B-tree but with weight rather than degree balancing constraint
— Balanced with split/fuse as B-tree

U
@e vonly split/fuse for every Q(w(v)) updates below it J

Lars Arge INARDRET R~ " 28

1/O-efficient algorithms and data structures

(Persistent B-trees \
« We will use (partial) persistent B-tree
— Update current version, query all previous versions A

Partial persistent B-tree (multi-version B-tree) m

can be obtained using standard techniques
— O(logg N) update, O(log, N+T/B) query, O(N) space
— N is total number of operations performed

— Batch of N updates in 0(% log/p %) 1/Os using buffer technique

Idea:
— Elements and nodes augmented with existence intervals
— Maintain that every node contains ®(B) alive elements in its

\ existence interval

Lars Arge Do) - - 29

1/O-efficient algorithms and data structures

(Three-Sided Range Queries \

* Report all points (x,y) with gl <x<g2andy>¢3
« Static solution:
— Sweep top-down inserting
x in persistent B-tree at (x,y)

— Answer query by performing
range query with [¢,,q,] in
B-tree at g5

* Optimal:

— O(N) space

— O(logy N+T/B) query

— O(4log /3 &) construction

* Dynamic? ... in internal memory priority search tree)

Lars Arge ERaDa LGy - 30

1/O-efficient algorithms and data structures

-

Internal Priority Search Tree

 Base tree on x-coordinates with nodes augmented with points
» Heap on y-coordinates

— Decreasing y values on root-leaf path

— (x,) on path from root to leaf holding x

— If v holds point then parent(v) holds point

Lars Arge

=> Linear space and O(log N) update (traversal of root-leaf pat}u

~

IRACSE GO "=

31

1/O-efficient algorithms and data structures

-

Externalizing Priority Search Tree

« Natural idea: Block tree
« Problem:

— O(logz N) 1/Os to follow paths to to ¢, and g,

— But O(T) I/0s may be used to visit other nodes (“overshooting”)
= O(logz N +T) query

Lars Arge

[T T e

~

1/O-efficient algorithms and data structures

(External Priority Search Tree

« Base tree: Weight-balanced B-tree on x-coordinates
« Points in “heap order™:

— Root stores B top points for each of the ®(B) child slabs
— Remaining points stored recursively
« Points in each node stored in “O(B?)-structure”

— Persistent B-tree structure for static problem

~

U
Linear space OB
...:-. :. ot :::' ::-.
T I S E A
Lars Arge Do) - - 35

1/O-efficient algorithms and data structures

Internal Priority Search Tree

* Query with (g,, ¢,, g5) starting at root v:

— Report point in v if satisfying query

— Visit both children of v if point reported

— Always visit child(s) of v on path(s) to ¢, and ¢,
= O(log N+T) query

Lars Arge

~

INEDELGR " " =

V/O-efficient algorithms and data structures

-

Externalizing Priority Search Tree

()
© O

* Solution idea:
— Store B points in each node =
* O(B?) points stored in each supernode

* B output points can pay for “overshooting”

— Bootstrapping:
\ * Store O(B?) points in each supernode in static structure

Lars Arge

~

IDADST G~ "~

1/O-efficient algorithms and data structures

(External Priority Search Tree
* Query with (¢,, g,, g5) starting at root v:

— Query O(B?)-structure and report points satisfying query
— Visit child v if

* vonpathto g, or g,

* All points corresponding to v satisfy query

Lars Arge

ERaDa LGy -

1/O-efficient algorithms and data structures

* Analysis:
— O(logy B>+ TA) =0(1+ TA) 1/Os used to visit node v
— O(logz N) nodes on path to g, or g,

— For each node v not on path to ¢, or ¢, visited, B points reported
in parent(v)

O(logz N +7/;) query

_

Lars Arge

f External Priority Search Tree \

1/O-efficient algorithms and data structures

« Insert (x,y) (ignoring insert in base tree - rebalancing):
— Find relevant node v:
* Query O(B?)-structure to find
B points in root corresponding
to node u on path to x
* If y smaller than y-coordinates
of all B points then recursively

search in u
— Insert (x,y) in O(B?)-structure of v
— If O(B?)-structure contains >B points for child u, remove lowest
point and insert recursively in u

Lars Arge TSRS LR " = 38

External Priority Search Tree \

chclc: Similarly)

1/O-efficient algorithms and data structures

* Analysis:
— Query visits O(log ; N)nodes
— O(B?)-structure queried/updated in each node
* One query
* One insert and one delete
« O(B?)-structure analysis:
— Query: O(log; B* + B/ B) = O(1)

(External Priority Search Tree \

— Update in O(1) I/Os using update oo ® I Y
block and global rebuilding in .':’ '. . o - N
2 2 - * i, o . °
0(%logM, B %) =0(B) 1/0s < . . .

U
@gg N)UOs J

Lars Arge AMRELNET G - " 39

V/O-efficient algorithms and data structures

* Deletion:

— Delete point as previously
— Delete x-coordinate from base @%O
tree using global rebuilding : | ol i :
= O(log gz N)I/Os amortized ‘ l s ‘

* Insertion:
— Insert x-coordinate in base tree
and rebalance (using splits)

— Insert point as previously

Lars Arge INARDRET R~ " 40

(Dynamic Base Tree \

Q)lit: Boundary in v becomes boundary in parent(v) J

1/O-efficient algorithms and data structures

« Split: When v splits B new points needed in parent(v)

« One point obtained from v’ (v"’) using “bubble-up” operation:
— Find top point p in v’
— Insert p in O(B?)-structure

— Remove p from O(B?)-structure of v’

— Recursively bubble-up point to v’
* Bubble-up in O(log 3 w(v)) I/Os

— Follow one path from v to leaf

— Uses O(/) I/O in each node
U

Lars Arge Do) - - 41

(Dynamic Base Tree \

@t in O(Blogz w(v)) = O(w(v)) I/Os)

1/O-efficient algorithms and data structures

* O(I) amortized split cost:
— Cost: O(w(v))

— Weight balanced base tree: Q(w(v)) inserts Oﬁ’\“

below v between splits
m !
* External Priority Search Tree
— Space: O(N)
= Query: O(logz N +7/;)
— Updates: O(log ; N) I/Os amortized

« Amortization can be removed from update bound in several ways

— Utilizing lazy rebuilding

Lars Arge ADALGr 2

(Dynamic Base Tree \

1/O-efficient algorithms and data structures

f Summary: External Priority Search Tree \
« Problem in externalizing internal priority search tree
— Large fanout and “overshooting” m

« Solution
— B’ points in each node ‘Omﬂ

— Bootstrapping with persistent B-tree A

— Dynamization using weight-balanced B-tree

U
O(logz N +7/7) query, O(log; N) update g,|-

\ Refs: [A] sec. 3-4,7

Lars Arge IRACSE GO "=

o

1/O-efficient algorithms and data structures

Outline
1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching
— External priority search tree
* Weight-balanced B-tree
* Persistent B-trees
— External Range tree
— External kd-tree
5. List ranking

_

Lars Arge TSRS LR " =

1/O-efficient algorithms and data structures

(External Range Tree

« Structure: qa

— Binary base tree on x-coordinates (blocked as B-tree) ¢;
— Two priority search trees for 3-sided queries

in each node v on points below v e

U
O(Nlog N) space

* Query:
— Search for top node v with ¢, and ¢, below different children

X —

— Answer 3-sided queries in children of v

\O(logg N +7/) query _ J

Lars Arge ACREDNEY G - "

V/O-efficient algorithms and data structures

External Range Tree
* Increased fanout to O(log, N)

— to find bottom relevant point in
O(logy N)slabs spanned by query
= Query answered in O(logz N + %) 1/0s

2 logy N

\ Refs: [A] sec. 8.1

* Extra external priority search tree in each node |,

%@

logz N

= Space improved to O(N 10gj60, v N) = O(NW
logp]

« Dynamic with 0(1“’&) update bound using weight-balanced tree
o

J

Lars Arge IO G -

46

1/O-efficient algorithms and data structures

Outline
1. Introduction
2. Fundamental algorithms
3. Buffered data structures
4. Range searching
— External priority search tree
* Weight-balanced B-tree
* Persistent B-trees

— External Range tree
— External kd-tree

5. List ranking

8 =)

Lars Arge Do) - - 47

1/O-efficient algorithms and data structures

(External kd-tree

* kd-tree:

vertical/horizontal line

— One point in each leaf
U
Qnear space and logarithmic height

e,
il

— Recursive subdivision of point-set into two half using

— Horizontal line on even levels, vertical on uneven levels

Lars Arge ADALGr

1/O-efficient algorithms and data structures

f External kd-Tree

* kd-tree Query

— Recursively visit nodes corresponding to regions intersecting query
— Report point in trees/nodes completely contained in query
* kd-tree Query analysis
— Horizontal line intersect Q(N) = 2+2Q(N/4) = O(W) regions
— Query covers 7 regions

\: O(x/ﬁ +T) I/Os worst-case)

Lars Arge IRACSE GO "= 49

1/O-efficient algorithms and data structures

f External kd-tree \

e
a

* External kd-tree:

— Blocking of kd-tree but with B point in each leaf

* Query as before
— Analysis as before except that each region now contains B points
= OV +) VO query

* Dynamic:

\— Deletes relatively easily in 0(10gi> N) 1/Os using global rebuildij

— Insertions also in O(IOgi N) 1/Os using logarithmic method

Lars Arge TNEDEL G~ o

1/O-efficient algorithms and data structures

Summary: External kd-tree \

« Basically kd-tree with B points in each leaf
— Updates using logarithmic method

)

« Update bound can be improved to O(log, N) using O-trees
« Easily extended to d-dimensions with 0((‘%)17% + %) query bound

\ Refs: [A] sec. 8.2 J

Lars Arge ACREDNET GO - " 51

V/O-efficient algorithms and data structures

Summary: 3 and 4-sided Range Search \
* 3-sided 2d range searching: External priority search tree
— O(log gz N +7/;) query, O(N)space, O(log ; N) update

* General (4-sided) 2d range searching:
— External range tree: O(log g N +7/)query, O(N
logd N
O(ﬁg,;ﬂw) update
— O-tree: O(/ ¥4 +7/;) query, O(N)space, O(log ; N)update

logg N

Tog logs ¥) SPACC>

Lars Arge INARDRET R~ " 52

1/O-efficient algorithms and data structures

(Range Searching Tools and Techniques \

« Tools:

— B-trees

— Persistent B-trees

— Buffer trees

— Weight-balanced B-trees
— Global rebuilding

¢ Techniques:
— Bootstrapping
— Filtering

N)

Lars Arge Do) - - 53

1/O-efficient algorithms and data structures

(Other Data Structure Results \

* Many other results for e.g.

— Higher dimensional range searching
— Range counting, range/stabbing max, and stabbing queries
— Halfspace (and other special cases) of range searching
— Queries on moving objects
— Proximity queries (closest pair, nearest neighbor, point location)
— Structures for objects other than points (bounding rectangles)
« Many heuristic structures in database community
* Implementation efforts:
— LEDA-SM (MPI)
— STXXL (Karlsruhe)

\— TPIE (Duke/Aarhus))

Lars Arge ADALGr 5

1/O-efficient algorithms and data structures

Point Enclosure Queries

« Dual of 2d range searching problem
— Report all rectangles containing query point (x,))

.
]

« Internal memory:

— Can be solved in O(N) space and O(log N + T) time

1/O-efficient algorithms and data structures

f Point Enclosure Queries

* Similarity between internal and external results (space, query)

~

J

Lars Arge IRACSE GO "=

55

Internal External
1d range search (N,logN+T) (N, logy N+ T/B)
3-sided 2d range search (N,logN+T1) (N, logg N+ T/B)
N, «/ﬁ +T N,V + T
2d range search () k.(g ‘\M A)
(k,gh.gv’l"gN*T) (NW,IOgBN-ﬂA)
N, log N+ 77,
2d point enclosure (N,logN+T1) SV ‘}7 82
(ﬂﬁ N+
\— in general tradeoff between space and query /0)
Lars Arge TR G o = 56

1/O-efficient algorithms and data structures

RAEE

_

/ Outline

Introduction
Fundamental algorithms
Buffered data structures
Range searching

List ranking

Lars Arge ACREDNEY G - "

V/O-efficient algorithms and data structures

/ List Ranking \

* Problem:

— Given N-vertex linked list stored in array
— Compute rank (number in list) of each vertex

[2]e[s[e[8]5]s0[a s [io]
~ @S
* One of the simplest graph problem one can think of

* Straightforward O(N) internal algorithm
— Also use O(N) I/Os in external memory

* Much harder to get 0(%' log,, /8 %) external algorithm J

Lars Arge INARDRET R~ " 58

1/O-efficient algorithms and data structures

/ List Ranking

« We will solve more general problem:
— Given N-vertex linked list with edge-weights stored in array

— Compute sum of weights (rank) from start for each vertex

« List ranking: All edge weights one

PNy L

[1]s]2]6[s]e[o]a]7]io]
Y~} >

1 1

« Note: Weight stored in array entry together with edge (next vertex)

Lars Arge frat= e T e ey

1/O-efficient algorithms and data structures

/ List Ranking \
AR AN AN AN

* Algorithm:
1. Find and mark independent set of vertices
2. “Bridge-out” independent set: Add new edges
3. Recursively rank resulting list
4. “Bridge-in” independent set: Compute rank of independent set

+ Step1,2and4in O(%log, s 3) 1/Os
* Independent set of size aN for 0 <a <1

\a T(N)=T((1-)N) + O(Xlog 5 %) = O log 5) Uy

Lars Arge ERaDa LGy - 60

10

1/O-efficient algorithms and data structures

f List Ranking: Bridge-out/in

« Obtain information (edge or rang) of successor
— Make copy of original list
— Sort original list by successor id

— Sort modified original list by id
QO(% log ;5 4) 1/0s

~

P e
2 3]a 2[s [10
= B0 0 OZHOmE

— Scan original and copy together to obtain successor information

J

Lars Arge IRACSE GO "=

61

1/O-efficient algorithms and data structures

f List Ranking: Independent Set \

+ Easy to design O(4f log ;5 47) randomized algorithm:
— Scan list and flip a coin for each vertex

— Independent set is vertices with head and successor with tails
= Independent set of expected size N/4

o . [3]4]s]o8[7laof2]6] |
* Deterministic algorithm: ~— ——

— 3-color vertices (no vertex same color as predecessor/successor)
— Independent set is vertices with most popular color
= Independent set of size at least N/3

. 0(%’ log /5 %) 3-coloring = 0(% log /s %) 1/0 algorithm

Lars Arge TSRS LR " = 62

1/O-efficient algorithms and data structures

/ List Ranking: 3-coloring
« Algorithm:

U

3-coloring

~

— Consider forward and backward lists (heads/tails in two lists)
— Color forward lists (except tail) alternately red and blue
— Color backward lists (except tail) alternately and blue

5(9(8 10
T~ @ @S
Lars Arge INADSTLGD — -

V/O-efficient algorithms and data structures

List Ranking: Forward List Coloring \

* Identify heads and tails
* For each head, insert red element in priority-queue (priority=position)
* Repeatedly:

— Extract minimal element from queue

— Access and color corresponding element in list

— Insert opposite color element corresponding to successor in queue

* Scan of list
* O(N) priority-queue operations

b O(&log /5 5)1/0s J

Lars Arge NSRS GG~ - 64

1/O-efficient algorithms and data structures

/ Summary: List Ranking

« Simplest graph problem: Traverse linked list

[2]z]s o8] 7[w[a]s]
~— >

« Very easy O(N) algorithm in internal memory
* Much more difficult O(% log /s %) external memory
— Finding independent set via 3-coloring
— Bridging vertices in/out
« Permuting bound O(min{N, % log w %}) best possible
— Also true for other graph problems
Refs: [Z] sec. 2,4.2

Lars Arge frat= e T e ey

1/O-efficient algorithms and data structures

/ Summary: List Ranking \

* External list ranking algorithm similar to PRAM algorithm

— Sometimes external algorithms by “PRAM algorithm simulation”

* Forward list coloring algorithm example of “time forward processing”]

— Use external priority-queue to send information “forward in time”
to vertices to be processed later

[3]4]s[o]8]7ro2]6] |
~— >

. J

Lars Arge ERaDa LGy - 66

11

1/O-efficient algorithms and data structures

(Other Graph Algorithm Results \

* Most tree problems solved in O(4 log /5 &) 1/Os
+ Most planar graph problems solved in O(£ log /5 &) 1/Os

* Most other problems on general graphs not satisfactory solved
- Dire'cted DFS/BFS: O(V + E)logy V) or OV +£ 1
— Undirected B:‘S: O(VE+§log% £) or 0" +%log¢,g £
— MSF: O(V+§log w, E) or O(log, log, %~%]og% %)
- SSSP:O(V +£1og, £)

« No other than permutation lower bound O(min{E. ,% log W %}) known

. J

Lars Arge IRACSE GO "= 67

1/O-efficient algorithms and data structures

(Exercise

Given a grid terrain model (an /N x /N)

N
M/BB
accumulation grid:

design an 0(% log)1/0 algorithm for computing flow
— Initially one unit of water in each grid cell

lower neighbor cell (if existing)

\7 Flow accumulation of cell is total flow through it

~

— Water (initial and received) distributed from each cell to lowest

Lars Arge INEDELGR " " =

1/O-efficient algorithms and data structures

(Flow Accumulation \

« Problem can easily be solved in O(N log N) time:

« Process (sweep) points by decreasing height. At each cell:
— Read flow from flow grid and neighbor heights from
— Update flow (flow grid) for downslope neighbors
U

One sweep = O(N log N) time algorithm

Lars Arge ACREDNET GO - " 69

1/0-efficient algorithms and data structures

Geometric 1/0-bottleneck Example

University environmental researchers
— 100m resolution = ~ 64M cells T,
= ~128MB raw data (~500MB processing) -
= 14 days (on 512MB machine) -
« Dataset could me much larger:

—~1.2GB at 30m resolution
(80% of earth covered by NASA SRTM mission)

— ~ 12GB at 10m resolution (much of US available)

» Computed for Appalachian Mountains (800km x 800km) by Duke

—~1.2TB at Im resolution

Cmmstmnematmaemgmgwﬁsxwms

= Appalachian Mountains in 3 hours!

Lars Arge INARDRET R~ "

1/O-efficient algorithms and data structures

(Exercise \

Given a grid terrain model (an N x /N)

design an O(4 logM/B “)V/O algorithm for computing flow
accumulation grid:
Hints:

1. Store all neighbor heights with each cell

2. Distribute water to neighbors using time forward processing

Lars Arge Do) - - 71

1/O-efficient algorithms and data structures

(Cache-Oblivious Algorithms

* Block access important on all levels of memory hierarchy
— But complicated to model whole hierarchy

« 1/O-model can be used on all levels

— But dominating level can change during computation

— Characteristics of hierarchy may not be known

Lars Arge e T e

12

1/O-efficient algorithms and data structures

(Cache-Oblivious Algorithms \

* N, B, and M as in I/O-model

* M and B not used in algorithm description
« Block transfers (I/O) by optimal paging strategy

Analyze in two-level model
Efficient on one level, efficient of all levels!

« Surprisingly many cache-oblivious algorithms developed recently

\f Much more fundamental work to be done!)

Lars Arge IRACSE GO "= 73

1/O-efficient algorithms and data structures

(Conclusions

« 1/0 often bottleneck when processing massive data

« Discussed
— Fundamental algorithms: Sorting and searching
— Buffered data structures -l .
— Structures for planar orthogonal range searching L
— List ranking |

* Many exciting problems remain open in the area

Acknowledgments
« US Army Research Office
« Danish National Science Research Council
« Danish National Strategic Research Council

QADALGO center — funded by e; CRUNDT ORSKNINGSFOND)

Lars Arge INEDELGR " " = 74

1/O-efficient algorithms and data structures

((manalcosos)

* $10M center at University of Aarhus, initially funded for 5 years
« High level objectives:

— Advance knowledge in massive data algorithms

<

— Be catalyst for multidisciplinary collaboration ge_Brodal

— Train researchers in world-leading environment

« Research focus areas:
— I/O-efficient, streaming, cache-oblivious
— Algorithm engineering

« Three institution collaboration
— AU: 1/O, cache and algorithm engineering

— MPI: I/O (graph) and algorlthm engineering
— MIT: Cache and streammg

Lars Arge ACREDNET GO - " 75

V/O-efficient algorithms and data structures

/ MmabDaLGo---_-- Advites

» Exchange of faculty, post docs, students between core institutions

Short/long visits of faculty, post docs, students from other institutions

Various workshops

Symposium on Algorithms for Massive Datasets (yearly from 2008)

Summer Schools:
— 2007: Streaming data algorithms

\7 2008: Cache-oblivious algorithms J

Lars Arge NSRS GG~ - 76

1/O-efficient algorithms and data structures

ﬁnanau:_o "= "= == Summer Schoom

« Data Stream Algorithms:
« August 20-23, 2007
« June 15 registration deadline; no registration fee
* Lectures:
— Sudipto Guha (U. Penn)
— Sariel Har-Peled (UIUC)
— Piotr Indyk (MIT)
— T.S. Jayram (IBM Almaden)
— Ravi Kumar (Yahoo!)

\— D. Sivakumar (Google))

Lars Arge Do) - - 77

1/O-efficient algorithms and data structures

(I’I'l aDAaLGO0 "o "u " Inauguration\
« Inauguration event:
* August 24, 2007
* Morning scientific speakers:
— Jeff Vitter (Purdue): I/O-efficient algorithms
— Charles Leiserson (MIT): Cache-oblivious algorithms
— Peter Sanders (Karlsruhe): Algorithm engineering

« Afternoon formal speakers:
— National Research Foundation chairman Klaus Bock
— Dean of Science Erik Meineche Schmidt

— Center Leader Lars Arge
and more
kBeer!)
Lars Arge ERaDa LGy - 78

13

