# The Fast Johnson-Lindenstrauss Transform and Applications

Nir Ailon
Institute for Advanced Study
nailon@math.ias.edu

Joint with Bernard Chazelle

#### Dimension Reduction

• Algorithmic metric embedding technique



- Distances after map  $\approx_{\epsilon}$  distances before map
- Useful when time/space depends heavily on d

Removes redundancy from data

#### Dimension Reduction Applications

- Approximate nearest neighbor [KOR00, IM98]...
- Text analysis [PRTV98]
- Clustering [BOR99, S00]
- Streaming [I00]
- Linear algebra [DKM05, DMM06]
  - Matrix multiplication
  - SVD computation
  - $L_2$  regression
- VLSI layout Design [V98]
- Learning [AV99, D99, V98] . . .

### History of Johnson-Lindenstrauss Dimension Reduction (1984-2005)



### History of Johnson-Lindenstrauss Dimension Reduction (1984-2005)



### History of Johnson-Lindenstrauss Dimension Reduction (1984-2005)



#### Optimality

cannot have target dimension

$$k = o\left(\frac{\log n}{\varepsilon^2 \log \varepsilon^{-1}}\right)$$

how many linear operations/random bits necessary?

... to reduce a single vector

#### Sparse Projections



[Bingham, Mannila 2001] Works in practice

Works for "random" data

#### Sparse Projections



sparse?

Not if I can help it!

If you don't know where the 1 is hiding you'll have to increase k as matrix becomes sparser...





#### Harmonic Analysis

 $u \in \mathbb{R}^d$ . Some facts:  $\mathbb{I}^u$ 

- $u \mapsto \hat{u} \text{ linear}$
- $\bullet \|\hat{u}\|_2 = \|u\|_2$



- $u \text{ sparse} \Rightarrow \hat{u} \text{ dense (uncertainty)}$
- $\hat{u}$  computable in  $O(d \log d)$  time (FFT/Walsh transform)

#### Must Add Randomness

Intuition fails because  $u\mapsto \hat{u} \text{ rigid transformation}$ 



Solution: take  $\widehat{Du}$  where

$$D = \begin{pmatrix} \pm 1 & & & \\ & \pm 1 & & \\ & & \ddots & \\ & & & \pm 1 \end{pmatrix}$$

#### Fast J-L Transform (FJLT)



|                         | $L_2	o L_1$                                              | $L_2	o L_2$                                              |
|-------------------------|----------------------------------------------------------|----------------------------------------------------------|
| naive                   | $\Omega\left(\frac{d\log n}{\varepsilon^2}\right)$       | $\Omega\left(\frac{d\log n}{\varepsilon^2}\right)$       |
| $\mathrm{FJLT}$         | $O\left(d\log d + \frac{\log^2 n}{\varepsilon^3}\right)$ | $O\left(d\log d + \frac{\log^3 n}{\varepsilon^2}\right)$ |
| when<br>FJLT<br>better? | $n = e^{O(d\varepsilon)}$                                | $n = e^{O(\sqrt{d})}$                                    |

subsumed by  $k = \frac{c \log n}{\epsilon^2} = O(d)$ 

Improved to d log log n

## Proof: Worst Case is Hidden Coordinate Set

$$\widehat{Du} = (\underbrace{c, \dots, c}_{\Theta(\frac{d}{\log n})}, 0, \dots, 0)$$



#### Proof of FJLT $(L_2 \rightarrow L_1)$

Assume 
$$\widehat{Du} = (\underbrace{c, \dots, c}_{d/\log n}, 0, \dots, 0)$$
 with  $c = \sqrt{\log n/d}$ 

$$\Rightarrow \Phi_i \widehat{Du} pprox \sum_{j=1}^{d/\log n} g_j b_j c ext{ where } egin{array}{c} g_j \sim N(0,1) \ b_j \sim \operatorname{Bernoulli}(s) \end{array}$$

$$\Rightarrow (\Phi \widehat{Du} | \sum b_j = b) \sim N(0, bc^2)$$

$$\Rightarrow E[|\Phi_i \widehat{Du}|] = E_b[|N(0,bc^2)|] \approx E_b[c\sqrt{b}] = cE[\sqrt{\operatorname{Bin}(d/\log n,s)}]$$

Want 
$$E[\sqrt{\mathrm{Bin}}] \approx_{\varepsilon} \sqrt{E[\mathrm{Bin}]} \Rightarrow \text{must have } E[\mathrm{Bin}] = \Omega(1/\varepsilon)$$
  
$$\Rightarrow sd/\log n \approx \varepsilon^{-1} \Rightarrow s \approx \frac{\log n}{d\varepsilon}$$

#### Applications

#### Nearest Neighbor Searching

|                         | $L_2	o L_1$                                                  | $L_2 	o L_2$                                                 |
|-------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| naive                   | $\Omega\left(\frac{d\log n}{\varepsilon^2}\right)$           | $\Omega\left(\frac{d\log n}{\varepsilon^2}\right)$           |
| $\mathrm{FJLT}$         | $O\left(d\log\log n + \frac{\log^2 n}{\varepsilon^3}\right)$ | $O\left(d\log\log n + \frac{\log^3 n}{\varepsilon^2}\right)$ |
| when<br>FJLT<br>better? | $n=e^{O(darepsilon)}$                                        | $n = e^{O(\sqrt{d})}$                                        |



 $\widetilde{A}$  = row/column sampling approximation

[Drineas, Kannan, Mahoney, Muthukrishnan . . .]

- Matrix-matrix multiplication
- Matrix-vector multiplication
- L<sub>2</sub> regression [S06, DS07]
- SVD computation
- Advantage: Sparsity of matrix preserved
- Disadvantage: Probabilities depend on matrices/vectors

- Streaming: requires 2 passes on large A
- Av<sub>1</sub>, Av<sub>2</sub>...: requires recomputing p<sub>1</sub>..p<sub>m</sub>



- Spreads information "evenly"
- Can take p<sub>1</sub>..p<sub>m</sub> uniform
- Naive: costs O(m log m) time
- Better: costs O(m log s) time
   s = number of rows to sample
- Requires one pass
- Does not depend on matrices/vectors

no cost in accuracy

little cost in time

samplingfriendly

#### Main Theoretical Open Problem

- What is fastest J-L transform?
- What is a J-L transform?

(to be continued....

7777

 What is most elegant J-L transform? repeat T-times:

> pick random i, j pick random angle  $\Theta$ rotate  $(x_i,x_i)$  by  $\Theta$

