
Running FOP

$Revision: 490012 $

Table of contents

1 System Requirements...2

2 Installation..2

2.1 Instructions.. 2

2.2 Problems.. 2

3 Starting FOP as a Standalone Application...3

4 Using Xalan to Check XSL-FO Input..4

5 Memory Usage...5

6 Problems.. 6

PDF created by Apache FOP
http://xmlgraphics.apache.org/fop/

http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

1. System Requirements

The following software must be installed:

• Java 1.2.x or later Runtime Environment.
• FOP. The FOP distribution includes all libraries that you will need to run a basic FOP

installation. These can be found in the xml-fop/lib directory. These libraries include the
following:
• Apache Xerces-J for XML parsing. You can use other XML parsers which support SAX

and DOM.
• Apache Xalan-J, an XSLT processor.
• Apache Batik, an SVG library.

The following software is optional, depending on your needs:

• Graphics libraries. Support for some graphics formats requires additional packages. See FOP:
Graphics Formats for details.

• PDF encryption. See FOP: PDF Encryption for details.

In addition, the following system requirements apply:

• If you will be using FOP to process SVG, you must do so in a graphical environment. See
FOP: Graphics (Batik) for details.

2. Installation

2.1. Instructions

Basic FOP installation consists of first unzipping the .gz file that is the distribution medium,
then unarchiving the resulting .tar file in a directory/folder that is convenient on your system.
Please consult your operating system documentation or Zip application software documentation
for instructions specific to your site.

2.2. Problems

Some Mac OSX users have experienced filename truncation problems using Stuffit to unzip and
unarchive their distribution media. This is a legacy of older Mac operating systems, which had a
31-character pathname limit. Several Mac OSX users have recommended that Mac OSX users
use the shell command tar -xzf instead.

Running FOP

Page 2
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

../download.html
http://xml.apache.org/xerces-j/index.html
http://xml.apache.org/xalan-j/index.html
http://xml.apache.org/batik/
graphics.html
graphics.html
pdfencryption.html
graphics.html#batik
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

3. Starting FOP as a Standalone Application

The usual and recommended practice for starting FOP from the command line is to run the batch
file fop.bat (Windows) or the shell script fop.sh (Unix/Linux). If you write your own scripts, be
sure to review these standard scripts to make sure that you get your environment properly
configured.

The standard scripts for starting FOP require that the environment variable JAVA_HOME be set
to a path pointing to the appropriate Java installation on your system. Macintosh OSX includes a
Java environment as part of its distribution. We are told by Mac OSX users that the path to use in
this case is /Library/Java/Home. Caveat: We suspect that, as Apple releases new Java
environments and as FOP upgrades the minimum Java requirements, the two will inevitably not
match on some systems. Please see Java on Mac OSX FAQ for information as it becomes
available.

fop [options] [-fo|-xml] infile [-xsl file]
[-awt|-pdf|-mif|-pcl|-ps|-txt|-svg|-at|-print] <outfile>

[OPTIONS]

-d debug mode
-x dump configuration settings
-q quiet mode
-c cfg.xml use additional configuration file cfg.xml
-l lang the language to use for user information
-s (-at output) omit tree below block areas
-txt.encoding (-txt output encoding use the encoding for the output

file.
The encoding must be a valid java encoding.

-o [password] pdf file will be encrypted with option owner password
-u [password] pdf file will be encrypted with option user password
-noprint pdf file will be encrypted without printing permission
-nocopy pdf file will be encrypted without copy content

permission
-noedit pdf file will be encrypted without edit content

permission
-noannotations pdf file will be encrypted without edit annotation

permission

[INPUT]
infile XSLFO input file (the same as the next)
-fo infile xsl:fo input file
-xml infile xml input file, must be used together with -xsl
-xsl stylesheet xslt stylesheet

[OUTPUT]

Running FOP

Page 3
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://developer.apple.com/java/faq
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

outfile input will be rendered as pdf file into outfile
-pdf outfile input will be rendered as pdf file (outfile req'd)
-awt input will be displayed on screen
-mif outfile input will be rendered as mif file (outfile req'd)
-pcl outfile input will be rendered as pcl file (outfile req'd)
-ps outfile input will be rendered as PostScript file (outfile

req'd)
-txt outfile input will be rendered as text file (outfile req'd)
-svg outfile input will be rendered as an svg slides file (outfile

req'd)
-at outfile representation of area tree as XML (outfile req'd)
-print input file will be rendered and sent to the printer

see print specific options with "-print help"

[Examples]
fop foo.fo foo.pdf
fop -fo foo.fo -pdf foo.pdf (does the same as the previous line)
fop -xsl foo.xsl -xml foo.xml -pdf foo.pdf
fop foo.fo -mif foo.mif
fop foo.fo -print or fop -print foo.fo
fop foo.fo -awt

PDF encryption is only available if FOP was compiled with encryption support and if
compatible encryption support is availabe at run time. Currently, only the JCE is supported.
Check the Details.

4. Using Xalan to Check XSL-FO Input

FOP sessions that use -xml and -xsl input instead of -fo input are actually controlling two distinct
conversions: Tranforming XML to XSL-FO, then formatting the XSL-FO to PDF (or another
FOP output format). Although FOP controls both of these processes, the first is included merely
as a convenience and for performance reasons. Only the second is part of FOP's core processing.
If a user has a problem running FOP, it is important to determine which of these two processes is
causing the problem. If the problem is in the first process, the user's stylesheet is likely the cause.
The FOP development team does not have resources to help with stylesheet issues, although we
have included links to some useful Specifications and Books/Articles. If the problem is in the
second process, FOP may have a bug or an unimplemented feature that does require attention
from the FOP development team.

Note:
The user is always responsible to provide correct XSL-FO code to FOP.

In the case of using -xml and -xsl input, although the user is responsible for the XSL-FO code
that is FOP's input, it is not visible to the user. To make the intermediate FO file visible, the FOP
distribution includes xalan.bat (Windows batch file) and xalan.sh (Unix/Linux script), which run

Running FOP

Page 4
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

pdfencryption.html
../resources.html#specs
../resources.html#articles
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

only the first (transformation) step, and write the results to a file.

Note:
When asking for help on the FOP mailing lists, never attach XML and XSL to illustrate the issue. Always run the xalan script and
send the resulting XSL-FO file instead. Of course, be sure that the XSL-FO file is correct before sending it.

The scripts are invoked the same way that Xalan is:

xalan -in xmlfile -xsl file -out outfile

Note that there are some subtle differences between the "fop" and "xalan" command lines.

5. Memory Usage

FOP can consume quite a bit of memory, even though this has been continually improved. This
is partly inherent to the formatting process and partly caused by implementation choices. All FO
processors currently on the market have memory problems with certain layouts.

If you are running out of memory when using FOP, here are some ideas that may help:

• Increase memory available to the JVM. See the -Xmx option for more information.
(Warning: It is usually unwise to increase the memory allocated to the JVM beyond the
amount of physical RAM, as this will generally cause significantly slower performance.)

• Avoid forward references. Forward references are references to some later part of a
document. Examples include page number citations which refer to pages which follow the
citation, tables of contents at the beginning of a document, and page numbering schemes that
include the total number of pages in the document ("page N of TOTAL"). Forward
references cause all subsequent pages to be held in memory until the reference can be
resolved, i.e. until the page with the referenced element is encountered. Forward references
may be required by the task, but if you are getting a memory overflow, at least consider the
possibility of eliminating them. A table of contents could be replaced by PDF bookmarks
instead or moved to the end of the document (reshuffle the paper could after printing).

• Avoid large images, especially if they are scaled down. If they need to be scaled, scale them
in another application upstream from FOP. For many image formats, memory consumption is
driven mainly by the size of the image file itself, not its dimensions (width*height), so
increasing the compression rate may help. If FOP is running embedded, clearing the image
from time to time cache might prevent memory exhaustion, you can call
org.apache.fop.image.FopImageFactory.resetCache() to empty the image
cache.

• Use multiple page sequences. FOP starts rendering after the end of a page sequence is
encountered. While the actual rendering is done page-by-page, some additional memory is

Running FOP

Page 5
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

http://xml.apache.org/xalan-j/commandline.html
http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/java.html
../faq.html#pagenum
graphics.html#caching
graphics.html#caching
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

freed after the page sequence has been rendered. This can be substantial if the page sequence
contains lots of FO elements.

There are currently some bugs which cause FOP to go into a nonterminating loop, which will
also often result in a memory overflow. A characteristic symptom is continuous box overflows in
the log. Most of these loops are triggered by elements that do not fit in the available space, such
as big images or an improperly specified width in nested block elements. The only workaround is
to locate such problems and correct them.

One of FOP's stated design goals is to be able to process input of arbitrary size. Addressing this
goal is one of the prime motivations behind the FOP Redesign.

6. Problems

If you have problems running FOP, please see the "How to get Help" page.

Running FOP

Page 6
PDF created by Apache FOP

http://xmlgraphics.apache.org/fop/

../faq.html#boxoverflow
../dev/index.html
../gethelp.html
http://xmlgraphics.apache.org/fop/
http://xmlgraphics.apache.org/fop/

	1 System Requirements
	2 Installation
	2.1 Instructions
	2.2 Problems

	3 Starting FOP as a Standalone Application
	4 Using Xalan to Check XSL-FO Input
	5 Memory Usage
	6 Problems

