Selected IPv6 topics in cellular: *MIF, Prefix Delegation, NAT64*

Workshop on TCP+VoIP, congestion control, new web developments, and selected IPv6 topics in cellular 15th October 2012 / Helsinki

Teemu Savolainen (teemu.savolainen@nokia.com) Nokia Research Center

Multiple interface issues

Arise when a host is truly connected to multiple accesses simultaneously

Our focus was AFTER network selections have been made (e.g. with ANDSF)

RFC 6418 lists these problems, some are:

- How to select DNS server in split-DNS case
- How to select optimal interface for a destination
- How to select right addresses
- How to control via APIs

MIF is working on solutions:

- DNS selection to be RFC soon
- DHCPv6 rule distribution facing headwind
- API / Happy Eyeballs not followed really...

Improved Recursive DNS Server Selection

Soon RFC 6731

Supports both DHCPv6 and DHCPv4

```
Enterprise
                    | RDNSS with
                    | public +
                    enterprise's
     MIF
node l
     |---- WLAN ----| RDNSS with
                    | public names
                                        Internet
     ---- cellular ---| RDNSS with
                    | public +
                                        Operator
                    | operator's
                                        Intranet
                    | private names
```

Referenced already from "IPv6 Multihoming without Network Address Translation", draft-ietf-v6ops-ipv6-multihoming-without-ipv6nat-04

IPv6 traffic offloading using DHCPv6

Our implementation \rightarrow

DHCPv6 servers providing rules in WLAN and cellular

DHCPv6 served both routes and DNS server selection rules

Modified N900 used (with ISC's DHCPv6 client & BIND, some scripts and utilities)

IPv6 Prefix Delegation

Started by thinking about stateless prefix delegation – that went nowhere

Ended on DHCPv6 Prefix Delegation Exclude Option RFC 6603

..excludes a prefix out of a delegated prefix

Enables aggregation of the bearer's /64 prefix and the delegated prefix into a single aggregared prefix

Successfully contributed to 3GPP!

NAT64 discovery and learning NAT64 prefix

NAT64s are becoming reality – also in 3GPP networks

Hosts may want to choose whether to use interface with NAT64, or one without

NAT64 has to be discovered

Once discovered, as "side-product", the learned prefix can be used in local IPv6 address synthesis!

-> already used in double translation: draft-ietf-v6ops-464xlat

IPv4-only service NAT64 internet Mobile **GGSN** handset **Dual-stack** IPv6 PDP context Operator service core IPv6 NAT46 internet IPv6-only **DNS64**

NAT64 discovery and learning NAT64 prefix

```
Node
                                        DNS64 server
     "AAAA" query for "ipv4only.arpa"
    ----->| "A" query for "ipv4only.arpa"
                                               "A" response: "192.0.0.170" & "192.0.0.171"
                                "AAAA" synthesis using two Pref64::/n.
      "2001:db8:42::192.0.0.170"
      "64:ff9b::192.0.0.170"
responses at this point and skip the steps below.
     "PTR" query #1 for "2001:db8:42::192.0.0.170
     "PTR" response #1 "nat64 1.example.com"
| Compare received domains to a trusted domain list and if matches are found, continue.
     "AAAA" query #1 for "nat64 1.example.com"
   |---->
   | "AAAA" resp. #1 with "2001:db8:42::192.0.0.170
    <-----
 | Validate AAAA responses and compare the IPv6 addresses to those previously learned.
  Fetch the Pref64::/n from the validated responses and take into use.
```


Thank you

