Making Web Faster and Real-Time

NOKIA

Markus Isomäki (Nokia/CTO/CIC) 15.10.2012

Web Applications

- Web has evolved from "documents" and "sites" to "applications"
- HTML5 and new Javascript APIs will make web apps more powerful
 - As good as native for many purposes
- Strengths
 - Cross-platform
 - Updatability
 - Openness, component orientation
- Weaknesses
 - Capabilities
 - Performance
- Networking and communications on their way from a weakness to a strength!

Traditional Web App Networking Limitations

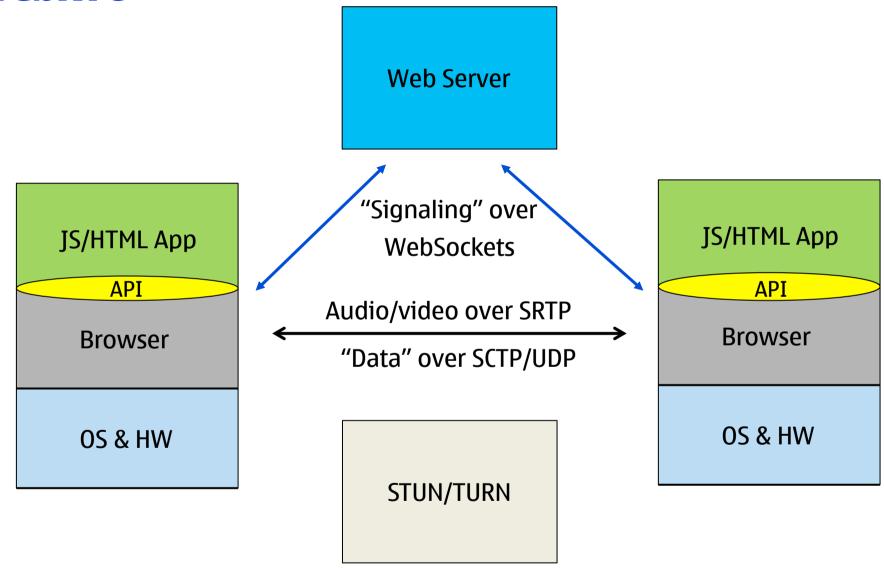
- Web apps communications limited to HTTP requests to their origin server over the default Internet connection
 - AJAX provided asynchronous requests by Javascript
 - TLS protected TCP connections rationed by the browser
- HTTP is a pure client-server protocol
 - Bidirectional communication and notifications difficult.
 - HTTP long-polling based hacks
 - Heavy overhead for small payloads
 - Not good for interactive communications
- No visibility to underlying networking
- No access to local connectivity, e.g. Bluetooth

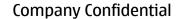
Improvements

- WebSocket API and protocol
 - Low-overhead bidirectional persistent communication
 - Good for asyncronous updates, messages etc.
- Network information API
 - Visibility to network characteristics
- Push API
 - Access to generic notification/push aggregation services
- HTTP 2.0 (a.k.a. SPDY)
 - More efficient replacement for HTTP 1.1
 - Faster, requires fewer TCP connections, header compression
- WebRTC APIs and protocols
 - Peer-to-peer real-time streams with security and NAT traversal
 - Video and audio over RTP, "data" over SCTP

HTTP 2.0 & SPDY - Background

- Growing pains with HTTP/1.1
 - High overhead, no request/response multiplexing, even pipelining not working
 - Modern web sites composed of dozens of mostly small objects
 - Only way to get them fast over HTTP/1.1 is to use a large number of parallel TCP connections
- Google published SPDY in late 2009
 - Binary headers, Compression, pipelining, multiplexing
 - Does not change HTTP semantics, i.e., drop-in replacement possible
 - Can outperform HTTP/1.1 using a fraction of TCP connections
 - Now in use by Chrome, Firefox, Google services, Twitter, Amazon, Wordpress, ...
 - Open source implementations available




HTTP 2.0 in IETF

- BOF session held in March 2012
- Protocol proposals solicited
 - Two main candidates: SPDY vs. Microsoft "HTTP Speed+Mobility"
- SPDY chosen as baseline in July 2012
- Aiming to complete by the end of 2014
 - A new version of HTTP is not a light task...
 - A lot of infrastructure relying on HTTP: Browsers, other HTTP clients, libraries, servers, proxies, caches, firewalls, CDNs, load balancers, ...
 - But remember SPDY is gaining ground even before the HTTP 2.0 completion, incremental deployment is possible
- Issues under discussion
 - HTTP 1.1 vs. 2.0 discovery
 - Header compression

WebRTC

WebRTC in IETF and W3C

- W3C works on the APIs
 - GetUserMedia to get access to camera and mic for real-time streams
 - PeerConnection to setup a peer-to-peer media streams
 - Negotiation based on SDP offer/answer
- IETF works on the protocols and codecs
 - RTP profile for real-time media
 - Secure RTP with DTLS-SRTP key exchange
 - Multiplexing audio and video into a single RTP session/stream
 - Data channel based on SCTP/DTLS/UDP
 - NAT traversal based on ICE, STUN and TURN
 - Congestion control
 - Opus and G.711 mandatory for voice
 - H.264 vs. VP8 still open for video
 - Identity assertions

WebRTC Outlook

- Standards to be completed during 2013
- Pre-standard implementations available in Chrome and Firefox
 - Many apps and demos on Chrome already
- Internet Explorer to follow at some timeframe
- Various use cases
 - Google+ hangouts
 - Skype
 - Facebook video chat
 - Customer service and e-commerce calling sites
 - "4 out of 10 biggest American banks have a WebRTC project"
 - Inside the enterprise
 - SIP/IMS and PSTN gateways
 - Ericsson, Alcatel Lucent, Acme Packet, ...

