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Abstract. Accommodative revision is a novel method of non-prioritized
belief revision. The epistemic state of an agent contains both knowledge
that is immune to revision and beliefs that are allowed to change. Incom-
ing information is �rst revised by the knowledge of the agent, and then
the epistemic state of the agent is revised using this modi�ed input. The
properties of the method are studied and examples of its use are given.
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1 Introduction

In belief revision, an agent obtains new information about a static world. On
one hand, the input may be considered as the most recent and as such the most
reliable piece of information. In that case, if the new information contradicts
the beliefs of the agent, it needs to give up some of the old beliefs in order to
maintain consistency of beliefs [1]. However, this framework, called prioritized
belief revision, allows even self-contradictory input to be accepted into the beliefs
of the agent.

On the other hand, in non-prioritized belief revision (see [16] for a survey)
the input is not necessarily accepted. The agent may have some information that
it will refuse to give up at any situation. In computer science such information
might be called integrity constraints [22], in philosophy knowledge [17]. In belief
revision literature the term core beliefs has also been used [16].

Instead of rejecting the input that the agent knows to be impossible, we
aim to �nd a charitable interpretation that retains as much as possible of the
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input. For instance, suppose that we hear that �Jaakko Kuusisto, a winner of
the Sibelius violin contest, gives a concert at the forthcoming open air music
festival�. However, we know for a fact that although Jaakko has participated in
the contest as well, it is actually his brother Pekka who has managed to win it.
Our natural reaction would be to think that �the speaker must have got either
the �rst name or the bit about the contest victory wrong. But there will be a
concert by either of the two brothers, that much I can believe now�.

The amount of information obtained from an �unbelievable input� may vary.
Let us consider a modi�cation of an example by Hansson [15]. Amy tells the
agent that she saw a three-toed woodpecker with a red forehead and a red rump
just outside her window. When it comes to birds, the agent has more knowledge
than Amy: The agent knows that a three-toed woodpecker neither has a red
forehead nor a red rump. The agent has various possibilities when making sense
of the impossible statement. With some benevolence, it can come to one of the
following conclusions: (1) Amy saw a bird with a red forehead and a red rump,
but it was not a three-toed woodpecker, (2) Amy saw a bird with a red forehead
and a red rump or Amy saw a three-toed woodpecker (but not one with a red
forehead or a red rump), or (3) at least Amy saw some kind of a bird outside
her window.

In this paper, we introduce accommodative revision, a method for non-
prioritized belief revision. The basic idea is to use knowledge as a �lter that
the incoming information has to pass through before the epistemic state can be
revised. The agent will modify the input to accord with its knowledge.

Our proposal has the following properties: (1) input inconsistent with knowl-
edge will not be accepted, but the input will be modi�ed to produce an accept-
able formula prior to revising the epistemic state, (2) only knowledge is used to
modify the input, and (3) the modi�cation of the input and the revision of the
epistemic state are performed as two separate phases. We will also describe an
implementation that is publicly available to allow small-scale experimentation
of our proposal4.

In our two-phase revision, at �rst the input is revised by the knowledge of
the agent, giving a new input formula. Then the epistemic state of the agent
is revised by the new formula. Thus our proposal is closely related to selective
revision [12] and might be considered as a generalization of the revision method
presented in [2] (see Sect. 3 for comparison). Other, more recent non-prioritized
belief revision proposals based on the modi�cation of input sentence do also exist,
e.g. [5], [20] and [3], but they are based on syntactic manipulation whereas our
method uses previously de�ned (semantically-oriented) belief-revision operators
already known to satisfy certain principles.

The outline of the paper is as follows. Section 2 recalls the basic ideas of belief
revision. In Sect. 3 we give the de�nition of our method, and in Sect. 4 we study
its properties. In Sect. 5 we introduce an implementation of accommodative
revision with various sample operators. In Sect. 6 we analyze some examples.
Section 7 is devoted for conclusions.
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2 Preliminaries

In belief revision, an agent evolves its epistemic state due to incoming infor-
mation called epistemic input. At �rst the input is classi�ed, and the way the
epistemic state will be changed depends on the result of the classi�cation. On the
meta level, the change is guarded by rationality criteria. Alchourrón, Gärden-
fors and Makinson [1] have proposed a set of principles for belief revision known
as the AGM-postulates. Darwiche and Pearl [7,8] have proposed an additional
set of postulates for belief revision in order to rule out change operators that
give unintuitive results in iterated revisions. The main principles in these sets of
postulates are maintaining consistency of the beliefs and minimality of change.

We assume that the set of propositional formulas believed in any epistemic
state is deductive closed. For each epistemic state T , let TB denote the belief
set of the state, that is, the deductive closure of formulas believed in the state.
Let ◦ denote a revision operator, that is, a function from epistemic states and
propositional input formulas into epistemic states. The AGM-postulates and the
DP-postulates are rephrased here as follows:

(R1): A ∈ (T ◦A)B .
(R2): If ¬A 6∈ TB , then (T ◦A)B = TB + A.
(R3): If A 6|=⊥, then ⊥6∈ (T ◦A)B .
(R4): If A ≡ B, then (T ◦A)B = (T ◦B)B .
(R5): (T ◦ (A ∧B))B ⊆ (T ◦A)B + B.
(R6): If ¬B 6∈ (T ◦A)B , then (T ◦A)B + B ⊆ (T ◦ (A ∧B))B .
(DP1): If A |= B, then ((T ◦B) ◦A)B = (T ◦A)B .
(DP2): If A |= ¬B, then ((T ◦B) ◦A)B = (T ◦A)B .
(DP3): If A ∈ (T ◦B)B , then A ∈ ((T ◦A) ◦B)B .
(DP4): If ¬A 6∈ (T ◦B)B , then ¬A 6∈ ((T ◦A) ◦B)B .

Here A and B denote propositional (input) formulas, and TB + A denotes the
deductive closure of the set TB ∪ {A}. In the AGM-postulates (R1)�(R6), the
epistemic input is always prioritized over the old beliefs due to postulate (R1).
Postulates (R1)�(R4) are considered basic: every (prioritized) belief-revision op-
erator should satisfy them. Postulates (R5)�(R6) are supplementary. Note that
only belief sets of epistemic states are used in the formulation: Because we do
not make other assumptions about the representation of epistemic states, we do
not use equality nor equivalence of epistemic states in the formulation.

If epistemic states were functionally dependent on the belief sets in the states,
then the joint set of postulates would result in triviality of logic, that is, no
three satis�able but pairwise inconsistent formulas could exist [13,10]. Ruling
out inconsistent epistemic states and self-contradictory epistemic input does not
solve the problem [10,11]. Thus for the joint set of postulates, more elaborate
epistemic states are needed.

As known [14], belief revision involves ordering among possible worlds. Those
possible worlds that are minimal in the ordering are the most plausible worlds
(the doxastic alternatives) in the state. The possible worlds modelling the new
formula that are minimal in the ordering will be the most plausible worlds in



the revised state. Spohn [24] has argued that this ordering should be part of the
epistemic state, because it is altered in the process of revision.

To represent epistemic states, Spohn [24] introduced ranking functions (alias
Ordinal Conditional Functions, OCFs), which are functions from the set of pos-
sible worlds into ordinals. The ordinal of a world is its rank. The smaller the
rank, the less disbelieved is the world. The most plausible worlds (the doxastic
alternatives) are the worlds with rank 0. The rank of a proposition (a set of pos-
sible worlds) is the minimum of the ranks of the worlds within it. Spohn rules
out both inconsistent epistemic states and self-contradictory epistemic input. To
update the ranking, Spohn [24] also introduced a method, in which the rankings
are shifted. Darwiche and Pearl [7] introduced a belief-revision operator based
on Spohn's framework to accommodate the principles for iterated belief revision.
We, too, shall adopt and elaborate on Spohn's framework in Sect. 5.1.

We will treat knowledge in belief change as integrity constraints have been
considered in theory change. Integrity constraints are used to express those prop-
erties that should always hold. When de�ning the e�ect that the integrity con-
straints have on belief change, Katsuno and Mendelzon [18] have required that
the result entails the integrity constraints. Then, with any belief-revision oper-
ator satisfying the AGM-postulates, the integrity constraints actively take part
in belief revision.

Let us consider the de�nition by Katsuno and Mendelzon [18] in more detail.
Using T to denote an epistemic state, A to denote an epistemic input, ◦ to denote
a belief revision operator, and IC to denote a propositional formula expressing
integrity constraints, they de�ned the e�ect of integrity constraints on belief
revision as

T ◦IC A =def T ◦ (A ∧ IC). (1)

We will adopt this de�nition and develop it further.

3 The Principle of Accommodative Revision

Before introducing accommodative revision, let us specify our framework. For
each epistemic state T , let TB denote the belief set of the state as in Sect. 2,
and let TK denote the set of all the propositional formulas constituting the
knowledge in the state. Both sets are deductively closed, thus all the tautologies
will be included in them. We shall restrict our accommodative revision only to
those epistemic states in which the following static constraints are satis�ed:

(S1): TK ⊆ TB .
(S2): ⊥6∈ TK .

Condition (S1) says that the agent believes what it knows, and condition (S2)
says that the knowledge set does not include contradictions.

However, we do not assume that the sets TB and TK constitute the epistemic
state. In fact, Sect. 5.1 uses Spohn's [24] ranking functions to represent epistemic
states, yet the general method is independent of the representation.



We shall make a strong assumption that the set TK can be represented by a
propositional formula. This assumption can be justi�ed when assuming that the
knowledge in the epistemic state is obtained in a �nite sequence of monotonous
knowledge expansions starting from a state in which nothing (except tautologies)
was known. Our way of meeting this assumption will be given in Sect. 5.1.

We extend De�nition (1) as follows. Let T denote an epistemic state, let
K denote a propositional formula representing the set TK , and let A denote a
propositional input formula. We de�ne the accommodative revision of the state
T by the formula A as

T ⊗A =def T ◦ (A ∗K) (2)

in which ⊗ denotes an accommodative revision operator, ◦ denotes belief revision
of epistemic states, and ∗ denotes revision of propositional formulas. Note that
we do not propose a single operator but a scheme in which various operators can
be applied.

The philosophical justi�cation of our method is the following: We consider
the modi�ed input as an estimate of the formula that the source of the input
would have given, had it had all the knowledge that our agent has.

Let us compare our proposal with some related work. As a special case of
accommodative revision, we will get screened revision [19] by de�ning that A ∗
K ≡ K whenever ¬A ∈ TK . Our proposal resembles the proposal by Bellot et
al. [2], which also has the same two phases, but uses the same �xed distance-based
revision operator to update both the input by the knowledge and the epistemic
state. Our proposal lets the agent choose the two components separately, without
imposing limitations on the representation of epistemic states. Thus our proposal
is a generalization of theirs.

In selective revision [12], some function is to be used to replace the input by
a new formula that is typically entailed by the original input. In our proposal,
not only is the complement of the knowledge contracted from the input, but the
knowledge is incorporated into the input. Without the latter, our proposal could
be considered as an instantiation of selective revision.

4 Features of Accommodative Revision

Let us analyze some features of our accommodative revision. We want to prove
that the operators in the family of accommodative revision accomplish non-
prioritized belief revision satisfying the AGM postulates (R2)�(R4) and a mod-
i�cation of (R1). We �rst make some assumptions of the operators ∗ and ◦ used
as components in accommodative revision.

We assume that the modi�cation function ∗ is a function from pairs of
propositional formulas into propositional formulas and it satis�es at least the
basic AGM-postulates rephrased here for this framework as follows: (MR1):
A ∗ K |= K, (MR2): If K 6|= ¬A, then A ∗ K ≡ A ∧ K, (MR3): If K 6|=⊥,
then A ∗K 6|=⊥, (MR4): If A ≡ A′ and K ≡ K ′, then A ∗K ≡ A′ ∗K ′. Here A,
A′, K and K ′ denote propositional formulas.



We assume that ◦ is a function from epistemic states and propositional for-
mulas into epistemic states. We assume that the operator ◦ satis�es at least the
basic AGM-postulates (R1)�(R4). We shall also use the following extra condition
to ensure that ◦ does not change the knowledge in the state:

(R0): (T ◦A)K = TK .

We shall restrict our accommodative revision only to those epistemic states in
which the static constraints (S1) and (S2) from Sect. 3 are satis�ed.

Now, using these assumptions, we can prove that an accommodative-revision
operator ⊗ preserves these static constraints and has the following features:

(AR0): (T ⊗A)K = TK .
(AR1): If ¬A 6∈ TK , then A ∈ (T ⊗A)B .
(AR2): If ¬A 6∈ TB , then (T ⊗A)B = TB + A.
(AR3): ⊥6∈ (T ⊗A)B .
(AR4): If A ≡ A′, then (T ⊗A)B = (T ⊗A′)B .

(AR0), (AR2), and (AR4) are equivalent to postulates (R0), (R2), and (R4) cor-
respondingly. (AR3) is stronger than (R3): It says that accommodative revision
always results in epistemic states with non-contradictory belief sets. According
to (AR1), the new formula is accepted, if it is not contradictory to the knowl-
edge in the state. Note that all these are derived properties, not principles set
for accommodative revision.

We can see that accommodative revision fails to satisfy the basic AGM-
postulates only when the input is contradictory to the knowledge in the state:
In those cases the success postulate (R1) fails. Thus accommodative revision is
non-prioritized belief revision. Accommodative revision preserves the static con-
straints, and it is able to guarantee non-contradictory belief sets at all occasions.

Theorem 1. If the operators ∗ and ◦ used as components in an accommodative
revision operator ⊗ satisfy postulates (MR1)�(MR4) and (R0)�(R4) respectively,
then given any epistemic state T satisfying constraints (S1) and (S2), then the
state T ⊗A satis�es (S1), (S2), and (AR0)�(AR4).

Proof. Let T denote an epistemic state, A denote a propositional formula, and
let K denote a propositional formula equivalent to TK . We assume that TK ⊆ TB

and ⊥6∈ TK . By de�nition, (T ⊗A) = (T ◦ (A ∗K)).
By (R0), (T ⊗A)K = (T ◦ (A ∗K))K = TK , thus (AR0) holds. Then because

⊥6∈ TK , ⊥6∈ (T ⊗A)K and (S2) holds. Because by (R1), A∗K ∈ (T ◦(A∗K))B =
(T ⊗ A)B , (MR1) gives us A ∗ K |= K, thus K ∈ (T ⊗ A)B . Then by (AR0),
(S1) holds.

To prove (AR1), let us assume ¬A 6∈ TK . Then by (MR2), A ∗K ≡ A ∧K,
and (R4) gives us (T ◦ (A ∗ K))B = (T ◦ (A ∧ K))B . Thus by (R1), A ∧ K ∈
(T ◦ (A ∧K))B = (T ◦ (A ∗K))B = (T ⊗A)B and then A ∈ (T ⊗A)B .

To prove (AR2), assume ¬A 6∈ TB . Then by (S1), ¬A 6∈ TK , and (MR2)
gives us A ∗ K ≡ A ∧ K. Then by (R4), (T ◦ (A ∗ K))B = (T ◦ (A ∧ K))B .
For contradiction, assume ¬(A ∧K) ∈ TB . Because ¬(A ∧K) ≡ ¬A ∨ ¬K and



K ∈ TB , we get ¬A ∈ TB , a contradiction. Thus ¬(A ∧ K) 6∈ TB . Then (R2)
gives us (T ◦ (A∧K))B = TB +A∧K. Because K ∈ TB , TB +A∧K = TB +A.
Thus (T ⊗A)B = (T ◦ (A ∗K))B = TB + A.

Let us next prove that (AR3) holds. Because K 6|=⊥, (MR3) gives us A ∗
K 6|=⊥. Then by (R3), ⊥6∈ (T ◦ (A ∗K))B = (T ⊗A)B .

To prove (AR4), assume A ≡ A′. Then by (MR4), A∗K ≡ A′ ∗K, thus (R4)
gives us (T ⊗A)B = (T ◦ (A ∗K))B = (T ◦ (A′ ∗K))B = (T ⊗A′)B . ut

Whenever input does not contradict knowledge, accommodative revision re-
tains the properties of the revision operator ◦ used in de�nition.

Theorem 2. If the operators ∗ and ◦ satisfy postulates (MR1)�(MR4) and
(R0)�(R4) respectively, then for each postulate (R5), (R6), (DP1)�(DP4), if
the operator ◦ satis�es the postulate in question, accommodative revision also
has the corresponding property below:

(AR5): If ¬(A ∧B) 6∈ TK , then (T ⊗ (A ∧B))B ⊆ (T ⊗A)B + B.
(AR6): If ¬(A ∧B) 6∈ TK and ¬B 6∈ (T ⊗A)B , then

(T ⊗A)B + B ⊆ (T ⊗ (A ∧B))B .
(AR7): If A |= B and ¬A 6∈ TK , then ((T ⊗B)⊗A)B = (T ⊗A)B .
(AR8): If A |= ¬B, ¬A 6∈ TK and ¬B 6∈ TK ,

then ((T ⊗B)⊗A)B = (T ⊗A)B .
(AR9): If A ∈ (T ⊗B)B , then A ∈ ((T ⊗A)⊗B)B .
(AR10): If ¬A 6∈ (T ⊗B)B , then ¬A 6∈ ((T ⊗A)⊗B)B .

Proof. Assume ¬(A ∧B) 6∈ TK . By (S2), ⊥6∈ TK , thus ¬A 6∈ TK and ¬B 6∈ TK .
By (MR2), (A∧B)∗K ≡ (A∧B∧K) and A∗K ≡ A∧K. By (R4), (T⊗A∧B)B =
(T ◦((A∧B)∗K))B = (T ◦(A∧B∧K))B . If ◦ satis�es (R5), then by (R5), (R4) and
(MR2), (T ◦(A∧B∧K))B ⊆ (T ◦(A∧K))B +B = (T ◦(A∗K))B +B = (T⊗A)B ,
(AR5) holds. To prove (AR6), assume also that ¬B 6∈ (T ⊗ A)B . Then by
de�nition, ¬B 6∈ (T ◦(A∧K))B . If ◦ satis�es (R6), then by (R6), (R4) and (MR2),
(T ⊗A)B +B = (T ◦(A∗K))B +B = (T ◦(A∧K))B +B ⊆ (T ◦(A∧B∧K))B =
(T ◦ ((A ∧B) ∗K))B = (T ⊗ (A ∧B))B , (AR6) holds.

To prove (AR7), assume ¬A 6∈ TK and A |= B. Then ¬B 6∈ TK and (A∧K) |=
(B∧K). If ◦ satis�es (DP1), then by (MR2), (R4), and (DP1), ((T⊗B)⊗A)B =
((T ◦ (B ∗K)) ◦ (A ∗K))B = ((T ◦ (B ∧K)) ◦ (A ∧K))B = (T ◦ (A ∧K))B =
(T ◦ (A ∗K))B = (T ⊗A)B .

To prove (AR8), assume ¬A,¬B 6∈ TK and A |= ¬B. Thus A∧K |= ¬B∧K.
If ◦ satis�es (DP2), then by (MR2), (R4), and (DP2), ((T⊗B)⊗A)B = ((T ◦(B∗
K))◦(A∗K))B = ((T ◦(B∧K))◦(A∧K))B = (T ◦(A∧K))B = (T ◦(A∗K))B =
(T ⊗A)B .

To prove (AR9), let us assume A ∈ (T ⊗ B)B . Then by (AR3), (S1), and
(AR0), ¬A 6∈ TK and A∧K ∈ (T ⊗B)B = (T ◦ (B ∗K))B . By (MR2) and (R4)
((T ⊗ A) ⊗ B)B = ((T ◦ (A ∗ K)) ◦ (B ∗ K))B = ((T ◦ (A ∧ K)) ◦ (B ∗ K))B .
If ◦ satis�es (DP3), then by (DP3), A ∧ K ∈ ((T ◦ (A ∧ K)) ◦ (B ∗ K))B =
((T ◦ (A ∗K)) ◦ (B ∗K))B = ((T ⊗A)⊗B)B .

To prove (AR10), assume ¬A 6∈ (T ⊗ B)B . Then by (S1) and (AR0), ¬A 6∈
(T⊗B)K = TK , and thus by (MR2), (A∗K) ≡ (A∧K). For contradiction, assume



¬(A∧K) ∈ (T ⊗B)B . Because ¬(A∧K) ≡ ¬A∨¬K and K ∈ (T ⊗B)B , we get
¬A ∈ (T⊗B)B , a contradiction. Thus ¬(A∧K) 6∈ (T⊗B)B = (T ◦(B∗K))B . If ◦
satis�es (DP4), then by (DP4) and (R4), ¬(A∧K) 6∈ ((T ◦(A∧K))◦(B∗K))B =
((T ◦ (A ∗K)) ◦ (B ∗K))B = ((T ⊗A)⊗B)B . ut

5 An Implementation

5.1 The Underlying Framework

As stated in Sect. 3, we have adopted Spohn's ranking functions (OCFs) κ [24,
De�nition 4] as our representation for the epistemic state T . However, we restrict
their range to the natural numbers augmented with in�nity ∞. Intuitively, the
rank κ(w) is the agent's degree of disbelief towards this world w being the
actual one. This ranking extends to formulas A as the minimum rank of their
models: κ(A) = min {κ(w) : w ∈ Mod(A)}. Their connection to beliefs is that
TB = {A : κ(¬A) > 0} and to knowledge that TK = {A : κ(¬A) = ∞}. The OCF
de�nition has two more requirements: (i) κ−1(0) 6= ∅ so that the lowest rank is
normalized to be 0. (ii) The agent must be indi�erent towards new vocabulary:
if κ(w) 6= κ(w′) then w and w′ must disagree on some atomic formula p which
it has already encountered in some formula.

At least one of κ(A) or κ(¬A) is 0 [24, Theorem 2 (a)]. If they both are,
then the agent believes neither A nor ¬A. For instance, in the initial ranking
function κ0, which is everywhere 0, only the tautologies are known and nothing
else is believed.

Spohn's A,α-conditionalization [24, De�nition 6] constructs from a given
OCF κ another OCF

κA,α(w) =def


κ(w)− κ(A) if κ(w) < ∞ and w ∈ Mod(A)

α + (κ(w)− κ(¬A)) if κ(w) < ∞ and w 6∈ Mod(A)
κ(w) if κ(w) = ∞

(3)

where Mod(A) is ranked to 0 while Mod(¬A) is ranked to the given constant
α > 0 without altering the distances within these two moving parts. However, we
must ensure κ(A) < ∞ to meet requirement (i). Following Darwiche and Pearl
[7], we use κA,1 as our belief revision operation when A is not believed and κ
otherwise.

5.2 The Program

We have implemented the approach taken in Sect. 5.1 as a library of functions
in the functional programming language Haskell [21]. This library can be loaded
into a Haskell interpreter such as GHCi (see http://haskell.org/ghc/) which
then provides a text-based environment where the user can experiment with



di�erent instantiations of our operator scheme. It o�ers the following three func-
tions:

initial = κ0. (4)

know κ A =

{
κA,∞ if κ(A) < ∞
κ otherwise.

(5)

hear∗ κ A =


κ if κ(A) = 0
κA,1 if 0 < κ(A) < ∞
hear∗ κ (A ∗K) otherwise.

(6)

Constant (4) is the initial OCF. Requirement (ii) shows how the logical vo-
cabulary can be extended dynamically as needed, so we do not have to give
it explicitly. Function (5) expands the knowledge at κ with A, but discards A
if ¬A ∈ TK already. Function (6) is our revision scheme from De�nition (2).
Here the higher-order parameter ∗ is the syntactic propositional formula revi-
sion operator used. This representation of TK as a single formula K assumed in
Sect. 3 is now justi�ed since the current TK has developed from the initial

OCF through a �nite sequence of know steps.
The main goal in designing the implementation was to allow experimenting

with di�erent ∗. It is namely not clear at the outset which one corresponds
best to our intuition about �the closest alternative to A which I can believe�, as
witnessed by the di�erent choices in the woodpecker example in the introduction.
Currently the implementation o�ers the four operators described in Sect. 5.3.
De�ning additional ones is also straightforward using Haskell.

Compared with the COBA 2.0 system [9], ours is decidedly much narrower in
scope: it has neither a graphical user interface (GUI) nor a satis�ability (SAT)
solver to support processing any but the smallest knowledge bases. On the other
hand, experimentation dictates that our implementation must in turn be able
to retain and view several versions for the same knowledge base concurrently in
memory, namely the revisions of the same base using di�erent operators ∗. This
is conveniently supplied by the underlying Haskell interpreter.

5.3 Modi�cation Operators

We shall next give the de�nitions of the four semantically-oriented belief-revision
operators we implemented as modi�cation operators.

For de�ning these operators, we de�ne the di�erence w 4 w′ between two
worlds w,w′ ∈ W as the set of the atomic formulas having a di�erent truth value
in w and w′, that is, w4w′ = (w \w′)∪ (w′ \w). These sets are compared either
by using the subset relation or the cardinalities of the sets:

di�(T,A) = min({w4 w′ : w ∈ Mod(T ), w′ ∈ Mod(A)},⊆),
dist(T,A) = min({|w4 w′| : w ∈ Mod(T ), w′ ∈ Mod(A)},≤),
p_di�(w,A) = min({w4 w′ : w′ ∈ Mod(A)},⊆).



When determining the minimal di�erence, di� and p_di� use the subset relation
in comparison, while dist compares the cardinalities of the sets. The �rst two of
the functions search for the minimal di�erences between two model sets, while
the last function compares one model to a set of models pointwise.

We use four semantically-oriented belief-revision operators as modi�cation
operators: Dalal's [6] operator ∗D, Satoh's [23] operator ∗S , Weber's [25] operator
∗W , and Borgida's [4] operator ∗B . For all the operators, we de�ne Mod(A∗K) =
Mod(K) whenever Mod(A) = ∅, otherwise the operators are de�ned as follows
[18]:

Mod(A ∗D K) = {w ∈ Mod(K) : ∃w′ ∈ Mod(A), |w4 w′| = dist(A,K)},
Mod(A ∗S K) = {w ∈ Mod(K) : ∃w′ ∈ Mod(A), w4 w′ ∈ di�(A,K)},
Mod(A ∗W K) = {w ∈ Mod(K) : ∃w′ ∈ Mod(T ), w4 w′ ⊆

⋃
di�(A,K)},

Mod(A ∗B K) = Mod(A ∧K), if A ∧K is satis�able, otherwise
Mod(A ∗B K) =

⋃
w∈Mod(A){w′ ∈ Mod(K) : w4 w′ ∈ p_di�(w,K)}.

Only Dalal's operator satis�es all (R1)�(R6), Satoh's and Borgida's operators
satisfy (R1)�(R5), Weber's operator satis�es (R1)�(R4).

The operators de�ne rules to produce the new set of models, but they do not
de�ne the outcome of the addition as a formula. A formula A′ may be the result
of the revision A ∗K, if Mod(A′) = Mod(A ∗K).

6 Experiments on Accommodative Revision

We shall next experiment. Let us start by considering the classic, simple example
of a dinosaur and a vase given by Fermé and Hansson [12].

Example 1 (�Dinosaur broke grandma's vase!�).
On your return home, your son tells you that a dinosaur has broken grand-

mother's vase in the living room. Assuming that you know that dinosaurs do not
exist this claim cannot be entirely correct, but you may still want to accept as
true that the vase has been broken.5 We can formalize the example as follows:

a grandma's vase is intact,
b grandma's vase is in the living room,
c a dinosaur broke grandma's vase,
d dinosaurs exist.

What you know is ¬d ∧ (¬d → ¬c). Assume that you have come to believe
(independently) that a and that b. This means that we have four epistemically
possible worlds with both c and d false in each. The most plausible one is the
world in which a and b are true. Thus prior to the revision the epistemic state is

5 In fact, the world changes in this example so it might be more appropriate to do a
belief update rather than a revision, but we will ignore this now since the example
has often been used to illustrate non-prioritized revision.



world a b c d rank
w12 1 1 0 0 0
w4 0 1 0 0 1
w8 1 0 0 0 1
w0 0 0 0 0 2

Your son then tells you that b ∧ c ∧ ¬a. Revising this with a formula K
representing your knowledge, ¬c ∧ ¬d, gives as result A ∗K ≡ ¬a ∧ b ∧ ¬c ∧ ¬d.

Revision of beliefs with this formula makes the only world satisfying this for-
mula to become the most plausible one. As a result, you believe that grandma's
vase is broken in the living room but not that it was a dinosaur that broke it.

The execution of the example with our Haskell implementation con�rms the
result. The example is so simple that all the modi�cation operators we imple-
mented result in the same revised epistemic state:

world a b c d rank
w4 0 1 0 0 0
w12 1 1 0 0 1
w8 1 0 0 0 2
w0 0 0 0 0 3

As an example of a case where di�erent modi�cation functions give us dif-
ferent results, let us consider again the three-toed woodpecker example from the
introduction.

Example 2 (The three-toed woodpecker).
We formalize the situation as follows:

a Amy saw a bird,
b Amy saw a three-toed woodpecker,
c Amy saw a bird with a red forehead,
d Amy saw a bird with a red rump.

Initially the agent knows that a three-toed woodpecker neither has a red
forehead nor a red rump, and that if Amy saw a three-toed woodpecker or she
saw a bird with a red forehead or she saw a bird with a red rump outside
her window, then she saw a bird outside her window. Thus the agent has the
knowledge K ≡ (b → (¬c ∧ ¬d)) ∧ ((b ∨ c ∨ d) → a).

Amy then tells that a∧ b∧ c∧d. Now, the agent may have di�erent results of
the modi�cation of the input depending on which modi�cation function is used:

(a ∧ b ∧ c ∧ d) ∗D K ≡ (a ∧ ¬b ∧ c ∧ d),
(a ∧ b ∧ c ∧ d) ∗S K ≡ (a ∧ ¬b ∧ c ∧ d) ∨ (a ∧ b ∧ ¬c ∧ ¬d),
(a ∧ b ∧ c ∧ d) ∗B K ≡ (a ∧ ¬b ∧ c ∧ d) ∨ (a ∧ b ∧ ¬c ∧ ¬d),
(a ∧ b ∧ c ∧ d) ∗W K≡ (a ∧ ¬b) ∨ (a ∧ b ∧ ¬c ∧ ¬d).

Here Dalal's operator gave the result (1) mentioned in the example in Sect. 1,
Satoh's and Borgida's operators gave the result (2), and Weber's operator gave
the result (3).

However, had Amy told that b∧ c∧ d, the results would have been di�erent:



(b ∧ c ∧ d) ∗D K ≡ (a ∧ ¬b ∧ c ∧ d),
(b ∧ c ∧ d) ∗S K ≡ (a ∧ ¬b ∧ c ∧ d) ∨ (a ∧ b ∧ ¬c ∧ ¬d),
(b ∧ c ∧ d) ∗B K ≡ (a ∧ ¬b ∧ c ∧ d) ∨ (a ∧ b ∧ ¬c ∧ ¬d) ∨ (¬a ∧ ¬b ∧ ¬c ∧ ¬d)
(b ∧ c ∧ d) ∗W K≡ K.

Here Dalal's and Satoh's operators still give charitable results, but Borgida's
and Weber's operators do not.

In general, the more permissive is the revision operator, the less information
is left to be obtained from the modi�ed input (but the less likely it is that the
agent has ruled out the actual state of a�airs). Also the combination of pointwise
revision and incomplete input is likely to give uncharitable results.

7 Conclusion

To illustrate the e�ect of knowledge on belief revision, we have presented a non-
prioritized belief revision method that we call accommodative revision. In this
method, the input is �rst revised with the knowledge of the agent. Beliefs are
then revised with the resulting modi�ed input. The properties of the method
have been studied, a prototype implementation has been described, and some
experiments have been analyzed.

The two components of accommodative revision can be chosen separately.
The method does not call for any particular representation of epistemic states
nor any principles on the components of accommodative revision other than the
basic AGM-postulates. Accommodative revision is not meant to be the only way
for an agent to update its epistemic state. Rather, it is to provide the agent with
a set of tools to build convenient new belief-change operators to go with the old
ones.
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