
Lecture 12: Recapitulation 25.2.2010

Comp. Org II, Spring 2010 1

Recapitulation
(Kertaus)

Lecture 12

Course Structure

Week 1
Overview (Ch 1 – 8)

Bus (Ch 3)

Self-study: Digital logic

Week 2
Memory, cache (Ch 4,  5)

Virtual memory(Ch 8.3-

8.6)

Week 3
Computer arithmetics (Ch

9)

Instruction set (Ch 10, 11)

Week 4
CPU struc.& func. (Ch 12)

RISC-architecture (Ch 13)

Week 5
Instruction-level parallelism,

superscalar processor (Ch

14)

Control Unit (Ch 15-16)

Week 6
Parallel Processing &

Multicore (Ch 17-18)

Recapitulation

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 2

Exam Wed 3.3. at 16.00 in auditorium A111

2,5 hours – three or four questions

You can write on all answers on the same paper using
pencil or pen

There is no need for a calculator, but a simple one is
allowed

If there is math needed, you can just write the formula and you

do not need to write the result number without a calculator

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 3

For the exam

Go through the exercises
Read the book and lecture slides

If there is nothing on the slides about the subsection, then

there very probably is not a question in the exam

The review questions in the slides are good hints!

You can look for the collection of questions from the 2006
course. Teemu Kerola has collected several years of
questions there

Direct link to the collection

http://www.cs.helsinki.fi/u/kerola/tikra/kokeet/

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 4

Lecture 1: Part 1 Overview  (Ch 1-2 + 1-8)
and Chapter 20 Digital logic

Overview
No questions focusing only on this, but the content may be

needed to understand future Chapters

Chapter 7 I/O   (7.1. – 7.5)
MUST KNOW: memory mapped I/O, interrupt-driven I/O, DMA

(covered in earlier course, but still valid)

Digital logic
Boolean algebra, gates and flip-flops

No optimization, no Carnaugh maps

MUST KNOW:

- from Boolean tables to gates

- Flip-flops and basic circuits basic functionality

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 5

7th ed, 2006:
Appendix B:
Digital logic

I/O controller and memory-mapped I/O

Device driver (ajuri) controls the device via controller’s registers

Driver refers to  these registers as regular memory locations
Common memory references, like in load/store -instructions
Controller (ohjain) detects its own memory addresses on the bus
Device controller ~ ‘intelligent’ memory location

Sy
st

em
 B

us

Ex
te

rn
al

 D
ev

ic
es

(Sta06 Fig 7.3)

25.2.2010 6Computer Organization II, Spring 2010, Tiina Niklander



Lecture 12: Recapitulation 25.2.2010

Comp. Org II, Spring 2010 2

User mode, kernel mode

User mode, normal mode kernel mode, privileged mode
Interrupt or special SVC instructions (service request)

Interrupt handler checks the right for mode change

Kernel mode User mode
Privileged instuction, for example IRET (return from interrupt)

Returns the cotnrol and mode as they were before the mode

change

- Very similar with return from a subroutine

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 7

user kernel

SVC, INT

IRET

Describing the Circuit

CABBCACBAF
Boolean equations

Truth table

(Sta06 Table 20.3)

<------------- inputs  ----------->   <- output ->

25.2.2010 8Computer Organization II, Spring 2010, Tiina Niklander

Sta06 Fig 20.4

Sta06 Fig 20.5

Sum of products

Product of sums

Clocked Flip-Flops

State change can happen only
when clock is 1

more control on state changes

Clocked S-R Flip-Flop
J-K Flip-Flop

Toggle Q when J=K=1

D Flip-Flop
only one input D

- D = 1 and CLOCK write  1

- D = 0 and CLOCK write 0

(Sta06 Fig B.26)

25.2.2010 9Computer Organization II, Spring 2009, Tiina Niklander

Lecture 2: Bus,  Chapter 3

Sections 3.1 – 3.3  part of lecture 1
Needed to understand the other sections

MUST KNOW: Instruction cycle, interrupts

Sections 3.4 and 3.5: Bus and PCI
MUST KNOW: terms like speed, width, timing,  signaling,

arbitration

MUST KNOW: PCI read, PCI write sequences

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 10

Bus characteristics

Width
~ 50 – 100 lines (johdinta) – mother board, cable, connectors

Bus type
Dedicated, non-multiplexed (dedikoitu)

- Address and data – separate lines
Time multiplexed (aikavuoroteltu)

- Address and data share lines
- Address valid / data valid -line

Arbitration (käyttövuoron varaus)
Centralized

- One bus controller, arbiter (väyläohjain)
Distributed

- Controllers have necessary logic

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 11

(Sta06 Fig 3.17)

Bus characteristics

Timing (ajoitus, tahdistus)
Synchronous (tahdistettu)

- Regular clock cycle (kellopulssi) – sequence of 0s and 1s

Asynchronous

- Separate signals when needed

Shared traffic rules

everyone knows what is going to happen next

Efficiency (tehokkuus)
Bandwidth (kaistanleveys)

- How many bits per second

25.2.2010 12Computer Organization II, Spring 2010, Tiina Niklander



Lecture 12: Recapitulation 25.2.2010

Comp. Org II, Spring 2010 3

Bus arbitration : A and B want bus

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 13

(Sta06 Fig 3.25)

PCI Memory Read

(Sta06 Fig 3.23)
25.2.2010 14Computer Organization II, Spring 2010, Tiina Niklander

Packet-switched PCI Express  (PCIe, PCI-E)

PCI bus is too slow for some devices
Replaces PCI bus (and possibly other I/O-bus)

Already available on new computers

Hub on motherboard acting as a crossbar switch (kytkin)
Based on point-to-point connections (kaksipisteyhteys)

Full-dublex, one lane has two lines (one send, one receive)

One device can used one or more (2,4,8,16,32) lanes

Data stream (serial transfer)
Small packets (header + payload), bits in sequence

No reservation, no control signals.
Each device may send at any time, when it wishes

Packet header contains the control information (like target)

Data rate on one lane 250MB/s   (future 3rd gen: 1GB/s)
25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 15

Lecture 3: Cache and memory , Chapters 4 & 5

Cache
MUST KNOW: all content, like cache organization, cache

usage, access, write policies,

Mapping: Direct mapping, fully-associative, set-associative

Memory
The most interesting part of memory section, 5.2. error

correction, is NOT part of the course.

Not that important chapter

Chapter 6 external memory - skip

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 16

Principle of locality

In any given time period memory references occur only to a
small subset of the whole address space
Temporal locality (ajallinen)

it is likely that a data item referenced a short time ago will be

referenced again soon

Spatial locality (alueellinen)
it is likely that a data items close to the one referenced a short

time ago will be referenced soon

345 23 71 8 305 63 91 2MEM:

25.2.2010 17Computer Organization II, Spring 2010, Tiina Niklander

Cache Design

Cache Size & Line Size
Many blocks help for temporal locality

Large blocks help for spatial locality

Larger cache is slower

Multi-level cache (Sta09Table 4.3)

Typical sizes:

L1: 8 KB - 64 KB

L2: 256 KB - 8 MB

L3: 2 MB - 48 MB

25.2.2010 18Computer Organization II, Spring 2010, Tiina Niklander



Lecture 12: Recapitulation 25.2.2010

Comp. Org II, Spring 2010 4

Direct Mapping
Each block has only one possible location (line) in cache

determined by index field bits

Several blocks may map into same cache line
identified with tag field bits

tag index byte
offset

21 5

34 bit address
(byte address) Cache line size ~

Block size
= 25 = 32 B

Fixed location in cache
fixed cache size

= 28 = 256 blocks = 8 KB

Unique bits that
are different for
each block,
Stored into cache line

8

Sta06 Fig 4.7
PaHe98 Fig 7.10

Block number (in memory)

0x2480
0x6480
0xA480

25.2.2010 19Computer Organization II, Spring 2010, Tiina Niklander

Sta09 Fig 4.8

Fully Associative Mapping (6)

Each block can be in any cache line
tag must be complete block number

tag offset
29 5

34 bit address
(byte address)

Block size
= 25 = 32 B

Each block can be anywhere
Cache size can be any number
of blocks

Unique bits that
are different for
each block

Block number (in memory)

Sta06 Fig 4.9

Offset from the beginning
of the block (in bytes)

Al
ph

a 
AX

P 
us

es
 3

4 
bi

t
m

em
or

y 
ad

dr
es

se
s

25.2.2010 20Computer Organization II, Spring 2010, Tiina Niklander

Set Associative Mapping

With set size k=2, each cache entry contain 2 blocks
Use set (set index) field to find the cache entry

Use tag to determine if the block belongs to the set

Use offset to find the proper byte in the block

tag set offset
22 7 5

34 bit address
(byte address)

Block size
= 25 = 32 B

Nr of sets = v = 27 = 128 blocks = 4 KBUnique bits that are
different for each block,
stored with block Total cache size = k*v = 2*4 KB = 8 KB

(without tag bits!)

25.2.2010 21Computer Organization II, Spring 2010, Tiina Niklander

Cache Write Policy – memory writes?

Write through (läpikirjoittava)
Each write goes always to cache and memory
Each write is a cache miss!

Write back (lopuksi/takaisin kirjoittava)
Each write goes only to cache
Write cache block back to memory

only when it is replaced in cache
Memory may have stale (old) data
cache coherence problem (eheys, yhdenmukaisuus, yhtäpitävyys)

Write once (”vain kerran kirjoittava?”)
Write-invalidate Snoopy-cache coherence protocol for
multiprocessors
Write invalidates data in other caches
Write to memory at replacement time, or when some other cache
needs it (has read/write miss)

Coherence
problems:

- More users of
the same data:
memory valid?
cache  valid?

- multiple
processors
with own
caches

A bit set

25.2.2010 22Computer Organization II, Spring 2010, Tiina Niklander

Lecture 4 Memory management,
Chapters 8.3 – 8.6

Memory management
MUST KNOW: virtual memory organization, page table,

address translation, TLB, hierarchical page table like Pentium

and ARM,  combining paging, TLB and cache

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 23

7th ed, 2006:
8.4 PowerPC
(instead of ARM)

Virtual Memory: Paging (sivutus)

(Sta06 Fig 8.15)

Load A

OS loads
process A
from disk

Program:
pages

Memory:
frames

Process A
in main
memory

25.2.2010 24Computer Organization II, Spring 2010, Tiina Niklander



Lecture 12: Recapitulation 25.2.2010

Comp. Org II, Spring 2010 5

TLB and cache

(Sta06 Fig 8.19)

Page table entry can be
found from cache!

25.2.2010 25Computer Organization II, Spring 2010, Tiina Niklander

Hierarchical page table (monitasoinen sivutaulu)

Several systems allow large virtual address space
Page table split to pages, some of it on the disk

Top level of page table fits to one page, always in memory

(Sta05 - OS
Fig 8.4)

1K * 1K = 1M items

32b osoite
1 K items (= 1024 = 210)

= Page Dir 10 10 12

25.2.2010 26Computer Organization II, Spring 2010, Tiina Niklander

Pentium: Address translation

(Sta06 Fig 8.21)
• If Paging=Enabled, use page tables

else linear address = physical address (OS, f.ex. Devide drivers?)
• Control registers (see further in the course book)

16 32

10 10 12

base

25.2.2010 27Computer Organization II, Spring 2010, Tiina Niklander

ARM Virtual Memory Address Translation for
Small Pages - Diagram

Single L1 page table
4K 32-bit entries

Each L1 entry points to

L2 page table

Each L2 page table
256 32-bit entries

Each L2 entry points to

4-KB page in main

memory

32-bit virtual address
12 bit - L1

8 bit - L2

12 bit  - offset
(Sta09 Fig 8.23)

(=page index)
25.2.2010 28Computer Organization II, Spring 2010, Tiina Niklander

Lecture 5: Computer arithmetic, Chapter 9

Integer representation
MUST KNOW: sign-magnitude and twos complement, how to

convert for different bit length

Integer arithmetic
MUST KNOW: add, subtract, multiply,divide, Booth algorithm

Floating-point representation
MUST KNOW: IEEE Standard,

Floating-point arithmetic
MUST KNOW: over and under flow, general principles for

calculations with floating points (not a detailed algorithm)

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 29

Twos complement

1: invert all bits
2: add 1
3: Special cases

Ignore carry bit (ylivuotobitti)

Sign really changed?

- Cannot negate smallest negative

- Result in exception

Simple hardware

Easy to expand.  As a 16-bit sequence

-57 = 1100 0111
0011 1000

1
0011 1001

= 57

-128 = 1000 0000
0111 1111

1
1000 0000

25.2.2010 30Computer Organization II, Spring 2010, Tiina Niklander

57 = 0011 1001 = 0000 0000 0011 1001
-57 = 1100 0111 = 1111 1111 1100 0111

sign
extension



Lecture 12: Recapitulation 25.2.2010

Comp. Org II, Spring 2010 6

Booth’s algorithm
(Sta06 Fig 9.12)

Arithmetic Shift Right:
= fill with sign

1000 1000

1100 0100

Why does it work?
M*(01111111) = 27 - 1
M*(00011110) = 25 -2 1

M*(01111010) = 27 -23+22-2 1

Current bit
is the first of
block of 1’s Previous bit

was the last
of block of 1’s

Continuing block of 1’s

Continuing block of 0’s

Sign bit extending

25.2.2010 31Computer Organization II, Spring 2010, Tiina Niklander

Floating Point Representation

Significant digits (Merkitsevät numerot) and exponent (suuruusluokka)

Normalized number (Normeerattu muoto)
Most significant digit is nonzero >0
Commonly just one digit before the radix point (desim. pilkku)

-0.000 000 000 123 = -1.23 * 10-10

0.123 = +1.23 * 10-1

123.0 = +1.23 * 102

123 000 000 000 000 = +1.23  * 1014

or mantissa

25.2.2010 32Computer Organization II, Spring 2010, Tiina Niklander

Accuracy (tarkkuus) (32b)

Value range (arvoalue)
8 b exponent 2-126 ... 2127 ~  -10-38 ... 1038

Not exact value
24 b mantissa 224 ~ 1.7 * 10-7 ~ 6 decimals

Balancing between range and precision

Numerical errors: Patriot Missile (1991), Ariane 5 (1996)
http://ta.twi.tudelft.nl/nw/users/vuik/wi211/disasters.html

25.2.2010 33Computer Organization II, Spring 2010, Tiina Niklander

Floating point arithmetics

(Sta06 Table 9.5)

25.2.2010 34Computer Organization II, Spring 2010, Tiina Niklander

Lecture 6: Instruction sets, Chapters 10 & 11

MUST KNOW: everything about the instruction structure,
representation, data types, addressing, instruction formats,
also Pentium and ARM
Specific instruction functionalities covered in earlier course.
You need to know enough to be able to handle example
’programs’ as in the exercises.

So no need to memorize specific instruction types and their

mnemonic representations!

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 35

7th ed, 2006: PowerPC instead of ARM
You may need to read the IA-64 Predication
from 15.3 for the conditional execution of
instructions

Addressing modes

EA = Effective Address
(A) = content of memory location A
(R) = content of register  R
One register for the top-most stack item’s address
Register (or two) for the top stack item (or two)

(Sta06 Table 11.1)

Operand = (R)

25.2.2010 36Computer Organization II, Spring 2010, Tiina Niklander



Lecture 12: Recapitulation 25.2.2010

Comp. Org II, Spring 2010 7

Pentium: Addressing modes (osoitustavat)

(Sta06 Table 11.2)

1, 2, 4, 8B

Registers:
1, 2, 4, 8B

Operand = (R)

x86 Addressing

For indexing arrays
For arrays in stack or for
two dimensional arrays

different
element size

25.2.2010 37Computer Organization II, Spring 2010, Tiina Niklander

ARM
Addressing
modes

Load/Store
Indirect

base reg + offset
Indexing
alternatives

Offset
- Address is

base + offset
Preindex

- Form address
- Write address

to base
Postindex

- Use base as
address

- Calculate new
address to
base

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 38

Pentium: Instruction format

Addressing

1. Operand
(register)

2. operand (register)
or form part of the addressing-mode

25.2.2010 39Computer Organization II, Spring 2010, Tiina Niklander

(Sta09 Fig 11.9)

(Sta06 Fig 11.8)

ARM Instruction Formats

S = For data processing instructions, updates condition codes
S = For load/store multiple instructions, execution restricted to supervisor mode
P, U, W = distinguish between different types of addressing mode
B = Unsigned byte (B==1) or word (B==0) access
L = For load/store instructions, Load (L==1) or Store (L==0)
L = For branch instructions, is return address stored in link register

Lecture 7&8: Cpu structure and function,
Chapter 12

MUST KNOW:  Everything, but not the tiny details of
processors.

Most important issues:
Instruction cycle details

Hazards, dependencies

Branching and pipelines

Register organization (different register types)

Typical program status word (PSW)

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 41

7th ed, 2006:
12.6 PowerPC
(instead of ARM)

Instruction cycle (käskysykli)

(Sta06 Fig 12.5)

Sta06 Fig 16.5

25.2.2010 42Computer Organization II, Spring 2010, Tiina Niklander



Lecture 12: Recapitulation 25.2.2010

Comp. Org II, Spring 2010 8

Instruction fetch (käskyn nouto)

MAR PC
MAR MMU(MAR)
Control Bus Reserve
Control Bus Read
PC ALU(PC+1)
MBR MEM[MAR]
Control Bus Release
IR MBR

(Sta06 Fig 12.6)

Cache (välimuisti)!
Prefetch (ennaltanouto)!

25.2.2010 43Computer Organization II, Spring 2010, Tiina Niklander

Operand fetch, Indirect addressing
(Operandin nouto, epäsuora osoitus)

(Sta06 Fig 12.7)

MAR Address
MAR MMU(MAR)
Control Bus Reserve
Control Bus Read
MBR MEM[MAR]

MAR MBR
MAR MMU(MAR)
Control Bus Read
MBR MEM[MAR]
Control Bus Release

ALU? Regs? MBR

Cache!

25.2.2010 44Computer Organization II, Spring 2010, Tiina Niklander

Data flow, interrupt cycle

(Sta06 Fig 12.8)

MAR SP
MAR MMU(MAR)
Control Bus Reserve
MBR PC
Control Bus Write
MAR SP ALU(SP+1)
MAR MMU(MAR)
MBR PSW
Control Bus Write
SP ALU(SP+1)
PSW privileged & disable
MAR Interrupt number
Control Bus Read
PC MBR MEM[MAR]
Control Bus Release

SP = Stack Pointer

No address translation!

25.2.2010 45Computer Organization II, Spring 2010, Tiina Niklander

Problems,  design issues

Structural dependency (rakenteellinen riippuvuus)
Several stages may need the same HW

Memory: FI, FO, WO

ALU: CO, EI

Control dependency (kontrolliriippuvuus)
Jump destination of conditional branch

known only after EI-stage

Prefetched wrong instructions

Data dependency (datariippuvuus)
Instruction needs the result of the

previous non-finished instruction

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 46

STORE R1,VarX
ADD      R2,R3,VarY
MUL    R3,R4,R5

MUL   R1,R2,R3
LOAD R6, Arr(R1)

ADD R1,R7, R9
Jump      There
ADD      R2,R3,R4
MUL    R1,R4,R5

Data dependency

Read after Write (RAW)   (a.k.a true or flow dependency)
Occurs if succeeding read takes place before the preceeding

write operation is complete

Write after Read (WAR)   (a.k.a antidependency)
Occurs if the succeeding write operation completes before the

preceeding read operation takes place

Write after Write (WAW) (a.k.a output dependency)
Occurs when the two write operations take place in the

reversed order of the intended sequence

The WAR and WAW are possible only in architectures
where the instructions can finish in different order

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 47

Dealing with branches

Delayed branch
Multiple instruction streams

Speculative execution

Prefetch branch target
Loop buffer
Branch prediction

Static: always taken vs. never taken

Dynamic: based on Branch History Table

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 48



Lecture 12: Recapitulation 25.2.2010

Comp. Org II, Spring 2010 9

Lecture 8: RISC, Chapter 13

MUST KNOW: Everything, but 13.6 MIPS, from 13.7 Sparc
only the register set is needed

RISC vs CISC
Load/Store architecture
RISC pipelining
Register windows, register optimization

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 49

Register storage (Register file)

More registers than addressable in the instruction
E.g. SPARC has just 5 bits for register number 0.. 31,

but the processor has 40 to 540 registers

Small subset of registers available for each instruction in
register window

In the window references to register r0-r31

CPU maps them to actual (true) registers r0-r539

(Sta06 Fig 13.3)

Current
Window
Pointer

25.2.2010 50Computer Organization II, Spring 2010, Tiina Niklander

RISC-pipeline, Delayed Branch

(Sta06 Fig 13.7)

Traditional

RISC with inserted NOOP

Two port MEM

RISC with reversed instructions

Cond. branch (ehdollinen hyppy):

JZERO 105, rA  ??

25.2.2010 51Computer Organization II, Spring 2010, Tiina Niklander

Lecture 9: Superscalar, Chapter 14

MUST KNOW: Everything, but the tiny details of the
processors

In-order / out-of-order   issue / complete
Instruction selection window
Register renaming

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 52

7th ed, 2006:
14.4 PowerPC
(instead of ARM)

Superscalar execution

(Sta09 Fig 14.6)

in-order issue vs.
out-of-order issue

in-order complete vs.
out-of-order completeissue ~ laukaisu, liikkeellelaskeminen

dispatch ~ vuorottaminen, lähettää suorittamaan

”check in”

”departure”

(no wait) (wait?)

(wait?)

(wait?)

Instruction window

valintaikkuna

25.2.2010 53Computer Organization II, Spring 2010, Tiina Niklander

Register renaming
(rekistereiden uudelleennimeäminen)

One cause for some of the dependencies is the usage of
names

The same name could be used for
several independent elements
Thus, instructions have unneeded
write and antidependencies
Causing unnecessary waits

Solution: Register renaming
Hardware must have more registers (than visible to the
programmer and compiler)
Hardware allocates new real registers during execution
in order to avoid name-based dependencies (nimiriippuvuus)

Need
More internal registers (register files, register set),

e.g. Pentium II has 40 working registers
Hardware that is cabable of allocating and managing registers
and performing the needed mapping

R3 R3 + R5
R4 R3 + 1
R3 R5 + 1
R7 R3 + R4

25.2.2010 54Computer Organization II, Spring 2010, Tiina Niklander



Lecture 12: Recapitulation 25.2.2010

Comp. Org II, Spring 2010 10

Pentium 4

(Sta09 Fig 14.7)

25.2.2010 55Computer Organization II, Spring 2010, Tiina Niklander

ARM
Cortex-
A8
Block
Diagram

25.2.2010 56Computer Organization II, Spring 2010, Tiina Niklander

Lecture 10: Control-Unit, Chapters 15 & 16

Chapter 15 Everything but the tiny details of processors
Chapter 16: 16.1 – 16.3

Micro-operation sequences in different phases of the
execution cycle
Control signals

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 57

7th ed, 2006:
Chapters 16 & 17.1 -17.3

Instruction cycle flow chart (as state-machine?)

ICC: Instruction Cycle Code register ’s state

(Sta09 Fig 15.3)

58Computer Organization II, Spring 2010, Tiina Niklander 25.2.2010
(Sta06 Fig 16.3)

Control signals and micro-operations

(Sta09 Table 15.1)

Sta06 Fig 16.5
??

??

59Computer Organization II, Spring 2010, Tiina Niklander 25.2.2010

Sta09 Fig 15.5

(Sta06 Table 16.1)

Vertical vs.
Horizontal
Microcode (3)

(Sta09 Fig 16.12)

Next microinstruction
address (CAR = CSAR)
Assumption: CAR=CAR+1

(by resource)

60Computer Organization II, Spring 2010, Tiina Niklander 25.2.2010

(Sta06 Fig 17.12)



Lecture 12: Recapitulation 25.2.2010

Comp. Org II, Spring 2010 11

Next microinstruction?

Selection normally based on flags

Explicit: both addresses in the instruction
Implicit: sequencially to next, bu ’jump target’ in instruction
Variable format; sepate jump instructions use the bits for
address, signal instruction use the same bits for signals
Address generation during execution:

Address combined directly from op-code and flags

Subroutines and residual control: possibility to store one
return address

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 61

Lecture 11: Parallel processing and multicore
Chapters 17 & 18

Chapters 17.1. – 17.6. in exam
Chapter 18.3. multicore organization might be in exam

Most important: cache coherence and MESI

Other issues: SMP, NUMA and Clusters

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 62

7th ed, 2006: Chapter 18 Parallel Processing,
Multicore organization not in the book

Example exam questions

Available from 2006 course page:

http://www.cs.helsinki.fi/u/kerola/tikra/kokeet/

Page contains earlier exams, but a lot of them are only in
Finnish because very few international students at that
time.

Kk is a course exam, ek separate exam,
If the name has e or en in the end, the questions are in
English

25.2.2010Computer Organization II, Spring 2010, Tiina Niklander 63

Borkar, Dubey, Kahn, et al. “Platform 2015.” Intel White Paper, 2005. (click)

(hyper-
threads)

http://download.intel.com/technology/computing/archinnov/platform2015/download/Platform_2015.pdf

64Computer Organization II, Spring 2010, Tiina Niklander 25.2.2010

-- The End --

http://researchweb.watson.ibm.com/journal/rd/494/kahle2.gif

STI Cell Power
processor element
(a) major units
and
(b) pipeline

65Computer Organization II, Spring 2010, Tiina Niklander 25.2.2010


