

Course Structure

Week 1
Overview (Ch 1 - 8)
Bus (Ch 3)
Self-study: Digital logic
Week 2

Memory, cache (Ch 4, 5)
Virtual memory(Ch 8.3-
8.6)

Week 3
Computer arithmetics (Ch
9)
Instruction set (Ch 10, 11)

Computer Organization Il, Spring 2010, Tiina Niklander

Week 4
CPU struc.& func. (Ch 12)
RISC-architecture (Ch 13)
Week 5
Instruction-level parallelism,
superscalar processor (Ch
14)
Control Unit (Ch 15-16)
Week 6
Parallel Processing &
Multicore (Ch 17-18)
Recapitulation

25.2.2010 2

Exam Wed 3.3. at 16.00 in auditorium Al111l

2,5 hours — three or four questions

You can write on all answers on the same paper using
pencil or pen

There is no need for a calculator, but a simple one is
allowed
If there is math needed, you can just write the formula and you
do not need to write the result number without a calculator

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010

3

For the exam

Go through the exercises

Read the book and lecture slides
If there is nothing on the slides about the subsection, then
there very probably is not a question in the exam

The review gquestions in the slides are good hints!

You can look for the collection of questions from the 2006
course. Teemu Kerola has collected several years of
guestions there
Direct link to the collection
http://www.cs.helsinki.fi/u/kerola/tikra/kokeet/

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010

7th ed, 2006:
Appendix B:
Digital logic

Lecture 1: Part 1 Overview (Ch 1-2 + 1-8)
and Chapter 20 Digital logic

Overview
No questions focusing only on this, but the content may be
needed to understand future Chapters
Chapter 71/10 (7.1. - 7.5)
MUST KNOW: memory mapped I/O, interrupt-driven /0, DMA
(covered in earlier course, but still valid)
Digital logic
Boolean algebra, gates and flip-flops
No optimization, no Carnaugh maps
MUST KNOW:
from Boolean tables to gates
Flip-flops and basic circuits basic functionality

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010

Data
Lines

System Bus

Control
Lines

Device driver (ajuri) controls the device via controller’s registers

Driver refers to these registers as regular memory locations
Common memory references, like in load/store -instructions
Controller (ohjain) detects its own memory addresses on the bus
Device controller ~ ‘intelligent’ memory location

+{

L

e

=

Data Registers

B

Status/Control Registers

External
Device
Interface

/O controller and memory-mapped 1/0O

<

Logic
A4
External
UU'_ Device
Logic Interface
Logie

V

Computer Organization Il, Spring 2010, Tiina Niklander

P Data
] (7p)]
Status Peb]
=
p Control >
(b]
QO
©
cC
-
P Data 8
x
Status L
p Control

25.2.2010

‘_ User mode, kernel mode
SVC, INT

Cuser Y s Ckernel D
~IRET S

User mode, normal mode — kernel mode, privileged mode

Interrupt or special SVC instructions (service request)
Interrupt handler checks the right for mode change

Kernel mode — User mode
Privileged instuction, for example IRET (return from interrupt)
Returns the cotnrol and mode as they were before the mode
change

Very similar with return from a subroutine

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 7

Sum of products

‘.‘ Describing the Circuit . Sta06 Fig 20.4]
- FaEAE:

Boolean equations

R
F = ABC + ABC + ABC -
.
R
Truth table —)
_____________ inputs ---—---———- - output -
: 5 '"Z” ® - e qu : Product of sums
0 0 0 0
0 0 1 0 A
0 1 0 1 %33—
0 1 1 1 _
1 0 0 0 ===l
1 0 1 0 f
1 1 0 1 ==
1 1 1 0
(Sta06 Table 20.3) =

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 8

‘ Clocked Flip-Flops

< : Characteristic
Name Graphic Symbol Table
—S) e 5 R Qi
0 0 QH
S-R —Ck 0 1 0
1 0 1
R 6 1 1 -
—] Q —— J K Qo
U U Q?l
JK —Ck 0o 1| o0
1 0 1
— K (_2 I 1 1 Q:r
N Q p—— D 5 1
0
D —t> Ck 1 1
—— Q I

Computer Organization Il, Spring 2009, Tiina Niklander

Clock —¢

State change can happen only
when clock is 1
more control on state changes
Clocked S-R Flip-Flop
J-K Flip-Flop
Toggle Q when J=K=1
D Flip-Flop
only one input D
D=1and CLOCK = write 1
D =0 and CLOCK = write O

25.2.2010

o

9

Lecture 2: Bus, Chapter 3

Sections 3.1 — 3.3 part of lecture 1
Needed to understand the other sections
MUST KNOW: Instruction cycle, interrupts

Sections 3.4 and 3.5: Bus and PCI
MUST KNOW: terms like speed, width, timing, signaling,
arbitration
MUST KNOW: PCI read, PCI write sequences

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010

10

‘ Bus characteristics

Width
~ 50 — 100 lines (johdinta) — mother board, cable, connectors
Bus type
Dedicated, non-multiplexed (dedikoitu)
Address and data — separate lines

Bus

Time multiplexed (aikavuoroteltu)
Address and data share lines

Memory

Address valid / data valid -line
Arbitration (kayttdvuoron varaus)
Centralized
One bus controller, arbiter (vaylaohjain)
Distributed
Controllers have necessary logic

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 11

Bus characteristics

Timing (ajoitus, tahdistus)
Synchronous (tahdistettu)
Regular clock cycle (kellopulssi) — sequence of Os and 1s
Asynchronous
Separate signals when needed
Shared traffic rules
everyone knows what is going to happen next
Efficiency (tehokkuus)
Bandwidth (kaistanleveys)
How many bits per second

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010

12

Bus arbitration : A and B want bus

i 3 3 El 5 6 7
| | | | | 1 1
REACH-A [[[[1 1
| | | | | 1 1
—|—@ I I I I i i
REQ#-B 1 1 1 — I I
I I I I I | |
v T4 T
1 1 1 © I I | |
GNT#-B | I T I I L/ 1
I I I I I | |
i i Q‘ I 9 i } %3 1 3
FRAME# I . I I .
I I I I I | |
i | | | | | | |
IRDY# . . . “ / : : L 7
I I I I I | |
TRDY# I 1 (A L/ 1 N 1 S
I I I I I | |
1 1 1 1 1 1 1
AD 1 1 { Address x Data } I { Address x Data }

- aocess- A ——————— e - —access-E—————-

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 13

A _PCIl Memory Read

ak X NSNS
2

1 3 4 5 6 7 8 F”:
I I I I I I -
I I I I I @ I GI
I &h I I I I I I
(h ' ' ' ' —
ty DATA-1 | X DATA-2 X DATA3 }_UI
I I (& | I I I I

Q
==
=
2k
=
7
ol [
=
=]

Evie Enahle x Byie Enable x Byte Enable)— {E}I— -

| | | | | | | |
1 7y | | | | (;i | | |
IRDY# | L \ | 1 | A | ,!_F
E < E
I ! 4 7 A E 4 z !
TRDY# I L | | \—E | = i = |
= = =
| N | | 1 | 1 | 1 |
| I I | | | | | / I
DEVSEL# L‘:I \ - -
Address Phase [¥ata Phase Data Phase [ata Phase
Wait State Wait State Wait State
- Bus Transaction

-

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 14

- Packet-switched PCI Express (PCle, PCI-E)

PCI bus is too slow for some devices
Replaces PCI bus (and possibly other 1/O-bus)
Already available on new computers
Hub on motherboard acting as a crossbar switch (kytkin)
Based on point-to-point connections (kaksipisteyhteys)
Full-dublex, one lane has two lines (one send, one receive)
One device can used one or more (2,4,8,16,32) lanes
Data stream (serial transfer)
Small packets (header + payload), bits in sequence
No reservation, no control signals.
Each device may send at any time, when it wishes
Packet header contains the control information (like target)
Data rate on one lane 250MB/s (future 3rd gen: 1GB/s)

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 15

Lecture 3. Cache and memory , Chapters 4 & 5

Cache
MUST KNOW: all content, like cache organization, cache
usage, access, write policies,
Mapping: Direct mapping, fully-associative, set-associative

Memory
The most interesting part of memory section, 5.2. error
correction, is NOT part of the course.

Not that important chapter

Chapter 6 external memory - skip

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010

16

Principle of locality

In any given time period memory references occur only to a
small subset of the whole address space

Temporal locality (ajallinen)
it is likely that a data item referenced a short time ago will be

referenced again soon

Spatial locality (alueellinen)
it is likely that a data items ciuse to the one referenced a short

time ago will be referenced soon

MEM: [345|23]| 711 81305] 63 91| 2

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 17

Cache Design

Cache Size Write Policy
Mapping Function Write through
Direct Write back
Associative Write once
Set Associative Line Size
Replacement Algorithm Number of caches
Least recently used (LRU) Single or two level
First in first out (FIFO) Unified or split
Least frequently used (LFU)
Random

Cache Size & Line Size .
Typical sizes:

L1: 8 KB - 64 KB

L2: 256 KB - 8 MB
Larger cache is slower L3: 2 MB - 48 MB

Multi-level cache _

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 18

Many blocks help for temporal locality
Large blocks help for spatial locality

“ Direct Mapping

Each block has only one possible location (line) in cache
determined by index field bits

Several blocks may map into same cache line
identified with tag field bits 0x2480

0OxA480
: . : Dyte

21

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 19

Alpha AXP uses 34 bit
memory addresses

Computer Organization Il, Spring 2010, Tiina Niklander

Fully Associative Mapping (6)

Each block can be in any cache line
tag must be complete block number
Offset from the beginning

Block number (in memory) of the block (in bytes)
\ / Block size
34 bit address _25_35pR
(byte address) tag offset /
29 5
Unique bits that Each block can be anywhere
are different for Cache size can be any number
each block of blocks

25.2.2010

20

Set Associative Mapping

With set size k=2, each cache entry contain 2 blocks
Use set (set index) field to find the cache entry
Use tag to determine if the block belongs to the set

Use offset to find the proper byte in the block
Block size

-29-32B

34 bit address
(byte address) | 129 set |offset /
22 ! 5
Unique bits that are NI of sets = v = 27 198 blocks = 4 KB

different for each block,
stored with block

Total cache size = k*v = 2*4 KB = 8 KB
(without tag bits!)

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010

21

- ¢

Coherence
problems:

- More users of

the same data:

memory valid?
cache valid?

- multiple
processors
with own
caches

Cache Write Policy — memory writes?

Write through (lapikirjoittava)
Each write goes always to cache and memory
Each write is a cache miss!
Write back (lopuksi/takaisin kirjoittava)
Each write goes only to cache
Write cache block back to memory
only when it is replaced in cache
Memory may have stale (old) data
cache coherence problem (eheys, yndenmukaisuus, yhtapitavyys)
Write once ("vain kerran Kkirjoittava?”)
Write-invalidate Snoopy-cache coherence protocol for
multiprocessors
Write invalidates data in other caches
Write to memory at replacement time, or when some other cache
needs it (has read/write miss)

A bit set

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 22

Lecture 4 Memory management,
Chapters 8.3 — 8.6

Memory management
MUST KNOW: virtual memory organization, page table,
address translation, TLB, hierarchical page table like Pentium
and ARM, combining paging, TLB and cache

7th ed, 2006:
8.4 PowerPC
(instead of ARM)

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 23

‘ Virtual Memory: Paging (sivutus)

Process A

Page 0
Page 1
Page 2
Page 3

—

Free frame list
13
14
15
18
20

Computer Organization Il, Spring 2010, Tiina Niklander

oad A Main x

memory

Process A
Page 0

Free frame list

20

Process A
page table

18
13
14
15

Main
Memory

Page 1
of A

Page 2
of A

Page 3
of A

In
use

In
use

17

Page 0

18 of A

In
use

[0

19

25.2.2010

24

TLB Operation

‘ TLB and cache

Virtual Address

Page # | Offset

TLE miss |

Page table entry can be

Page Table

' found from cache!
TLB
TLB
hit Cache Operation
Real Address
J_,ela Y
— T i 1 Val
—>| ag| Remamder| Ciiiti a lf
e —
Miss]
""" Main
Memory
Value
o
25.2.2010

Computer Organization Il, Spring 2010, Tiina Niklander

25

‘ Hierarchical page table (monitasoinen sivutaulu)

4-kbyte root
page table
= Page Dir

4-Mbyte user
page table

4-Gbyte user
address space

Several systems allow large virtual address space

Page table split to pages, some of it on the disk

Top level of page table fits to one page, always in memory

1 K items (= 1024 = 210)

N

32b osoite

I Dir Page Offset I
10 10 12

1K * 1K = 1M items

Computer Organization Il, Spring 2010, Tiina Niklander

25.2.2010 26

‘ Pentium: Address translation

|
Logical Address

ISegme:m | Offset I

16 32

Linear Address

|
I |
o(;i-)—l—-[m|1=age|offset| | N
0] 10] 12 o
|

|
|
|
|
|
|
|
!
L ||
!
|
!
!
!
|
|
|

I
I
I |
| |
I |
I |
base | |
I |
Segment | > > — |
Table | |
I |
| Page PE.EE' |
| Directory Table | /—"'__’
) |) | Main Memeory
Segmentation Paging

(Sta06 Fig 8.21)
» I'f Paging=Enabled, use page tables

else linear address = physical address (OS, f.ex. Devide drivers?)
e Control registers (see further in the course book)

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 27

.

Single L1 page table
4K 32-bit entries
Each L1 entry points to
L2 page table

Each L2 page table
256 32-bit entries
Each L2 entry points to
4-KB page in main
memory

32-bit virtual address
12 bit- L1
8 bit- L2

Virtual address

31 19 11

0

L2 page
| e ‘inr exl index

4095

Level 1 (L1) page table

Y

L2 PT base addr |

o1

255

Level 2 (L2)
page table

Y

ARM Virtual Memory Address Translation for
Small Pages - Diagram

Main Memory

\.__/_\

page base addr|

ho

12 bit - offset (=page index)

Computer Organization Il, Spring 2010, Tiina Niklander

Y

25.2.2010

\——--—‘Y—---_J
Small page (4 KB)

28

N
-2 e
. N

by N

Lecture 5: Computer arithmetic, Chapter 9

Integer representation
MUST KNOW: sign-magnitude and twos complement, how to
convert for different bit length
Integer arithmetic
MUST KNOW: add, subtract, multiply,divide, Booth algorithm
Floating-point representation
MUST KNOW: IEEE Standard,
Floating-point arithmetic
MUST KNOW: over and under flow, general principles for
calculations with floating points (not a detailed algorithm)

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 29

. Twos complement

1: invert all bits -57 =1100 0111

2:add 1 0011 1000

3: Special cases 1

Ignore carry bit (ylivuotobitti) 0011 1001
=57

Sign really changed?
Cannot negate smallest negative

Result in exception T -128 = 1000 0000
Simple hardware 6111 1111

1
1000 0000

57 =0011 1001 = 0000 0000 0011 1001
-57=1100 0111 = 1117 11117 1100 0111 -

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 30

Easy to expand. As a 16-bit sequence

- Arithmetic Shift Right:

‘ : = fill with sign
. Booth’s algorithm
1000 1000
(Sta06 Fig 9.12) A
I 1100 0100
Current bit i
is the first of A=0,Q;<10 _ |
M =— Multiplicand _ _ _
block of 1's Q — Multiplier Plreviels it Sign bit extending
T was the last
of block of 1's

:l]l/

Continuing block of 1's

Continuing block of 0’s

Why does it work?
M*(01111111)=27-1
M*(00011110) = 2>-21
M*(01111010) = 27 -23+22-21

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 31

‘. Floating Point Representation

sign of
significand
44— 8 bits T 23 bits -
W biased exponent significand or mantissa

Significant digits (Merkitsevat numerot) and exponent (suuruusluokka)
Normalized number (Normeerattu muoto)

Most significant digit is nonzero >0

Commonly just one digit before the radix point (desim. pilkku)

Computer Organization I, Spring 2010, Tiina Niklander 25.2.2010 32

‘_“ Accuracy (tarkkuus) (32b)

Negative Positive
Underflow Underflow
Negative Expressible Negative Expressible Positive Positive
Overflow Numbers \ / Numbers Overflow

~A~N— A I AAN— A~ A
v | o/ ,,

_ (2= 223 2128 _3-127 0 5-127 (2 — 2723, 2128

A

Value range (arvoalue)

8 b exponent—»> 2126 2127 ~ 1038 1038
Not exact value

24 b mantissa - 2%~ 1.7 * 107 ~ 6 decimals

Balancing between range and precision

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 33

R 3

Floating point arithmetics

Floating Point Numbers

Arithmetic Operations

X = X, x BXE X+ = (X, x B ‘1+Y]><Bf
_}{E]KBE

Y-Y,xBE XY= (X, xBYe

XxY=(X,xY)xBE"E

XESYE_

¥ \¥
X=03x10>=30
Y=0.2 % 10* =200
X+Y=(03x1029+0.2) x 103=0.23 x 10* = 230
X—Y=(03x102300.2) x 103 = (-0.17) x 103 = -170
XxY=(03x0.2)x 102=0.06 x 105 = 6000
X:Y=(030.2)x 103 =15x%x101=0.15

Computer Organization Il, Spring 2010, Tiina Niklander

25.2.2010

34

Lecture 6: Instruction sets, Chapters 10 & 11

MUST KNOW: everything about the instruction structure,
representation, data types, addressing, instruction formats,
also Pentium and ARM

Specific instruction functionalities covered in earlier course.

You need to know enough to be able to handle example

'programs’ as in the exercises.
So no need to memorize specific instruction types and their

mnemonic representations!

7th ed, 2006: PowerPC instead of ARM
You may need to read the |A-64 Predication
from 15.3 for the conditional execution of
Instructions

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010

35

“ Addressing modes

Mode Algorithm Principal Advantage Principal Disadvantage
Immediate Operand = A No memory reference Limited operand magnitude
Direct EA=17% Simple Limited address space
Indirect EA =(A) Large address space Multiple memory references
Register Operand = (R) No memory reference Limited address space
Register indirect EA =(R) Large address space Extra memory reference
Displacement EA=-A+([R) Flexibility Complexity
Stack EA =topof stack No memory reference Limited applicability

EA = Effective Address
(A) = content of memory location A
(R) = content of register R

One register for the top-most stack item’s address
Register (or two) for the top stack item (or two)

Computer Organization Il, Spring 2010, Tiina Niklander

25.2.2010

36

‘_ Pentium: Addressing modes (osoitustavat)

X86 Addressing Mode Algorithm
Immediate Operand = A 1,2, 4, 8B
Register Operand Operand — (R)
Displacement LA=(SR)+A Registers:
1,2,4,8B
Base LA=(S5R)+(B)
Base with Displacement LA=(SR)+(B)+A For indexing arrays
Scaled Index with Displacement LA=(SR)+(I)xS+A |Forarrays instack or for
Base with Index and Displacement LA = (SR) + (B) + (I) + A [two dimensional arrays
Base with Scaled Index and Displacement @R} +(IxS+(B)+ A different
Relative LA=(PC)+ A element size
LA = linear address R = register
(X) = contents of X B = Dbase register
SE. = segment register I = index register
PC = program counter S = scaling factor
A = contents of an address field in the instruction

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 37

STRB r0. [rl. #12]

ARM

‘ Addressing
. Mmodes .

base register

Load/Store
Indirect

STRE rO, [rl.

base reg + offset
Updated

I ndEXI ng base register
alternatives
Offset N
Address iS ba?erlggglter
base + offset
Preindex

Form address
Write address

tQ base STREBv 0,

Postindex o
U t

Use base as bas:r;gister

address

Calculate new

address to Original

b ase base register

Computer Organization Il, Spring 2010, Tiina Niklander

Offset

O=C

—— 0x20C

r1
Dx200 Dx200
(a) Offset
#1211
r Offset
Dx20C |« 0zxC p— 0x20C
A
r1
Dx200 0x200
(b) Preindex
[rl], #12
r Offset
Dx20C |« O=C Dx20C
A
r1
Dx200 » Ox200

(c) Postindex

(1):4=]

0x5

0x5

\ ro
1):4]

ro

(1):47

ro
Dx5S

25.2.2010

Destination
register
for STR

Destination
register
for STR

Destinationt
register
for STR

38

R 3

. Pentium: Instruction format

Oorl Dorl Dorl Oorl bytes _

tastruction| Segment. [LS| AL (Sta06 Fig 11.8)
refix override sze s

P override | override
' Ve
1 7
: 7
' e
: s :
, e Addressing
. , — e O~
. 0,1,2, 3 or 4 bytes 7 lor2 Dorl ODorl 0.1,2 or4 0,1,2, ord

Instruction prefixes Opcode ModR/M SIB Displacement Immediate

f‘ n \
- ! -~
e . =~ ~
o LN TS~
Mod Reg/Opcode RM Scale Index Base
7 6 5 4 3 2 1 0 7 6 5 4 1 0

 \

1. Operand 2. ogerand (register)
(register) or form part of the addressing-mode

Computer Organization Il, Spring 2010, Tiina Niklander

25.2.2010

39

.

data processing
immediate shift

data processing
register shift

data processing
immediate

load/store
immediate offset

load/store
register offset

load/store
multiple

branch/branch
with link

ARM Instruction Formats

31 3029 28 27 26 2524 23 2221 20191817 16151413 1211109 8 7 6 5 4 3 2 1

0

cond [0 O 0| opcode [S Rn Rd shift amount | shift| 0 Rm
cond [0 O 0| opcode [S Rn Rd Rs 0| shift| 1 Rm
cond |0 0 1| opcode |5 Rn Rd rotate immediate
cond [0 1 O|P|U|B|W|L Rn Rd immediate

cond [0 1 1|P|U|B|W|L Rn Rd shift amount | shift| 0 Rm
cond 10 0|P|UIS|W|L Rn register list

cond |1 0 1]|L 24-bit offset

S = For data processing instructions, updates condition codes
S = For load/store multiple instructions, execution restricted to supervisor mode
P, U, W = distinguish between different types of addressing mode
B = Unsigned byte (B==1) or word (B==0) access
L = For load/store instructions, Load (L==1) or Store (L==0)

L = For branch instructions, is return address stored in link register

Lecture 7&8: Cpu structure and function,
Chapter 12

MUST KNOW: Everything, but not the tiny details of
pProcessors.

Most important issues:
Instruction cycle details
Hazards, dependencies
Branching and pipelines
Register organization (different register types)

Typical program status word (PSW)

7th ed, 2006:
12.6 PowerPC
(instead of ARM)

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 41

‘*‘ Instruction cycle (kaskysykli)

Indirection Faliceetaim

Instmuetion complete,
fetcth next instruction of vector data

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 42

MAR « PC

MAR < MMU(MAR)
Control Bus « Reserve
Control Bus « Read
PC « ALU(PC+1)
MBR <« MEM[MAR]
Control Bus « Release
IR « MBR

Cache (valimuisti)!
Prefetch (ennaltanouto)!

CPU

‘ Instruction fetch (kaskyn nouto)

Tr Control

>- $

Memory

Unit

-
—>

qu MBR |<j

MBE = Memory buffer register
MAR. = Memory address register
IE = Instruction register

PC = Program counter

Computer Organization Il, Spring 2010, Tiina Niklander

Address Data Control
Bus Bus Bus

25.2.2010 43

‘ Operand fetch, Indirect addressing
| (Operandin nouto, epasuora 0soitus)

MAR « Address ,
MAR < MMU(MAR) Pt

Control Bus + Reserve —]
Control Bus + Read ::)E A

=
MBR « MEM[MAR] <: ;I>3"leumry
Control
MAR + MBR e ==
MAR « MMU(MAR)
Control Bus « Read _
MBR +< MEM[MAR] l-lBR|<j

Control Bus + Release
Address Data Control

ALU? RegS? <« MIBR Bus Bus Bus

Cachel

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 44

Data flow, interrupt cycle

MAR + SP
MAR + MMU(MAR)

CPU
Control Bus «+ Reserve

Control Bus « Write 3}@“},
MAR « SP ¢ ALU(SP+1) fi =
MAR < MMU(MAR) Control >

MBR < PSW

Control Bus « Write

SP « ALU(SP+1) >l“BR =
PSW ¢ privileged & disable

MAR « Interrupt number Address Data Control
Control Bus + Read

PC « MBR « MEM[MAR]
Control Bus « Release

No address translation!

SP = Stack Pointer |[STEOEIEREZES

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 45

Problems, design issues

Structural dependency (rakenteellinen riippuvuus)

Several stages may need the same HW
Memory: FI, FO, WO
ALU: CO, EI

Control dependency (kontrolliriippuvuus)
Jump destination of conditional branch
known only after El-stage
— Prefetched wrong instructions

Data dependency (datariippuvuus)
Instruction needs the result of the

previous non-finished instruction

Computer Organization Il, Spring 2010, Tiina Niklander

STORE R1,VarX
ADD R2,R3,VarY
MUL R3,R4,R5

ADD R1,R7,R9
Jump There

ADD R2,R3,R4
MUL R1,R4,R5

MUL R1,R2,R3
LOAD R6, Arr(R1)

25.2.2010

= Data dependency

Read after Write (RAW) (a.k.a true or flow dependency)
Occurs if succeeding read takes place before the preceeding
write operation is complete

Write after Read (WAR) (a.k.a antidependency)
Occurs if the succeeding write operation completes before the
preceeding read operation takes place

Write after Write (WAW) (a.k.a output dependency)
Occurs when the two write operations take place in the
reversed order of the intended sequence

The WAR and WAW are possible only in architectures
where the instructions can finish in different order

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010

47

Dealing with branches

- X Not Taken _

% Predict | . Predict

Delayed branch A

Multiple instruction streams A
Speculative execution :
Prefetch branch target . z
4

LOOp bUffer) Not Taken 4)

; . [Predict | > Predict |

Branch prediction O™y

Static: always taken vs. never taken
Dynamic: based on Branch History Table

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 48

WaXET JON

Lecture 8: RISC, Chapter 13

MUST KNOW: Everything, but 13.6 MIPS, from 13.7 Sparc
only the reqister set is needed

RISC vs CISC

Load/Store architecture

RISC pipelining

Register windows, register optimization

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 49

‘ Register storage (Register file)

More registers than addressable in the instruction
E.g. SPARC has just 5 bits for register number = 0.. 31,
but the processor has 40 to 540 registers
Small subset of registers available for each instruction in
register window
In the window references to register rO-r31
CPU maps them to actual (true) registers r0-r539

Instruction

I | R
Registers
Current —— Data
Window
Pointer (Sta06 Fig 13:3)

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 50

RISC-pipeline, Delayed Branch

~N 1 2 3 4 5 6 7 8
100 LOAD X, rA I E D
101 ADD 1, A~ I (E
102 JUMP 105 I E
103 ADD rA, B I
105 STORE A, Z I E D Traditional
100 LOAD X, rA I E D
101 ADD 1, QK I E
102 JUMP 106 I E
m I E
106 STORE A, Z I E D | RISC with inserted NOOP
100 LOAD X, Ar I E D Two port MEM
101 JUMP 105 I E Cond. branch (ehdollinen hyppy):
102 ADD 1. rA | E JZERO 105, rA ??
105 STORETA, Z I E D RISC with reversed instructions

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 51

Lecture 9: Superscalar, Chapter 14

MUST KNOW: Everything, but the tiny details of the
processors

In-order / out-of-order issue / complete
Instruction selection window
Register renaming

7th ed, 2006:
14.4 PowerPC
(instead of ARM)

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 52

‘_ Superscalar execution

 (wait?) erartgre
mstruction mstruction
instruction fetch dispatch issue . :
and branch) (no wait) (wait?)
. L I 1 Instruction mstruction
static prediction i execution reorder and
program rcheck in”I commit
(wait?) /,/1'
I I
1
- —_—
— 1
I
\L

Instruction window }
window of

valintaikkuna execution

Issue ~ laukaisu, liikkeellelaskeminen

dispatch ~ vuorottaminen, lahettdéa suorittamaan

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 53

‘ Register renaming
. (rekistereiden uudelleennimeaminen)

One cause for some of the dependencies is the usage of
names
The same name could be used for
several independent elements
Thus, instructions have unneeded
write and antidependencies
Causing unnecessary waits
Solution: Register renaming
Hardware must have more registers (than visible to the
programmer and compiler)
Hardware allocates new real registers during execution
In order to avoid name-based dependencies (nimiriippuvuus)
Need
More internal registers (register files, register set),
e.g. Pentium Il has 40 working registers
Hardware that is cabable of allocating and managing registers
and performing the needed mapping

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 54

‘_“ Pentium 4

. E— L2 Cache and Control
r)
%
Store
g BTB > o Rk AGU »
= = Load
B H e lacu
Z 2
o
= —» = lep{aLu -
: : =
o = % 5 3 ; . —» ¥ lep{aLu i
et = = = ' =
- - : - 5 = E
= | g Ly = — 3 =1 e big =
- i = (=1 |
= # g 5 S 7 &
= =] = e [+ i ~
" =
- —
== FP move =]
—P E FP store [7]
&
3 ~ FMul
= Fadd
code —> 4| LA
AGU = address generation unit L - = MMX
ROM
BTE =branch target buffer
D-TLBE= data translation lookaside buffer
I-TLE = instruction translation lookaside buffer _

Computer Organization Il, Spring 2010, Tiina Niklander

25.2.2010

55

.

ARM
Cortex-
A8
Block
Diagram

13-stage integer pipeline

-~ N
2 stages 5 stages 6 stages
Branch mispredict |
Instruction execute and Load/Store
lREP|3¥ Instruction register writeback
Instruction fetch Instruction decode ALU pipe
L1 " @ MUL plpe 0 L1
" Prefetch | —p 5= pipe
|i|‘]519 | iaur:fhe and Decode & ||Dependency g 5 | iac::ne D::dﬁ
RAM nterface|l |~ h _, | sequencer chlescsl:-lznd LIE % ALU plpe 1 nterface RAM
prediction g2 Coad store
TLB plpe Oor 1 TLB
F 3
L2 NECM unit NEON register writeback
cache Instruction, data, NEON and preload]
engine buffers v | Integer ALU pipe |
o N
L2 cache T | Integer MUL plpe |
o
Arbitration pipeline control NEON g | : — |
Instruction o ngeger shitt pipe
| decode [= U
Fill and eviction é | non-IEEE FP ADD pipe |
ueue >
g L2cache || L2cache | non-IEEEFP MULpipe |
data RAM tag RAM
Bus Write 9 | IEEE floating-point engine |
interface buffer Load and store
unit (BIU) data queue — | Load/store permute pipe |

Computer Organization Il, Spring 2010, Tiina Niklander

L/-Y\JL/T\J

3 stages

—

1 stage

_/—Y\J

6 stages

_—

~—

10-stage SIMD pipeline

25.2.2010

56

Lecture 10: Control-Unit, Chapters 15 & 16

Chapter 15 Everything but the tiny details of processors
Chapter 16: 16.1 — 16.3

Micro-operation sequences in different phases of the
execution cycle
Control signals

7th ed, 2006:
Chapters 16 & 17.1 -17.3

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 57

.

ICC: Instruction Cycle Code register 's state

11 {interrupt) / 1cco \I

l

\

00 ifetch)

/

l

10 (execute) 01 indirect
Setup Read Fetch
interrupt address intstruction
l Execute 1
ICC =00 instruction ICC =10
Yes / Interrupt \ ~o
for enabled ICC =10
interrupt?
ICC=11 ICC =00
\ 4 I I A 4 Y

Computer Organization Il, Spring 2010, Tiina Niklander

Instruction cycle flow chart (as state-machine?)

25.2.2010

58

‘ Control signals and micro-operations

Micro-operations Timing Active Control
Signals
t;» MAR = (PC)
t,- MBR < Memory
Fetch: 7
— (PCY+1 >
t;: IR = (MBR)
t;: MAR = (IR(Address)) i
Indirect: t,: MBR < Memory 0
12 /1 ’{ Cs\%ﬁ _g* I
ty: IR(Address) = (MBR(Address)) C, G| o \
PC IR
t; MBR = (PC) o \ ey %“;_
t,- MAR = Save-address ,” C Al }‘C” > ALU
Interrupt: i _ 7t . <
= Routine-a x A coa [T
t;- Memory < (MBR) o S T <
L ontro.
Cr = Read control signal to system bus. el

Cyw = Write control signal to system bus.

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 59

Simple register transfers

0,0, 9

0,0,0

0,0,0

0,0,1

0,0,0

0,1,0

e

'-l""T""I-l

Register

'Y Operations

select

\ul ulﬂ ﬂ| ﬂ| 0

0,0,1

0,0,1

Special sequencing o

perations

0,0,0

(0,1,0

01,0

0,01

0,1,0

0,1,0

ALU operations
(|0;1,)|0,0,0

6 7 8 9 10 11 1213 14 1516 17 18

MDR < Registerl

Register < MDR
MAR = Register

Read
Write

- ALU operation
5 - register selection
) - Constant

Vertical vs.
Horizontal
Microcode)

1
0,1, 1§0,0,1} , ACC < ACC - Register Ndeé(t micg%i\rl;zstrg(s;g%n
. address =
0,1,1]0,1,0] ; | ACC < Register > ()
, Assumption: CAR=CAR+1

ﬂ| 1| 1 ﬂ| 1| 1 1 REngtE"l‘ — ACC
0, 1,1} 1,0,0} , ACC < Register+1

L-T-J

et (Sta09 Fig 16.12)

select

(a) Vertical microinstruction format (by resource)

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 60

Next microinstruction?

Selection normally based on flags

Explicit: both addresses in the instruction
Implicit: sequencially to next, bu 'jJump target’ in instruction
Variable format; sepate jump instructions use the bits for
address, signal instruction use the same bits for signals
Address generation during execution:

Address combined directly from op-code and flags
Subroutines and residual control: possibility to store one
return address

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 61

Lecture 11: Parallel processing and multicore
Chapters 17 & 18

Chapters 17.1. — 17.6. in exam
Chapter 18.3. multicore organization might be in exam

Most important: cache coherence and MESI

Other issues: SMP, NUMA and Clusters

7th ed, 2006: Chapter 18 Parallel Processing,
Multicore organization not in the book

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010

62

‘_ Example exam questions

Available from 2006 course page:

http://www.cs.helsinki.fi/u/kerola/tikra/kokeet/

Page contains earlier exams, but a lot of them are only in
Finnish because very few international students at that
time.

Kk is a course exam, ek separate exam,

If the name has e or en in the end, the questions are in
English

Computer Organization Il, Spring 2010, Tiina Niklander 25.2.2010 63

Many-core Era
Massively parallel
applications

100
Increasing HW
Threads
Per Socket Multi-core Era
10 Scalar and
parallel applications
(hyper-
threads)

2003 2005 2007 2009 201 2013

Borkar, Dubey, Kahn, et al. “Platform 2015.” Intel White Paper, 2005. (click)

http://download.intel.com/technology/computing/archinnov/platform2015/download/Platform_2015.pdf

Computer Organization I, Spring 2010, Tiina Niklander 25.2.2010

64

u ¥
& v [Pre-decode
Y ¥ ¥ ¥ v % ¥ ¥
Th E d Fetch conrol [, L1 instruction cache i
—-—— e n — , L2 Thread A T B :l ;e: Ispaic
- inlerface 4 4 e
Branch scan -
L 3 L
| SMT dispatch (queue) |
2 > Microcode
9 |
Decode Thread A
L1 data cache e Ry
Tesue Thread A
2 |
! 1 1
T TR I v
ST I Ce” POWG I || Losdisiore | Fixed-point | Branch - | VGKFRUisse (i) _|
unit anit execution unit T ™ 2 | ™ ™
1
rocessor element | [
p . Xu load/store/permute | arith./logic unit anth./logic unit Ioadistore
¥)
(a) ma- Or un i tS [VMX completion | | FPU completion |
i
J (a)
and P pptn o e Rove) B Cren vy
Microcode
Instruction cache and buffer

IC1

c2

13 ol 1c4

IB1 |

1B2

ng I+ D2 |+ 103 |+ 181 |+ 152 [+ 153

(b) pipeline

Instruction decode and issue

BPI | BP2 || B3

Branch prediction

Hﬂiﬂ

PPE pipeline back end

Branch instruction

IC

[0y]-o 1Y |- pi [RET o REZ {1 | -+fExe -6 1w
Fized-point unit instroction :‘g:
DLY |+ RF1 |-+{ RF2 fro| EX1|—+{EX2 |7o| EX3 [+ EX4 [+ EXS || WB | Is
DLY
Load/store instruction RF
EX
EX4I—D-|EX>|J-1EX6|—*-|EX? WB
(b
Computer Organization Il, Spring 2010, Tiina Niklander

Instruction ciche
Instruction bufler
Branch prediction
Microcode
Instruction decede
Instruction issue
Delay stage
Register file access
Exceution

Write back

25.2.2010

65

