

Parallel Processor Architectures

- Single instruction, single data stream SISD
 - Uniprocessor
- Single instruction, multiple data stream SIMD
 - Vector and array processors
 - Single machine instruction controls simultaneous execution
 - Each instruction executed on different set of data by different processors
- Multiple instruction, single data stream MISD
 - Sequence of data transmitted to set of processors
 - Each processor executes different instruction sequence
 - Not used
- Multiple instruction, multiple data stream- MIMD
 - Set of processors simultaneously execute different instruction sequences on different sets of data
 - SMPs, clusters and NUMA systems

Computer Organization II, Spring 2010, Tiina Niklander

Multiple instruction, multiple data stream- MIMD

- Differences in processor communication
- Symmetric Multiprocessor (SMP)
 - Tightly coupled communication via shared memory
 - Share single memory or pool, shared bus to access memory
 - Memory access time of a given memory location is approximately the same for each processor
- Non-uniform memory access (NUMA)
 - Tightly coupled communication via shared memory
 - Access times to different regions of memory may differ
- Clusters
 - Loosely coupled no shared memory
 - Communication via fixed path or network connections
 - Collection of independent uniprocessors or SMPs

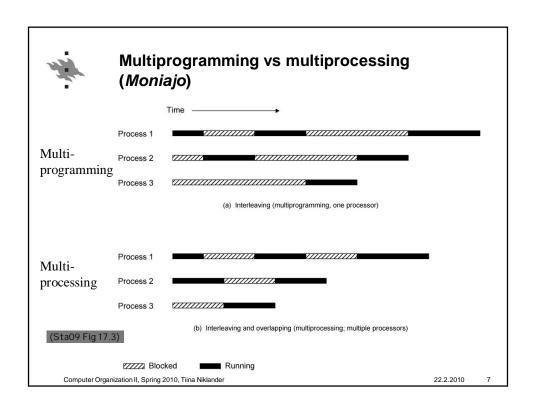
Computer Organization II, Spring 2010, Tiina Niklander

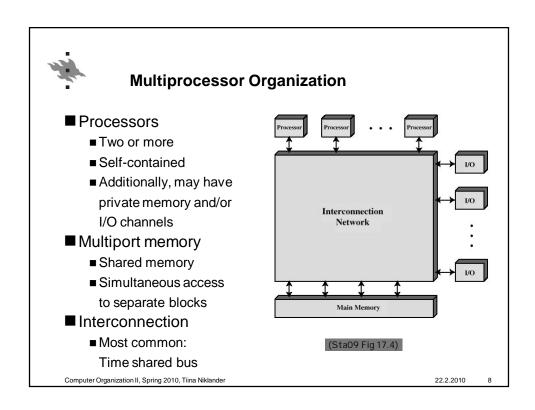
SMP - Symmetric Multiprocessor

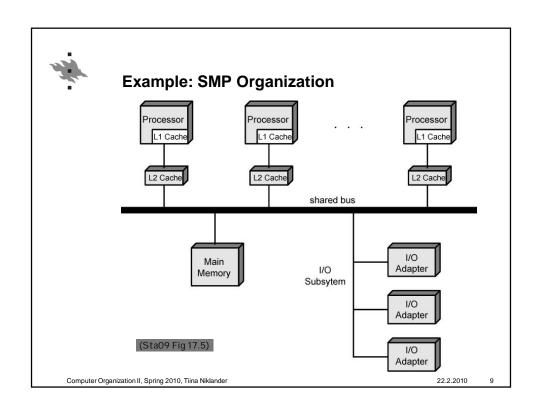
- Two or more similar processors of comparable capacity
- All processors can perform the same functions (hence symmetric)
- Connected by a bus or other internal connection
- Share same memory and I/O
- I/O access to same devices through same or different channels
- Memory access time is approximately the same for each processor
- System controlled by integrated operating system
 - providing interaction between processors
 - Interaction at job, task, file and data element levels

Computer Organization II, Spring 2010, Tiina Niklander

22.2.2010

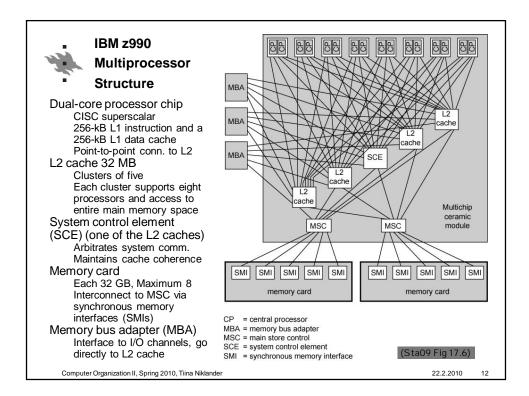

SMP - Advantages


- Performance
 - Only if some work can be done in parallel
- Availability
 - More processors to do the same functions
 - Failure of a single processor does not halt the system
- Incremental growth
 - Increase performance by adding additional processors
- Scaling
 - Different computers can have different number of processors
 - Vendors can offer range of products based on number of processors


Computer Organization II, Spring 2010, Tiina Niklander

2.2.2010

0



New requirements to operating system

- Simultaneous concurrent processes
 - Reentrant OS routines
 - OS data structure synchronization avoid deadlocks etc.
- Scheduling
 - On SMP any processor may execute scheduler at any time
- Synchronization
 - Controlled access to shared resources
- Memory management
 - Use parallel access options
- Reliability and fault tolerance
 - Graceful degradation in the face of single processor failure

Computer Organization II, Spring 2010, Tiina Niklander

22.2.2010

Cache Coherence (*välimuistin yhtenäisyys*)

Computer Organization II, Spring 2010, Tiina Niklander

.2010

Cache and data consistency

- Multiple processors with their own caches
 - Multiple copies of same data in different caches
 - Concurrent modification of the same data
- Could result in an inconsistent view of memory
 - Inconsistency the values in caches are different
- Write back policy
 - Write first to local cache and only later to memory
- Write through policy
 - The value is written to memory when changed
 - Other caches must monitor memory traffic
- Solution: maintain cache coherence
 - Keep recently used variables in appropriate cache(s), while maintaining the consistency of shared variables!

Computer Organization II, Spring 2010, Tiina Niklande

Software solutions for coherence

- Compiler and operating system deal with problem
- Overhead transferred to compile time
- Design complexity transferred from hardware to software
- However, software tends to make conservative decisions
 - Inefficient cache utilization
- Analyze code to determine safe periods for caching shared variables

Computer Organization II, Spring 2010, Tiina Niklander

Hardware solutions for coherence

- Dynamic recognition of potential problems at run time
- More efficient use of cache, transparent to programmer
- Directory protocols
 - Collect and maintain information about copies of data in cache
 - Directory stored in main memory
 - Requests are checked against directory
 - Creates central bottleneck
 - Effective in large scale systems with complex interconnections
- Snoopy protocols
 - Distribute cache coherence responsibility to all cache controllers
 - Cache recognizes that a line is shared
 - Updates announced to other caches
 - Suited to bus based multiprocessor

Computer Organization II, Spring 2010, Tiina Niklander

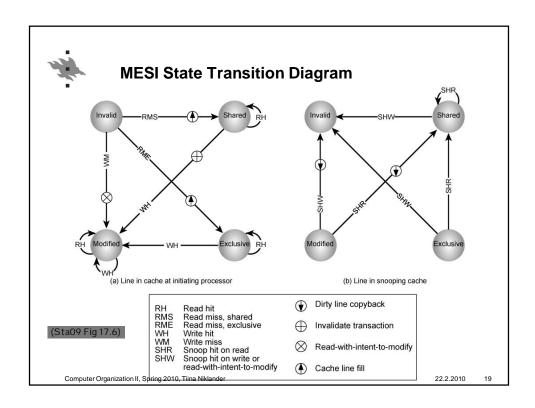
22.2.2010

Snoopy protocols: Write invalidate or update

- Write-Invalidate
 - Multiple readers, one writer
 - Write request invalidated that line in all other caches
 - Writing processor gains exclusive (cheap) access until line required by another processor
 - Used in Pentium II and PowerPC systems
 - State of every line marked as **m**odified, **e**xclusive, **s**hared or invalid (MESI)
- Write-Update
 - Multiple readers and writers
 - Updated word is distributed to all other processors
- Some systems use an adaptive mixture of both solutions

Computer Organization II, Spring 2010, Tiina Niklander

2010


MESI Protocol - states

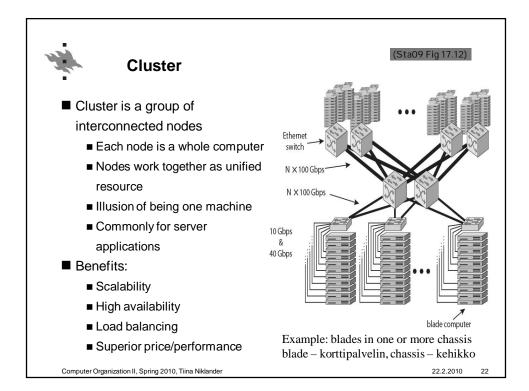
- Four states (two bits per tag)
 - Modified: modified (different than memory), only in this cache
 - Exlusive: only in this cache, but the same as memory
 - Shared: same as memory, may be other caches
 - Invalid: line does not contain valid data

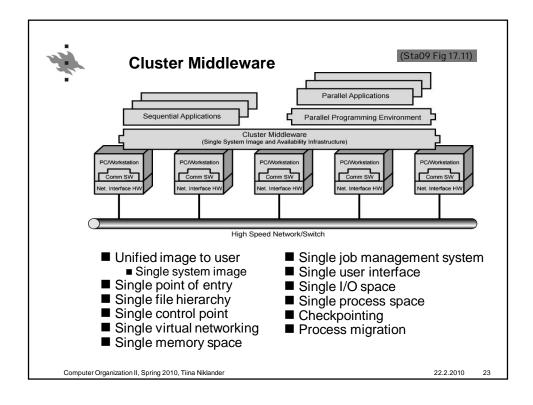
	M Modified	E Exclusive	S Shared	I Invalid
This cache line valid?	Yes	Yes	Yes	No
The memory copy is	out of date	valid	valid	_
Copies exist in other caches?	No	No	Maybe	Maybe
A write to this line	does not go to bus	does not go to bus	goes to bus and updates cache	goes directly to bus

Computer Organization II, Spring 2010, Tiina Niklander

22.2.2010 1

MESI Protocol – state transitions


- Read Miss generates SHR (snoop on read) to others
 - Not in any cache simply read
 - Exclusive in some cache SHR: exclusive 'owner' indicates sharing and changes the state of its own cache line to shared
 - Shared in some caches SHR: each signals about the sharing
 - Modified on some cache SHR: memory read blocked, the content comes to memory and this cache from the other cache, which also changes the state of that line to shared
- Read Hit
- Write Miss generates SHW (snoop on writes) to others
- Write Hit


Computer Organization II, Spring 2010, Tiina Niklande

Clusters

Computer Organization II, Spring 2010, Tiina Niklander

Department's new research cluster (Not installed yet)

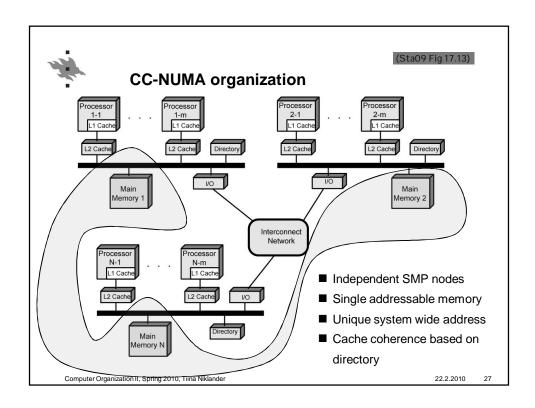
- 15 Chassis containing together 240 blades
 - Dell PowerEdge M1000e
 - 3 x 10 Gbit/s Dell PowerConnect M8024 for connections to other chassis and disk servers
- Each blade
 - Dell PowerEdge m610
 - 2 x Quad-core Xeon E5540 2,53 GHz
 - 32Gt RAM
 - 4 x 10 Gbit/s network connections
- Total 480 processors, 1920 simultaneus threads (SMT)
- One router and two switches to connect the blades together
- Going to use virtualization to form different configurations

Computer Organization II, Spring 2010, Tiina Niklander

NUMA – Numa – Nonuniform Memory Access

Computer Organization II, Spring 2010, Tiina Niklander

2.2010



What is NUMA?

- SMP
 - Identical processors with uniform memory access (UMA) to shared memory
 - All processors can access all parts of the memory
 - Identical access time all memory regions for all processors
- Clusters
 - Interconnected computers with NO shared memory
- NUMA
 - All processors can access all parts of the memory
 - Access times to different regions are different for different processors
 - Cache-Coherent NUMA (CC-NUMA) maintains cache coherence among caches of various processors
 - Maintain transparent system wide memory

Computer Organization II, Spring 2010, Tiina Niklander

22.2.2010 2

CC-NUMA – memory access

- Each processor has local L1 & L2 cache and main memory
- Nodes connected by some networking facility
- Each processor sees single addressable memory space
- Memory request order:
 - L1 cache (local to processor)
 - L2 cache (local to processor)
 - Main memory (local to node)
 - Remote memory (in other nodes)
 - Delivered to requesting (local to processor) cache
 - Needs to maintain cache coherence with other processor's
- Automatic and transparent

NUMA Pros & Cons

- Effective performance at higher levels of parallelism than SMP
- No major software changes
- Performance suffers if too much remote memory access
 - Avoid by good temporal and spatial locality of software with
 - L1 & L2 cache design to reduce all memory access
 - Virtual memory management move pages to nodes that use them most
- Not truly transparent memory access
 - Page allocation, process allocation and load balancing changes needed
- Shared-memory cluster?

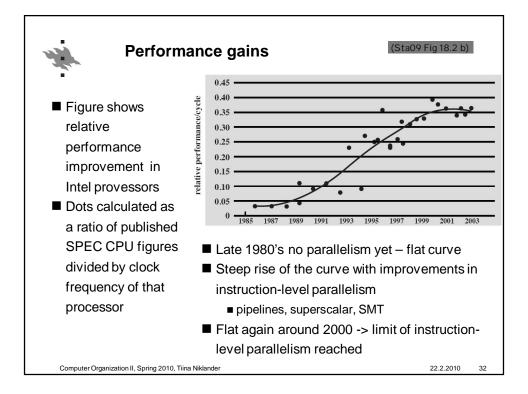
Computer Organization II, Spring 2010, Tiina Niklander

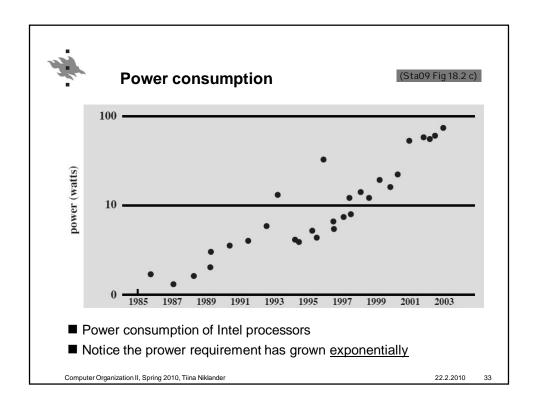
2.2010

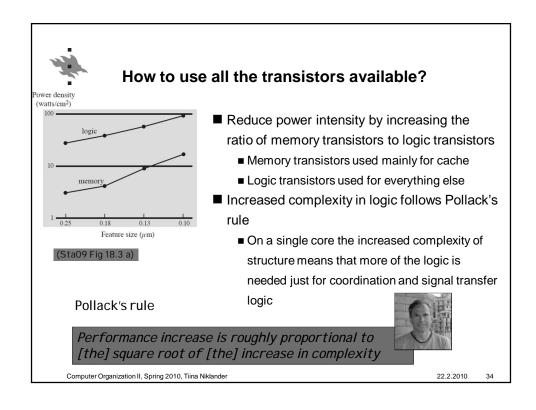
Computer Organization II

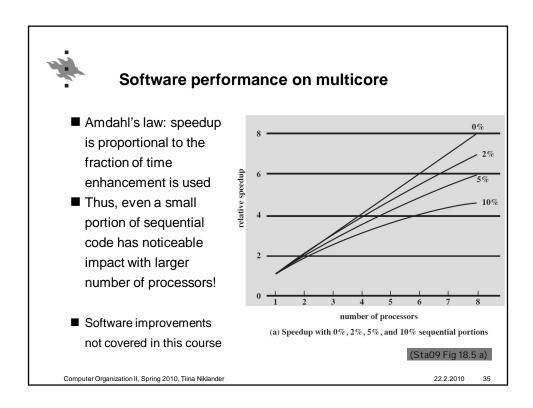
Multicore computers New chapter 18

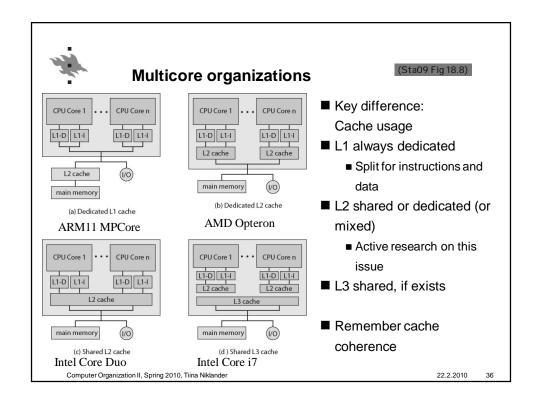
Computer Organization II, Spring 2010, Tiina Niklande


) 3(




Why multicore?


- Current trend by processor manufacturers, because older improvements are no longer that promising
 - Clock frequency
 - Pipeline, superscalar,
 - Simultaneous multithreading, SMT (or hyperthreading)
- Enough transistors available on one chip to put two or more whole cores on the chip
 - Symmetric multiprocessor on one chip only
- But ... diminishing returns
 - More complexity requires more logic
 - Increasing chip area for coordinating and signal transfer logic
 - Harder to design, make and debug

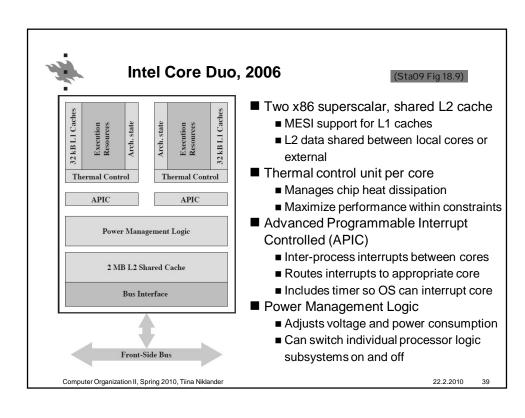

Computer Organization II, Spring 2010, Tiina Niklander

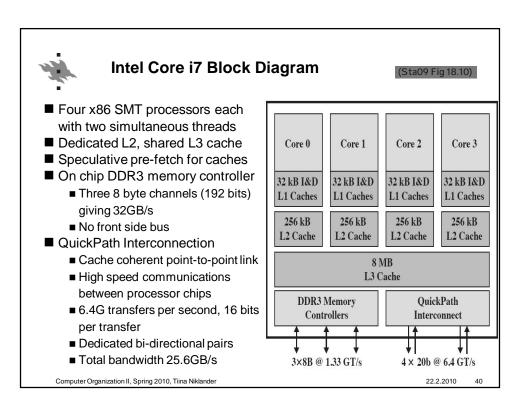
Shared L2 cache vs. dedicated ones

- Constructive interference
 - One core may fetch a cache line that is soon needed by another code already available in shared cache
- Single copy
 - Shared data is not replicated, so there is just one copy of it.
- Dynamic allocation
 - The thread that has less locality needs more cache and may occupy more of the cache area
- Shared memory support
 - The shared data element already in the shared cache. With dedicated caches, the shared data must be invalidated from other caches before using
- Slower access
 - Larger cache area is slower to access, small dedicated cache would be faster

Computer Organization II, Spring 2010, Tiina Niklander

.2010




Computer Organization II

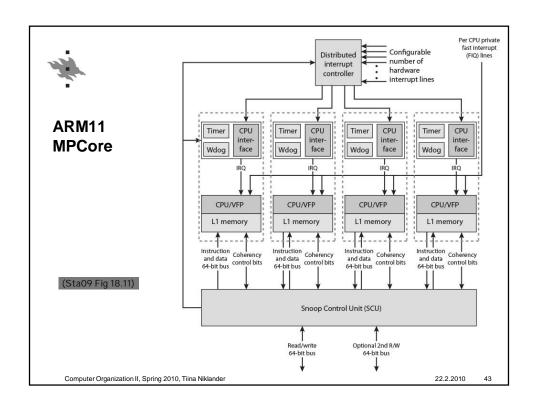
Intel Core Duo and Core i7

Computer Organization II, Spring 2010, Tiina Niklande

38

ARM11 MPCore

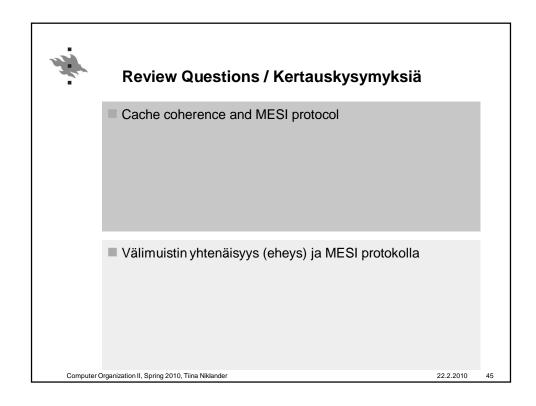
Computer Organization II, Spring 2010, Tiina Niklander


2.2010

ARM11 MPCore

- Up to 4 processors each with own L1 instruction and data cache
- Distributed interrupt controller
- Timer per CPU
- Watchdog
 - Warning alerts for software failures
 - Counts down from predetermined values, issues warning at zero
- CPU interface
 - Interrupt acknowledgement, masking and completion acknowledgement
- CPU Single ARM11 called MP11
- Vector floating-point unit
 - FP co-processor
- L1 cache
- Snoop control unit
 - L1 cache coherency

Computer Organization II, Spring 2010, Tiina Niklander


Interrupt Control

- Distributed Interrupt Controller (DIC)
 - collates interrupts from many sources
 - Masking, prioritization
 - Distribution to target MP11 CPUs
 - Status tracking (Interrupt states: pending, active, inactive)
 - Software interrupt generation
- Number of interrupts independent of MP11 CPU design
- Accessed by CPUs via private interface through SCU
- Can route interrupts to single or multiple CPUs
 - OS can generate interrupts: all-but-self, self, or specific CPU
- Provides inter-process communication (16 intr. ids)
 - Thread on one CPU can cause activity by thread on another CPU

Computer Organization II, Spring 2010, Tiina Niklander

2010

44

