
Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 1

Parallel Processing &
Multicore computers

8th edition: Ch 17 & 18

Earlier editions contain only
Parallel Processing

Lecture 11

Parallel Processor Architectures
Flynn’s taxonomy from 1972

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 2

(Sta09 Fig 17.1)

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 2

Parallel Processor Architectures

Single instruction, single data stream – SISD
Uniprocessor

Single instruction, multiple data stream – SIMD
Vector and array processors
Single machine instruction controls simultaneous execution
Each instruction executed on different set of data by different
processors

Multiple instruction, single data stream – MISD
Sequence of data transmitted to set of processors
Each processor executes different instruction sequence
Not used

Multiple instruction, multiple data stream- MIMD
Set of processors simultaneously execute different instruction
sequences on different sets of data
SMPs, clusters and NUMA systems

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 3

Multiple instruction, multiple data stream- MIMD

Differences in processor communication
Symmetric Multiprocessor (SMP)

Tightly coupled – communication via shared memory
Share single memory or pool, shared bus to access memory
Memory access time of a given memory location is
approximately the same for each processor

Non-uniform memory access (NUMA)
Tightly coupled – communication via shared memory
Access times to different regions of memory may differ

Clusters
Loosely coupled – no shared memory
Communication via fixed path or network connections
Collection of independent uniprocessors or SMPs

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 4

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 3

SMP – Symmetric Multiprocessor

Two or more similar processors of comparable capacity
All processors can perform the same functions (hence
symmetric)
Connected by a bus or other internal connection
Share same memory and I/O
I/O access to same devices through same or different
channels
Memory access time is approximately the same for each
processor
System controlled by integrated operating system

providing interaction between processors
Interaction at job, task, file and data element levels

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 5

SMP – Advantages

Performance
Only if some work can be done in parallel

Availability
More processors to do the same functions
Failure of a single processor does not halt the system

Incremental growth
Increase performance by adding additional processors

Scaling
Different computers can have different number of processors
Vendors can offer range of products based on number of
processors

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 6

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 4

Multiprogramming vs multiprocessing
(Moniajo)

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 7

Multi-
programming

Multi-
processing

(Sta09 Fig 17.3)

Multiprocessor Organization

Processors
Two or more
Self-contained
Additionally, may have
private memory and/or
I/O channels

Multiport memory
Shared memory
Simultaneous access
to separate blocks

Interconnection
Most common:
Time shared bus

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 8

(Sta09 Fig 17.4)

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 5

Example: SMP Organization

(Sta09 Fig 17.5)

22.2.2010 9Computer Organization II, Spring 2010, Tiina Niklander

Time-shared bus

Advantages
Simplicity

Addressing, arbitration and
time-sharing logic same as
in uniprocessor system

Flexibility
Expand by attaching more
processors to the bus

Reliability
Bus is passive, failure of
attached device should not
cause failure of the whole

Disadvantages
Performance limited by
bus cycle time
Each processor should
have local cache

Reduce number of bus
accesses

Leads to problems with
cache coherence

Solved in hardware - see
later

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 10

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 6

New requirements to operating system

Simultaneous concurrent processes
Reentrant OS routines
OS data structure synchronization – avoid deadlocks etc.

Scheduling
On SMP any processor may execute scheduler at any time

Synchronization
Controlled access to shared resources

Memory management
Use parallel access options

Reliability and fault tolerance
Graceful degradation in the face of single processor failure

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 11

IBM z990
Multiprocessor
Structure

Dual-core processor chip
CISC superscalar
256-kB L1 instruction and a
256-kB L1 data cache
Point-to-point conn. to L2

L2 cache 32 MB
Clusters of five
Each cluster supports eight
processors and access to
entire main memory space

System control element
(SCE) (one of the L2 caches)

Arbitrates system comm.
Maintains cache coherence

Memory card
Each 32 GB, Maximum 8
Interconnect to MSC via
synchronous memory
interfaces (SMIs)

Memory bus adapter (MBA)
Interface to I/O channels, go
directly to L2 cache (Sta09 Fig 17.6)

22.2.2010 12Computer Organization II, Spring 2010, Tiina Niklander

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 7

Computer Organization II

Cache Coherence

(välimuistin yhtenäisyys)

22.2.2010 13Computer Organization II, Spring 2010, Tiina Niklander

Cache and data consistency

Multiple processors with their own caches
Multiple copies of same data in different caches
Concurrent modification of the same data

Could result in an inconsistent view of memory
Inconsistency – the values in caches are different

Write back policy
Write first to local cache and only later to memory

Write through policy
The value is written to memory when changed
Other caches must monitor memory traffic

Solution: maintain cache coherence
Keep recently used variables in appropriate cache(s), while
maintaining the consistency of shared variables!

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 14

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 8

Software solutions for coherence

Compiler and operating system deal with problem
Overhead transferred to compile time
Design complexity transferred from hardware to software
However, software tends to make conservative decisions

Inefficient cache utilization
Analyze code to determine safe periods for caching shared
variables

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 15

Hardware solutions for coherence

Dynamic recognition of potential problems at run time
More efficient use of cache, transparent to programmer
Directory protocols

Collect and maintain information about copies of data in cache
Directory stored in main memory
Requests are checked against directory
Creates central bottleneck
Effective in large scale systems with complex interconnections

Snoopy protocols
Distribute cache coherence responsibility to all cache controllers
Cache recognizes that a line is shared
Updates announced to other caches
Suited to bus based multiprocessor

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 16

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 9

Snoopy protocols: Write invalidate or update

Write-Invalidate
Multiple readers, one writer
Write request invalidated that line in all other caches
Writing processor gains exclusive (cheap) access until line
required by another processor
Used in Pentium II and PowerPC systems
State of every line marked as modified, exclusive, shared or
invalid (MESI)

Write-Update
Multiple readers and writers
Updated word is distributed to all other processors

Some systems use an adaptive mixture of both solutions

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 17

MESI Protocol - states

Four states (two bits per tag)
Modified: modified (different than memory), only in this cache
Exlusive: only in this cache, but the same as memory
Shared: same as memory, may be other caches
Invalid: line does not contain valid data

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 18

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 10

MESI State Transition Diagram

(Sta09 Fig 17.6)

22.2.2010 19Computer Organization II, Spring 2010, Tiina Niklander

MESI Protocol – state transitions

Read Miss – generates SHR (snoop on read) to others
Not in any cache – simply read
Exclusive in some cache – SHR: exclusive ’owner’ indicates
sharing and changes the state of its own cache line to shared
Shared in some caches – SHR: each signals about the
sharing
Modified on some cache – SHR: memory read blocked, the
content comes to memory and this cache from the other
cache, which also changes the state of that line to shared

Read Hit
Write Miss – generates SHW (snoop on writes) to others
Write Hit

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 20

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 11

Computer Organization II

Clusters

22.2.2010 21Computer Organization II, Spring 2010, Tiina Niklander

Cluster

Cluster is a group of
interconnected nodes

Each node is a whole computer
Nodes work together as unified
resource
Illusion of being one machine
Commonly for server
applications

Benefits:
Scalability
High availability
Load balancing
Superior price/performance

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 22

(Sta09 Fig 17.12)

Example: blades in one or more chassis
blade – korttipalvelin, chassis – kehikko

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 12

Cluster Middleware

Single job management system
Single user interface
Single I/O space
Single process space
Checkpointing
Process migration

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 23

Unified image to user
Single system image

Single point of entry
Single file hierarchy
Single control point
Single virtual networking
Single memory space

(Sta09 Fig 17.11)

Department’s new research cluster
(Not installed yet)

15 Chassis containing together 240 blades
Dell PowerEdge M1000e
3 x 10 Gbit/s Dell PowerConnect M8024 for connections to
other chassis and disk servers

Each blade
Dell PowerEdge m610
2 x Quad-core Xeon E5540 2,53 GHz
32Gt RAM
4 x 10 Gbit/s network connections

Total 480 processors, 1920 simultaneus threads (SMT)
One router and two switches to connect the blades together
Going to use virtualization to form different configurations

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 24

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 13

Computer Organization II

NUMA –

Nonuniform Memory Access

22.2.2010 25Computer Organization II, Spring 2010, Tiina Niklander

What is NUMA?

SMP
Identical processors with uniform memory access (UMA) to
shared memory

- All processors can access all parts of the memory
- Identical access time all memory regions for all processors

Clusters
Interconnected computers with NO shared memory

NUMA
All processors can access all parts of the memory
Access times to different regions are different for different
processors
Cache-Coherent NUMA (CC-NUMA) maintains cache
coherence among caches of various processors
Maintain transparent system wide memory

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 26

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 14

CC-NUMA organization

Independent SMP nodes
Single addressable memory
Unique system wide address
Cache coherence based on
directory

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 27

(Sta09 Fig 17.13)

CC-NUMA – memory access

Each processor has local L1 & L2 cache and main memory
Nodes connected by some networking facility
Each processor sees single addressable memory space
Memory request order:

L1 cache (local to processor)
L2 cache (local to processor)
Main memory (local to node)
Remote memory (in other nodes)

- Delivered to requesting (local to processor) cache
- Needs to maintain cache coherence with other processor’s

caches
Automatic and transparent

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 28

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 15

NUMA Pros & Cons

Effective performance at higher levels of parallelism than SMP
No major software changes
Performance suffers if too much remote memory access

Avoid by good temporal and spatial locality of software with
- L1 & L2 cache design to reduce all memory access
- Virtual memory management move pages to nodes that use

them most
Not truly transparent memory access

Page allocation, process allocation and load balancing changes
needed

Shared-memory cluster?

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 29

Computer Organization II

Multicore computers

New chapter 18

22.2.2010 30Computer Organization II, Spring 2010, Tiina Niklander

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 16

Why multicore?

Current trend by processor manufacturers, because older
improvements are no longer that promising

- Clock frequency
- Pipeline, superscalar,
- Simultaneous multithreading , SMT (or hyperthreading)

Enough transistors available on one chip to put two or more
whole cores on the chip

Symmetric multiprocessor on one chip only
But ... diminishing returns

More complexity requires more logic
Increasing chip area for coordinating and signal transfer logic

- Harder to design, make and debug

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 31

Performance gains

Figure shows
relative
performance
improvement in
Intel provessors
Dots calculated as
a ratio of published
SPEC CPU figures
divided by clock
frequency of that
processor

Late 1980’s no parallelism yet – flat curve
Steep rise of the curve with improvements in
instruction-level parallelism

pipelines, superscalar, SMT
Flat again around 2000 -> limit of instruction-
level parallelism reached

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 32

(Sta09 Fig 18.2 b)

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 17

Power consumption

Power consumption of Intel processors
Notice the prower requirement has grown exponentially

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 33

(Sta09 Fig 18.2 c)

How to use all the transistors available?

Reduce power intensity by increasing the
ratio of memory transistors to logic transistors

Memory transistors used mainly for cache
Logic transistors used for everything else

Increased complexity in logic follows Pollack’s
rule

On a single core the increased complexity of
structure means that more of the logic is
needed just for coordination and signal transfer
logic

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 34

Performance increase is roughly proportional to
[the] square root of [the] increase in complexity

Pollack’s rule

(Sta09 Fig 18.3 a)

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 18

Software performance on multicore

Amdahl’s law: speedup
is proportional to the
fraction of time
enhancement is used
Thus, even a small
portion of sequential
code has noticeable
impact with larger
number of processors!

Software improvements
not covered in this course

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 35

(Sta09 Fig 18.5 a)

Multicore organizations

Key difference:
Cache usage
L1 always dedicated

Split for instructions and
data

L2 shared or dedicated (or
mixed)

Active research on this
issue

L3 shared, if exists

Remember cache
coherence

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 36

ARM11 MPCore AMD Opteron

Intel Core Duo Intel Core i7

(Sta09 Fig 18.8)

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 19

Shared L2 cache vs. dedicated ones

Constructive interference
One core may fetch a cache line that is soon needed by another
code – already available in shared cache

Single copy
Shared data is not replicated, so there is just one copy of it.

Dynamic allocation
The thread that has less locality needs more cache and may
occupy more of the cache area

Shared memory support
The shared data element already in the shared cache. With
dedicated caches, the shared data must be invalidated from
other caches before using

Slower access
Larger cache area is slower to access, small dedicated cache
would be faster

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 37

Computer Organization II

Intel Core Duo and Core i7

22.2.2010 38Computer Organization II, Spring 2010, Tiina Niklander

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 20

Intel Core Duo, 2006

Two x86 superscalar, shared L2 cache
MESI support for L1 caches
L2 data shared between local cores or
external

Thermal control unit per core
Manages chip heat dissipation
Maximize performance within constraints

Advanced Programmable Interrupt
Controlled (APIC)

Inter-process interrupts between cores
Routes interrupts to appropriate core
Includes timer so OS can interrupt core

Power Management Logic
Adjusts voltage and power consumption
Can switch individual processor logic
subsystems on and off

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 39

(Sta09 Fig 18.9)

Intel Core i7 Block Diagram

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 40

Four x86 SMT processors each
with two simultaneous threads
Dedicated L2, shared L3 cache
Speculative pre-fetch for caches
On chip DDR3 memory controller

Three 8 byte channels (192 bits)
giving 32GB/s
No front side bus

QuickPath Interconnection
Cache coherent point-to-point link
High speed communications
between processor chips
6.4G transfers per second, 16 bits
per transfer
Dedicated bi-directional pairs
Total bandwidth 25.6GB/s

(Sta09 Fig 18.10)

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 21

Computer Organization II

ARM11 MPCore

22.2.2010 41Computer Organization II, Spring 2010, Tiina Niklander

ARM11 MPCore

Up to 4 processors each with own L1 instruction and data cache
Distributed interrupt controller
Timer per CPU
Watchdog

Warning alerts for software failures
Counts down from predetermined values, issues warning at zero

CPU interface
Interrupt acknowledgement, masking and completion
acknowledgement

CPU – Single ARM11 called MP11
Vector floating-point unit

FP co-processor
L1 cache
Snoop control unit

L1 cache coherency

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 42

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 22

ARM11
MPCore

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 43

(Sta09 Fig 18.11)

Interrupt Control

Distributed Interrupt Controller (DIC)
collates interrupts from many sources
Masking, prioritization
Distribution to target MP11 CPUs
Status tracking (Interrupt states: pending, active, inactive)
Software interrupt generation

Number of interrupts independent of MP11 CPU design
Accessed by CPUs via private interface through SCU
Can route interrupts to single or multiple CPUs

OS can generate interrupts: all-but-self, self, or specific CPU
Provides inter-process communication (16 intr. ids)

Thread on one CPU can cause activity by thread on another CPU

22.2.2010Computer Organization II, Spring 2010, Tiina Niklander 44

Lecture 11: Parallel processing and
Multicore

22.2.2010

Comp. Org II, Spring 2010 23

Review Questions / Kertauskysymyksiä

Cache coherence and MESI protocol

Välimuistin yhtenäisyys (eheys) ja MESI protokolla

45Computer Organization II, Spring 2010, Tiina Niklander 22.2.2010

