Lecture 10: Control Unit 18.2.2010

5 Functional
‘. What is control? requirements for CPU
) . 1. Operations
W Architecture determines the CPU 2. Addressing modes
functionality that is visible to ‘programs’ 3. Registers
= Whatis the instruction set ? 4. 1/0 module interface
= What do instructions do? 5. Memory module interface
= What operations, opcodes? 6. Interrupt processing
= Where are the operands? structure

= How to handle interrupts?

M Control Unit, CU (ohjausyksikko) determines how these things
happen in hardware (CPU, MEM, bus, 1/O)
= What gate and circuit should do what at any given time
= Selects and gives the control signals to circuits in order
= Physical control wires transmit the control signals
- Timed by clock pulses
- Control unit decides values of the signals

Computer Organization Il, Spring 2010, Tiina Niklander 18.2.2010 2
‘\) "read” [(Sta09 Fig 15.4) ‘\))
. Control signals Pwrite” [EEoEETET . Micro-operations
radd”
* 1 Simple control signals that cause one very small operation
ontrol signals .
within CPU (toiminto)
2 = E.g. Bits move from reg 1 through internal bus to ALU
Gt ::::;ﬁfu g M Subcycle duration determined from the longest operation
Unit <:: u During each subcycle multiple micro-operations in action
= Some can be done simultaneously,
Clock. o . t1: MAR « PC
:V,\Con,ml - if in different parts of the circuits |t2: MBR < MEM[MAR]
to control bus = Must avoid resource conflicts PC«PC+1
. t3:IR « (MBR
I Main task: control data transfers - WAR or RAW, ALU, bus (MBR)
» Inside CPU: REG & REG, ALU & REG, ALU-ops = Some must be executed sequentially If implemented
= CPU © MEM (/O-controller): address, data, control to maintain the semantics without ALU
M Timing (ajoitus), Ordering (jarjestys)
Computer Organization Il, Spring 2010, Tiina Niklander 18.2.2010 3 Computer Organization Il, Spring 2010, Tiina Niklander 18.2.2010 4
‘_ Instruction cycle (Kaskysykli) [(Sta09 Fig 15.1) | ‘ Instruction fetch cycle (Kaskyn noutosykli)
[(sta06Fig16.1)|
CPU
R Example:

t1: MAR « PC

|[nslrnctlonCyde |lnslnlcl(onCycle oo Instruction Cycle t2: MAR < MMU(MAR
7 Control Bus « p

t3: Control Bus + Read

Fetch Indirect | [Execute | [Interrupt PC+PC+1
t4: MBR « MEM[MAR]

Fm—q

Control Bus « Release MBR = Memory bulfer teglster

MAR = Memory address tegister Address Data Control
[uoP] [uoP] [wOP] [uOP] [uOP] 5 IR « MBR ?Ej::;;ﬁ:;ﬁf‘ Bus Bus Bus
M When micro-operations address different parts of the [(sta0sFig 126) |
hardware, hardware can execute them parallel Execution order? What can be executed parallel?
W See Chapter 12 instruction cycle examples (next slide) Which micro-ops to same subcycle,
which need own cycle?
‘Computer Organization Il, Spring 2010, Tiina Niklander 18.2.2010 5 ‘Computer Organization Il, Spring 2010, Tiina Niklander 18.2.2010 6

Comp. Org Il, Spring 2010 1

Lecture 10: Control Unit

18.2.2010

‘_ Instruction cycle

Operand fetch cycle(s)
From register or from memory ALUoper < IR.oper
Address translation t3: 11 « ALUout

Execute cycle(s) flags < xxx
Execution often in ALU
Operandsin
and control operation
Result from output
to register /memory
flags + status

Interrupt cycle(s)

IADD r1,r2,r3:
t1: ALUinl « r2
t2: ALUIn2 « r3

1SZ X, Increment and Skip if zero:
t1: MAR <« IR.address
t2: MBR <~ MEM[MAR]
t3: MBR < MBR+1
t4: MEM[MAR] « MBR
if (MBR=0) then PC <~ PC +1

See examples (Ch 12): Pentium Conditional
What to do using same micro-operation? oper:cxtlcm
possible

What micro-ops parallel / sequentially?

Computer Organization Il, Spring 2010, Tiina Niklander 18.2.2010 7

‘ Instruction cycle flow chart (as state-machine?)

ICC: Instruction Cycle Code register's state

11 (interrupt) AR 00 (fetel)

01 indirect

10 (execute)

Setup
interrupt

instruction

for enabled)=
interrupt?

Computer Organization Il, Spring 2010, Tiina Niklander 18.2.2010 8

,i Instruction cycle control as

. state-machine (tila-automaatti)

Functionality of Control Unit can be presented as state-machine
State: What stage of the instruction cycle is going on in CPU
Substate: timing based, group of micro-operations executed parallel in

Control signals
one (sub)cycle

Control signals of substate are based on

sequencing execution

‘ Control signals

Micro-operation = CU emits a set of control signals
Example: processor with single accumulator

(sub)state itself CU state-
y ; machine CPU
Fields of IR-register (opcode, operands)
Previous results (flags) impl. ¢ Control
= Execution circuits| x signals
New state based on previous state and
flags -
’ flags o (sta09Fig 155)
Also external interrupts effect the new state AR (Swmo6Fig165)]
= Sequencing signals
Computer Organization I Sping 2010, Tina Niklander w2210 o Computer Organization I Spring 2010, Tina Niklander 122010 10
Control
- - unit
‘ Control signals and micro-operations ‘ o
. - Internal Processor Organization [Jeo
Micro-operations Timing Active Control) . .
Signals Fig 15.5 too complex for implementation S
t;: MAR < (PC) < Use internal processor bus to connect the
ty: MBR < Memory components °
Fetch: FE— (PO AT X Address
== — ALU usually has temporary registers Y Tines MR«
- IR — (MBR a
ty () and Z 2
;' MAR < (IR(Address)) o MER £
Indirect t, MBR — Memory ol =
3 [ADD I: g2
Sl S) t1: MAR « IR.address 2
tj: MBR = (PC) t2: MBR <~ MEM[MAR] o
- MAR - Save-address ~~, t3:Y « MBR
terrupt: .
g —PC + Routine-ad td:Z <« AC+Y
t5:AC« Z
t3: Memory < (MBR)
Cg = Read control signal to system bus s
Cy = Write control signal to system bus _
[(Sta09 Table 15.1) |[(Sta06 Table 16.1)| [(5ta06Fig16.6)|
Computer Organization I Sping 2010, Tina Niklander L2010 1 Computer Organization I Sping 2010 Tina Niklander a0 1w

Comp. Org Il, Spring 2010

Lecture 10: Control Unit

18.2.2010

»

Computer Organization Il

Computer Organization Il, Spring 2010, Tiina Niklander

Hardwired implementation

(Langoitettu ohjaus)

1822010 13

‘ Hardwired control unit
. (Langoitettu ohjausyksikkd)

Can be used when CU's inputs and outputs fixed

Tnstruction register

Functionality described using Boolean logic

CU implemented by one logical circuit

Eg. C5 = P*Q*T2 + P*Q*(LDA)*T2 + T3 7
§ K¥4Y k] v
Fig 15.3,15.5 and Thl 15.1 | \
oo Ty o]
ICC - bitsP and Q Timing [~ 1> Control T
generator . Unit + Flags
PQ = 00 Fetch Cycle SN e
PQ = 01 Indirect Cycle \
\ Cp € eee A
PQ = 10 Execute Cycle N~ ¥ \
PQ =11 Interrupt Cycle [(Sta09 Fig 15.10)
|(Sta06 Fig 16.10)|

Hardwired control unit

Finite State Diagram

Decoder (4-to-16) [(Sta06 Table 153)|
4-bit instruction code as input to CU
Onlyone signal active at any given stage F:iegDs‘l‘Ex\Op
il B n 4 |01 |02|03|04 05|06 |07 |08]| 09 |010|O011|012|013|014 015|016 LREMVSre A
0 0 0 0 0 0 0 0 0 0 0 (] 0 0 0 0 0 0o loT1 PC!
0 0 0 1 0 0 0 0 0 o 0 o 0 0 0 0 0 1 .
0 0 1 0 0 0 0 0 0 0 0 [0 0 0 0 1))/ 0 10 OI’IEXeC
oflol1[1]JofofofoJoJofJo|lofo]o]o 1 oo 'ALUOp=Or
o[1]ofJoJofofJoJoJoJoJoJoJoJo 1 [ofo0ofo]o 1:ALUSelA
ol1lol1fofofofofo]oo[o]0 KD ofo]oofo ALUSelB=11,
0 & 1 0 0 0] 0 0 0 0 [0 1 0 0 0 0 0 0 x: MemtoRgd
0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 1 [0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 /6 1 0 [0 o 0 0 0 0 o o . n
1[o1]1]0]o0]a 1o t0 e o|ofo o oo oo 4 LWwy F%?;%%UESQD
T|1]o]o]o]o T [ofoo]e]o oo o000 ALZ“;‘:IEEQ LUSelBoL
1 & 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 N _
1[1]1]o0]oAf oloJofJofJoJoJoeJoJoJoJo]o]o 1'%{'55\/%'
1 1 1 1 1 0 0 0 0 0 o 0 0 0 0 0 0 0 0
C5: opcode = 5 (bits 11, 12, 13, 14) — signal O11 is true (1)
Computer Organization I, Spring 2010, Tina Nilander 1822000 15 Computer Organization I, Spring 2010, Tina Nilander 1822000 16
v_“ State transitions (2) ‘ Hardwired control
Nextstate from currentstate Altermatiely, : . :
prior state & condition Control signal generation in hardware is fast
S0 Sl 4,55, 57, S8, 59, S11 -> Stated
State 1 -> S2, S6, S8, S10 > Statel
State 2 ->S5or .. _> State 2 Weaknesses
State 3 ->S9or ... '> State 3 CU difficult to design
-> State
State 4 ->State 0 — Circuit can become large and complex
State 5 -> State 0 State2 &op=SW > State CU difficult to modify and change
ztate 3 - % > State 6 Design and 'minimizing’ must be done again
tate 7 -> State
State 8 -> State 0 Staiclo > SR T .)) i
State 9-> State 0 . ->state8 RISC-philosophy makes it a bit easier
State 10 -> State 11 State3 & op=JMP ->State 9 Simple instruction set makes the design and implementation
State 11 -> State 0 -> State 10 easier
State 10 -> State 11
Computer Organization I, Spring 2010, Tiina Niklander 18.2.2010 17 Computer Organization I, Spring 2010, Tiina Niklander 18.2.2010 18

Comp. Org Il, Spring 2010

Lecture 10: Control Unit

18.2.2010

‘_ Computer Organization Il

Computer Organization Il, Spring 2010, Tiina Niklander

Microprogrammed control
(Mikro-ohjelmoitu ohjaus)

1822010 19

‘ Microprogrammed control
(Mikro-ohjelmoitu ohjaus)

Idea 1951: Wilkes Microprogrammed Control
Execution Engine
Execution of one machine instruction (or micro-operation) is done
by executing a sequence of microinstructions
Executes each microinstruction by generating the control signals
indicated by the instruction
Micro-operations stored in control memory as microinstructions
Firmware (laiteohjelmisto)
Each microinstruction has two parts
What will be done during the next cycle?
Microinstruction indicates the control signals -
Deliver the control signals to circuits
Whatis the next microinstruction?
Assumption: next microinstruction from next location
Microinstruction can contain the address location of next
instruction!

Computer Organization Il, Spring 2010, Tiina Niklander 1822010 20

‘ Microinstructions

Fetch
cycle
routine

Tnterrupt
eyele
routine

Indirect
eycle
routine

& Esecute cycle beginning

" ..llllnp to indirect or execute
Each stage in instruction
execution cycle is Jump to execute
represented by a 5
sequence of Jump o fetc
microinstructions that e
are executed during the :

Jump to fetch or interrupt

cyclein that stage

AND routine

E.g. In ROM memory

Microprogram or Jump to fetch or interrupt
firmware
[(Sta06 Fig17.2)| e

f
|

Computer Organization Il, Spring 2010, Tiina Niklander

IOF routine

1822010 21

‘ Horizontal microinstruction

All possible control signals are represented in a bit vector of
each microinstruction

One bit for each signal (1=generate, 0=do not generate)

Long instructions if plenty of signals used
Each microinstruction is a conditional branch

What status bit(s) checked

Address of the next microinstruction

L Microinstruction address
|— Jump condition

—Unconditional

—Zero
—Overflow

[(Sta09Fig 16.1 a) | e o
L System bus control signals

Internal CPU control signals

Computer Organization Il, Spring 2010, Tiina Niklander 1822010 22

‘ Vertical microinstruction

Control signals coded to number

horizontal instructions)

Computer Organization Il, Spring 2010, Tiina Niklander

Decode back to control signals during execution
Shorter instructions, but decoding takes time
Each microinstruction is conditional branch (as with

| L Microinstruction address
Jump condition

} Function codes

1822010 23

Tnstruction Register

"‘ Execution Engine

. . " Control
. (Ohjausyksikkd) Unit
Control Address Register, CAR F‘]’;; T ine|™ [Control Address Register |
Which microinstruction next? ciock —] Logic

4

~ instr. pointer, “MiPC"
Control memory
Microinstructions Control

Memary

Read

fetch, indirect,execute,interrupt
Control Buffer Register, CBR
Register for executing microinstr.

Control Buffer Register

~ instr. register, “MilR”

Generate the signals to circuits
Next Address

Verticals through decoder
Sequencing Logic
Next address to CAR

Control

[E700) [, -
_ Within CPU to System Bus

Computer Organization Il, Spring 2010, Tiina Niklander 1822010 24

Comp. Org Il, Spring 2010

Lecture 10: Control Unit 18.2.2010

“ What micrainstruction “ What microinstruction next?

- next? -
a) Explicit b) Implicit
Each instruction has 2 Assumption: next
addresses J—— microinstruction from next control
memory
with the conditions flags that memen location in control memory
are checked for branching Must be calculated
Next instruction from either instruction has 1 address conrol | [—| - Contral address
control register L

address (select using the flags) .l;;g:} Still need the condition flags
Oftenjustthe next location in If condition=1,

control memory use the address

Why store the address? e | e Address part not always used e
flags —p| : i = selection
No time for addition! « Jogie Wasted space
(Sta09Fig 16.6) | I
(Sta06Fig176)] [SECSERmZ
ComputerOrganization I Sping 2010, Tina Nikander w2000 2 ComputerOrganization I Sping 2010, Tina Niander 12200 26
‘ What microinstruction next? “ R .
- - What microinstruction next?

Some bits interpreted in two How to locate the correct microinstruction routine?
ways Control signals depend on the current machine instruction

address
) bt

¢) Variable format - d) Address generation during execution
—_—

1 b: Address or not memory Generate first microinstruction address from op-code
) R . (mapping + combining/adding)
Only branch instructions Most-significant bits of address directly from op-code
have address Sonteel H Least-significant bits based on the current situation (0 or 1)
register r Example: IBM 3033 CAR, 13 bit address

Branch instructions do not | Op-code gives 8 bits -> each sequence 32 micro-instr.

have control signals rest 5 bits based on the certain status bits
If jump, need to execute

two microinstructions

instead of just one = = T B
P Fr
Wasted time? b I T T T T T
Saved space? [(Sta09 Fig 16.8). gis BA®) BB4) BCW) BD@ BEW Br) |[SECOCIIGNEON
[(sta06Fig17.8)|
Computer Organization I, Spring 2010, Tina Nilander 182200 27 Computer Organization I, Spring 2010, Tina Nilander 1822000 28
‘_ What microinstruction next? ‘ Microinstruction coding
€) Subroutines and residual control Horizontal? Vertical?
Microinstruction can set a special return register with "return Horizontal: fast interpretation
address . Vertical: less bits, smaller space
No context, just one return allowed (one-level only) X X .
No nested structure Often a compromize, using mixed model
Example: LSI-11, 22 bit microinstruction Microinstruction split to fields, each field is used for certain

Control memory 2048 instructions, 11 bit address

OP-code determines the first microinstruction address control signals

Assumption, next is CAR + CAR+1 Excluding signal combinations can be coded in the same field
E:ﬁh instruction has a bit: subroutine call or not NOT: Reg source and destination, two sources — one dest
 Store return address (only the latest one available) Coding decoded to control signals during execution
Jump to the routine (address in the instruction) Onefield can control decoding of other fields!
Return:jump to address in return register Several shorter coded fields easier for implementation than
one long field

Several simple decoders

Computer Organization I}, Spring 2010, Tiina Niklander 1822010 29 Computer Organization Il, Spring 2010, Tiina Niklander 1822010 30

Comp. Org Il, Spring 2010 5

Lecture 10: Control Unit

18.2.2010

»

Microinstruction coding

(a) Direct encoding

Functional encoding E M =
(toiminnoittain) Decode

Each field controls one specific logie logie
action
Load from accumulator l l l l l l
Load from memory

| Decode || Decode|

Control signals

Load from (b) Indirect encoding
Resource encoding B | e I e [|
(resursseittain) ————————

Each field controls specific Decode I e | | Decode l
resource logic logis logic)

Load from accumulator
Store to accumulator
Add to accumulator

... accumulator

012 34567 8 9101112131415161718

Simple register transfers

Feld = 7 % 4 % 1
[0,0,0[0,1,0] | MAR < Register -
Regster 3 definition /
select 1 - register fansfer 4- ALU operation
Memory operations i l-memor})t)pe' 5 - register selection
(o 0,7o,0,0 Read 3- sequenfing operation 6 - Constant

0,0,1[0,0,1] ;| Write

Zontal microinstruction format

Special sequencing operations
P <

/ Vertical vs.
/ Horizontal
Microcode ()
ACC < ACC + Register

ACC <ACC- Regimr} / Next microinstruction
[yt ifo,1,0] 4| ACC < Register J/ address (CAR = CSAR)
1
1

Register — ACC Assumption: CAR=CAR+1

ACC < Register + 1

Regist
(a) Vertical microinstruction format (by resource) |(Sta06 Fig17.12)|
ComputerOrganization I, Sping 2010, Tina Nikander (S8 FRizD)] 2200 3t ComputerOrganization I Sping 2010, Tina Niander 2200 3
. .
‘_ Why microprogrammed control? ‘

..even when its slower than hardwired control
Designis simple and flexible

Moadifications (e.g. expansion of instruction set) can be added

very late in the design phase

Old hardware can be updated by just changing control memory

Whole control unit chip in older machines

There exist development environments for microprograms
Backward compatibility

Oldinstruction set can be used easily

Just add new microprograms for new machine instructions
Generality

One hardware, several different instruction sets

One instruction set, several different organizations

Computer Organization I}, Spring 2010, Tiina Niklander 1822010 33

. Review Questions / Kertauskysymyksié

Hardwired vs. Microprogrammed control?

How to determine the address of microinstruction?
Whatis the purpose of control memory?
Horizontal vs. vertical microinstruction?

Why not to use microprogrammed control?
Microprogrammed vs. hardwired?

Langoitettu vs. mikro-ohjelmoitu toteutus?
Kuinka mikrokaskyn osoite maaraytyy?

Mihin tarvitaan kontrollimuistia?
Horisontaalinen vs. vertikaalinen mikrokasky?
Miksi ei mikro-ohjelmointia?

Mikro-ohjelmointi vs. langoitettu kontrolli?

Computer Organization I}, Spring 2010, Tiina Niklander

1822010 34

Comp. Org Il, Spring 2010

