Lecture 9: Superscalar processing

16.2.2010

»

Pipelined
functional
units

Computer Organization Il, Spring 2010, Tiina Niklander

Superscalar processors

Reference Speedup

] G0a| [TJIAD70] 18
[KUCK72] 8

= Concurrent execution of scalar instructions ~ [WEiss4] 158

. . . [AcCOsg6] 23

1 Several independent pipelines P ——

= Not just more stages in one pipeline [sMIT89] 23

N P . . poupssy] 22
= Own functional units in each pipeline {EE9] -

Memary (St09Fig 141, THILAY

»

Successive instruetions

Superscalar

Superpipelined

Each stage split into 2
“half-stages”

R, -

Superscalar processor

W Efficient memory usage
= Fetch several instructions at once, prefetching (ennaltanouto)
= Data fetch and store (read and write)
= Concurrency
1 Several instructions of the same process executed
concurrently on different pipelines
= Select executable instruction from the prefetched one
following a policy (in-order issue/out-of-order issue)

Two instructions ™ Finish more than one instruction during each cycle
lexecuted at the = Instructions may complete in different order than started
H lsame time. (out-of-order completion)
i (e M When can an instruction finish before the preceeding ones?
Computer Organization II, Spring 2010, Tiina Niklander 16.2.2010 3 Computer Organization II, Spring 2010, Tiina Niklander 16.2.2010 4
‘_ Dependencies (riippuvuus) ddTIr2 ‘\ Effect of dependencies
\])))
) move r3,rl INoDepndency} +
W True Data/Flow Dependency (datariippuvuus) H H H H
= Read after Write (RAW) ' 1 ' 1
X X . . !Data Dependency '
= The latter instruction needs data from former instruction 1(i1 uses data computee by i0)

M Procedural/Control Dependency (kontrolliriippuvuus) © ' ' ' ' '
' ' . - '
= Instruction after the jump executed only, JINZ R2, 100 iUbranch ' sProcedural Dependency
) ADD R1,=1 ‘ H
when jump does not happen i2 !
= Superscalar pipeline has more instructions to waste i H
‘4 '
= Variable-length instructions: some additional parts known only :: !
during execution '
: o ' ' ' '
1 Resource Conflict (Resurssiriippuvuus) "Resource Conflict
= One or more pipeline stage needs the same resource 10 and i1 use the same 1
)) !functional unit)! !

= Memory buffer, ALU, access to register file, ... h f 7 3 n 3 A = s P (Sta09Fig14.3)

Computer Organization II, Spring 2010, Tiina Niklander 16.2.2010 5 Computer Organization II, Spring 2010, Tiina Niklander 16.2.2010 6

Comp. Org Il, Spring 2010

Lecture 9: Superscalar processing 16.2.2010

. NOTE: Newest 8thed. only

i Dependencies specific ‘ Ch14 -Incorrect definitions!
to out-of-order completion . Dependencies SEE ERRATA
Ch 12 - Correct definitions!

load r1,X
Output Dependency (Kirjoitusriippuvuus N o
vF\:rite-aﬂZr-write (V)\ll/(AW)J PP) :gg :5&:2 I write” RL data dependency (RAW)
Two instructions alter the same register or memory locaton, | | | T In data dependency inStruc_ﬁon j_
the latter in the original code must stay j: "read” R1 cannotbe executed before instr. i!
Antidependency (Antiriippuvuus)
i: "read” R1 antidependency (WAR)

Write-after-read (WAR)

The former read instruction must be ableto | | | Anti-andoutput dependencyallow
i : "write” R1 S . - .
fet-ch the register content, before the latter e R,) & changeln execution orderfor instructions
write stores new value there /7 iand j, butafterwards must be checked
Alias? load R6, 0(R2) i "write” R1 that the right value and result remains
Two registers use indirect references to the same memory | | |
location? ji "write” R1 output dependency (WAW)
Different virtual address, same physical address?
What is visible on instruction level (before MMU)?
Computer Organization I, Spring 2010, Tiina Niklander 16.2.2010 7 Computer Organization I, Spring 2010, Tiina Niklander 16.2.2010 8
‘_ How to handle dependencies? ‘ Parallelism (rinnakkaisuus)

Instruction-level parallelism (k&skytason rinnakkaisuus)
load ri+r2 Independentinstructions of a sequence can be executed in
add r3 < r3+1 parallel by overlapping

add r4 « r4, r2 Theoretical upper limit for parallel execution of instructions
Depends on the code itself

Starting point

All dependences must be handled one way or other
Simple solution (as before)

Special hardware detects dependency and

force,the plpe‘!ne o wait (bubble) Machine parallelism (konetason rinnakkaisuus)
Alternative solution add r3« r3+1 Ability of the processor to execute instructions parallel
Compiler generates instructions in such a way that there will add r4>r3 2 How many instructions can be fetched and executed at the
be NO dependencies =~ same time?
load rO ~ r4

~ How many pipelines can be used

Always smaller than instruction-level parallelism
Cannot exceed what instructions allow, but can limit the
true parallelism
Dependences, bad optimization?

No special hardware

simpler CPU that need not detect dependencies
Compiler must have very detailed and specific information
about the target processor's functionality

1622010 10

Computer Organization Il, Spring 2010, Tiina Niklander 16.2.2010 9 Computer Organization Il, Spring 2010, Tiina Niklander
‘_ Superscalar execution ‘ Superscalar execution
et Gepartre Instruction fetch (késkyjen nouto)
instruction fetch d"pi:'fh_ e (nowait) (wait?) Branch prediction (hyppyjen ennustus)

and branch 1 Uinstruction instruction
'

— prefetch (ennaltanouto) from memory to CPU

static prediction] exccution reorder and
program P—— commit . o
(wait?) /17 Instruction window (valintaikkuna)
- ? |
—_—] ~ set of fetched instructions
P Instruction dispatch/issue (késkyn paastaminen hihnalle)

'

'
\ Check (and remove) data, control and resource dependencies
Reorder; dispatch the suitable instructions to pipelines

Semmoem-- Pipelines proceed without waits
window of
execution If no suitable instruction, wait here
_ Instruction complete, retire (suoritus valmistuu)
Commit or abort (hyvéksy tai hylkaa)

Check and remove write and antidependencies
- wait / reorder (jarjesta uudelleen)

1622010 11 Computer Organization 1), Spring 2010, Tina Niklander

issue ~ laukaisu, liikkeellelaskeminen
dispatch ~ vuorottaminen, léhettéa suorittamaan |(Sta09 Fig 14.6)|

1622010 12

Computer Organization Il, Spring 2010, Tiina Niklander

Comp. Org Il, Spring 2010

Lecture 9: Superscalar processing 16.2.2010

*_ In-order issue, in-order complete * In-order issue, in-order complete
Fetch 2 instructions at the same time
Traditional sequencial execution order 11 needs 2 cycles for execution
No need for instruction window 13 and 14: resource dependency
Instructions dispatched to pipelines in original order 15 (consume) and 14 (produce): data dependency
Compiler handles most of the dependencies 15 and 16: resource dependency
Still need to check dependencies, if needed add bubbles Decode Execute Write Cycle
: : il | 12 1
Can .allow overlapping on multlplleplpelfn?s - = NS 5
Instructions complete and commit in original oder B | 4 T - 3
Cannot pass, overtake (ohittaa) on other pipeline = i‘; (:3 LHDE 2
Several instructions can complete at same time 16 [[?\ 3| 14 %
Commit/Abort 16/ — 7
5 | 16]
Decode clean before fetching next two instructions
Instructions queue for execution in decode unit |(Sta09 Fig14.4a)
Writes delayed to maintain in-order completion
Computer Organization I, Spring 2010, Tiina Niklander 16.2.2010 13 Computer Organization I, Spring 2010, Tiina Niklander 16.2.2010 14
!. In-order issue, out-of-order complete !_! Out-of-order issue, out-of-order complete
Like previous, but - - - .) . - '
P U Fetch 2 instructions at the same time Dispatch instructions for execution in any suitable order
- Allow commit in different 11 needs 2 cycles for execution Need instruction window
order than issued order
| ; 13 and 14: resource dependency Processor looks ahead (at the future instructions)
allow passin
(CI P " g)d i 15 (consume) and 14 (produce): data dep. Must concider the dependencies during dispatch
- Clear write and antidep. . . " .
o P [15.and 16: resource dependency Allow instructions to complete and commit in any suitable
before writing the results
order
(WAW)
Check and clear write and antidependencies
Decode Execute Write Cyele Output dependency
11 2 1 1:R3€R3 op R Anti dependency (WAR)
S e 2 I1:R3 < R30pR5
2] 11/ (B | —[2) 3 2R4 €R3+1 : d Y
5 | 16 4, /[13 4 12:.R4 € R3+1
16 /ﬁ~ \B/ Xﬁi_ s 3R3_€R5+1
sl 8 +
4 0| — must not write to R3,
\19 i ¢ 4:R7€R30pR4 J3:R3_€RS5+1 13 ite to R3
14:R7 € R30pR4 before 11 has read the content
[(sta09Fig14.4b)|
Computer Organization I, Spring 2010, Tiina Niklander 16.2.2010 15 Computer Organization I, Spring 2010, Tiina Niklander 16.2.2010 16
‘i Out-of-order issue, Out-of-order ‘ Register renaming
: complete . (rekistereiden uudelleennimeaminen)

Fetch 2 instructions at the same time

11 needs 2 cycles for execution One cause for some of the dependencies is the usage of

names
13 and 14: resource dependency The same name could be used for
15 (consume) and 14 (produce): data dependency several independent elements

Thus, instructions have unneeded
write and antidependencies
Decode Window Execute Write Cycle Causing unnecessary waits

15 and 16: resource dependency

|12 1 Solution: Register renaming
13 14 %1,122 11 12 2 Hardware must have more registers (than visible to the
15 16 Iz 11 13 ~[(22)] 3 programmer and compiler)
(4)1516) I6 [14| "[n|B 4 Hardware allocates new real registers during execution
15 15 14 [(16)| 5 in order to avoid name-based dependencies (nimiriippuvuus)
5 6 Need
‘[More internal registers (register files, register set),
e.g. Pentium Il has 40 working registers
Instruction window, Hardware that is cabable of allocating and managing registers
(just a buffer, (sta0oFig14.4c) and performing the needed mapping
not a pipeline stage)
Computer Organization I, Spring 2010, Tiina Niklander 16.2.2010 17 Computer Organization I, Spring 2010, Tiina Niklander 16.2.2010 18

Comp. Org Il, Spring 2010 3

Lecture 9: Superscalar processing

16.2.2010

‘_ Register renaming

Output dependency(WAW):
(Kirjoitusriippuvuus)

"_“ Impact of additional hardware
[(sta09Fig14.5)|

base: out-of-order issue
+ld/st: base and duplicate load/store unit for data cache

F s ; +alu: base and duplicate ALU indow size 6 32
i3 must not finish before il Jmdovsiee gy g [
Anti dependency (RAW): Speedup Without renaming Speedup (With renaming
(antiriippuvuus) 4 4 1
i3 must not finish before i2
has read the value from R3 ,
3 3 —
Rename R3 use work registers
R3a, R3b, R3c 2 2 m
Other registers similarly:
R4b, R5a, R7b N 1 —
No more dependencies
based on names! Why R3a and Rab?| O e el ol BT Te——T—
Computer Organizaton Il, Spring 2010, Tina Nikiander 1622000 19 Computer Organizaton Il, Spring 2010, Tina Nikiander 1622010 20
L] L /r 1 L
‘_ Superscalar — conclusion H”H\‘@/ H” ‘ Computer Organization Il
Several functionally independent units -
e yIncep [Sta0oFig 4.
Efficient use of memory hierarchy
Allows parallel memory fetch and store
Instruction prefetch (késkyjen ennaltanouto)
Branch prediction (hyppyjen ennustaminen)
Hardware-level logic for dependency detections Pe nt| um 4
Circuits to pass information for other functional unit at the
same time as storing to register or memory
Hardware-level logic to dispatch several independent
instructions
Dependencies = dispatching order
Hardware-level logic to maintain correct completion order
(valmistumisjarjestys)
Dependencies = commit-order
Computer Organizaton Il, Spring 2010, Tina Nikiander 1622010 21 Computer Organizaton Il, Spring 2010, Tina Nikiander 162200 2

‘ Pentium 4

L2 Cache and Control

T

‘ Pipeline

Outside CISC (1A-32)

s
8
Z Tl Jeo[5oe Execution in micro-operations as RISC
L; 2 ﬂ Fetch CISC instruction and translate it to one or more micro-
= .
2 1 5 [*lasu operations (uops) to L1-level cache (trace cache)
& M & Rest of the superscalar pipeline operates with these fixed-
2 P 2 length micro-operations (118b)
& 5 < gl || [2 e z Long pipeline
= El = .| | E)
s E § H 2 H Extra stages (5 and 20) for propagation delayes
: 2] :;; 2 |4—' i
8 H gl 2] —
Cl t ~ g 1|2 J|4567|891011121314151617181920
<
g FPmove = TC NxtIP | TC Fetch (DriveAlloc| Rename | Que | Sch | Sch | Sch |Disp | Disp| RF | RF | Ex | Flgs Eer
M & FP store L L L
-]
el TC Next IP = trace cache next instruction pointer Rename = register renaming ~ RF = register file
= ‘;‘:l‘:ll TC Feteh = trace cache fetch Que = micro-op quening Ex = execute
AGU = address peneration wnit oM Alloc = allocate Sch = micro-op scheduling Flgs = flags
BTB = branch target buffer 1 L Disp = Dispatch Br Ck = branch check
D-TLB= data translation lookaside buffer
LTLB = insiruction ranslation lookaside buffer |(Sta09 Fig14.7)| |(Sta09 Fig14.8)
Computer Organization I, Sping 2010, Tina Niander 1622000 23 Computer Organization I, Sping 2010, Tina Nilander 1622000 2

Comp. Org Il, Spring 2010

Lecture 9: Superscalar processing

16.2.2010

“.‘ Generation of pops

Uses Instruction Lookaside Buffer (I-TLB)
and Branch Target Buffer (BTB)
four-way set-associative cache, 512 lines

if more then stored to microcode ROM

Dynamic branch prediction based on history (4-bit)
If no history available, Static branch prediction
backward, predict "taken”
forward, predict "not taken”
c) Fetch instruction from L1-level trace cache

Computer Organization Il, Spring 2010, Tiina Niklander

a) Fetch IA-32 instruction from L2 cache and generate popsto L1

1-4 pops (=118 bit RISC) per instruction (most cases),

b) Trace Cache Next Instruction Pointer - instruction selection

d) Drive — wait (instruction from trace cache to rename/allocator)

16.2.2010

. [Sta09 Fig14.9e] e
‘_ Resource allocation

e) Allocate resources
3 micro-operations per cycle
Allocate an entry from Reorder Buffer (ROB) for the pops
(126 entries available)
Allocate one of the 128 internal work registers for the result
And, possibly, one load (of 48) OR store (of 24) buffer

f) Register renaming
Clear 'name dependencies’ by remapping registers
(16 architectural regs to 128 physical registers)
If no free resource, wait (= out-of-order)

ROB-entry contains bookkeeping of the instruction progress
Micro-operation and the address of the original IA-32 instr.
State: scheduled, dispatched, completed, ready
Register Alias Table (RAT):

which 1A-32 register = which physical register

Computer Organization Il, Spring 2010, Tiina Niklander 1622010 26

‘ Window of Execution

g) Micro-Op Queueing

One for memory operations (load, store)
One for everything else
No dependencies, proceed when room in scheduling
h) Micro-Op Scheduling
Retrieve pops from queue and dispatch for execution
Onlywhen operands ready (check from ROB-entry)
i) Dispatching

If execution unit needed is free, dispatch to that unit
Two queues = out-of-order issue
max 6 micro-ops dispatched in one cycle

ALU and FPU can handle 2 per cycle

Load and store each can handle 1 per cycle

Computer Organization Il, Spring 2010, Tiina Niklander

2 FIFO queues for pops [Sta069Fig14.97-n|

Check the first instructions of FIFO-queues (their ROB-entries)

‘ Integer and FP Units

j) Get data from register or L1 cache
k) Execute instruction, set flags (lipuke)
Several pipelined execution units
4* Alu, 2 * FPU, 2 * load/store
E.g.fast ALU for simple ops, own ALU for multiplications
Result storing: in-order complete
Update ROB, allow next instruction to the unit
I) Branch check
What happend in the jump /branch instruction
Was the prediction correct?
Abort incorrect instruction from the pipeline (no result storing)
m) Drive — update BTB with the branch result

Computer Organization 1), Spring 2010, Tina Niklander 1622010 28

‘ Pentium 4 Hyperthreading

One physical IA-32 CPU, but 2 logical CPUs

Processors execute different processes or threads
No code-level issues
OS must be cabable to handle more processors (like
scheduling, locks)

Uses CPU wait cycles
Cache miss, dependences, wrong branch prediction

unit
Benefits depend on the applications

Computer Organization Il, Spring 2010, Tiina Niklander

OS sees as 2 CPU SMP (symmetric multiprocessing)

If one logical CPU uses FP unit the other one can use INT

‘ Pentium 4 Hyperthreading

Duplicated (kahdennettu)
IP, EFLAGS and other control registers

Instruction TLB
Register renaming logic

Split (puolitettu) Intel Nehalem arch.:
No monopoly, non-even split allowed 8 cores on one chip,
Reordering buffers (ROB) 1-16 threads (820

million transistors)
First lauched processor
Core i7 (Nov 2008)

Micro-op queues
Load/store buffers

Shared (jaettu)
Register files (128 GPRs, 128 FPRs)
Caches: trace cache, L1, L2, L3
Registers needed during pops execution
Functional units: 2 ALU, 2 FPU, 2 Id/st-units

Computer Organization Il, Spring 2010, Tiina Niklander 1622010 30

Comp. Org Il, Spring 2010

Lecture 9: Superscalar processing

16.2.2010

‘_ Computer Organization Il

ARM Cortex-A8

i! ARM CORTEX-A8

ARM refers to Cortex-A8 as application processors
Embedded processor running complex operating system
Wireless, consumer and imaging applications
Mobile phones, set-top boxes, gaming consoles, automotive
navigation/entertainment systems
Three functional units
Dual, in-order-issue, 13-stage pipeline
Keep power required to a minimum
Out-of-order issue needs extra logic consuming extra power
Separate SIMD (single-instruction-multiple-data) unit
called NEON
10-stage pipeline

Computer Organization Il, Spring 2010, Tiina Niklander 16.2.2010 31 Computer Organization Il, Spring 2010, Tiina Niklander 16.2.2010 32
T -
Instruction fetch
. 2stages 5 stages 6stages .
n
‘ ‘ . . Iside || cache || Prefetch |-
- — . - Instruction Fetch Unit 0 || interfacel] 2@
i Instruction execute and Load/Store RAM branch |_
ey srucion egierwriehadk prediction
Instruction fetch Instruction decode ALU pipe Predicts instruction stream [T]
ARM u o| [muppeo u N
ade | cache || PO | oo 125 cache || D-de Fetches instructions from the (included) L1 instruction cache
Cortex- R;'M nterface|| (B _, | sequencer (hf(kand —-%é AlUplpe1 | [Interface RTM
e 28| T | Into buffer for decode pipeline
A8 T Tt 5
Up to four instructions per cycle
Block I I 1 l ! p o fout ons per ey
NEON unit NEON reistrwriehack Speculative instruction fetches

; P
Diagram achel ucion e NEON and preloed
engine buffers

Integer ALU pipe

E Integer MUL pipe
instruction | | B Ingeger shift pipe
Z [T°][__non-iece Fp ADD pipe
L2 cache 2t ‘non-IEEE FP MUL pipe

data RAM

TEEE floating-point engine

Load and store
data queue

[Loadsstore permute pipe

3stages 1stage 6stages

10-stage SIMD pipeline
Computer Organization Il, Spring 2010, Tiina Niklander 1622010 33

Branch or exceptional instruction cause pipeline flush
Two-level global history branch predictor

Branch Target Buffer (BTB) and Global History Buffer (GHB)
Return stack to predict subroutine return addresses

Can fetch and queue up to 12 instructions

Camputr rgazaton 1, Speing 201, T Naaer om0 3
Instruction decode
. 1 De di

‘_ Instruction Fetch Unit: Processing Stages ‘ Instruction Decode Unit szzcu"e‘fcfr oo 4
1 issue

F0 address generation unit (AGU)
Next address sequentially

Dual pipeline structure, pipe0 and pipel
Two instructions at a time

Or branch target address (from branch e F F2 Pipe0 contains older instruction in program order
prediction of previous address) mispredict If instruction in pipe0 cannot issue, pipel will not issue
F1 fetch instructions from L1 __J__‘
In parallel, check the branch prediction E AGU : R/iM L, el‘f; In-order instruction issue and retire
for the next address :__ . TLB | fetd): > Results written back to register file at end of execution pipeline
F2 Place instruction to instr. queue queue no WAR hazards
If branch prediction, new target BTB tracks WAW hazards and straightforward recovery from flush
address sent to AGU GR";B Decode pipeline to prevent RAW hazards
Issues instructions to decode two at a
time
Computer Organization I, Spring 2010, Tiina Niklander 16.2.2010 35 Computer Organization I, Spring 2010, Tiina Niklander 16.2.2010 36

Comp. Org Il, Spring 2010

Lecture 9: Superscalar processing

16.2.2010

‘_ Instruction Decode Unit: Processing Stages

D0 Decompress Thumbs and do preliminary decode
D1 Instruction decode completed
D2 Write instruction to and read instructions from pending/replay queue

D3 instruction Do D1 D2 D3 D4
scheduling logic
Scoreboard predicts

replay

register availability
using static scheduling
Hazard checking
D4 Final decode -
control signals for
integer execute

Pending and
replay queue
load/store units

Comptter Organization I}, Spring 2010, Tiina Niklander 1622010 37

‘_ Integer Execution Unit

Two symmetric (ALU) pipelines, an address generator for
load and store instructions, and multiply pipeline
Multiply unit instructions routed to pipe0

Performed in stages E1 through E3

Multiply accumulate operation in E4

EO Access register file
Up to six registers for two instructions
E1 Barrel shifter if needed.
E2 ALU function
E3 If needed, completes saturation arithmetic
E4 Change in control flow prioritized and processed
E5 Results written back to register file

Comptter Organization I}, Spring 2010, Tina Niklander 1622010 38

‘ Integer Execution Unit

branch
mispredict replay
EO E1 E2 E3 IE4I (=3
ALU/
o multiply
= pipe 0
INsTO | &
— 2
2
]
INST 1 <
g —>{ | Shift ALU SAT W8 AL
- pipe 1
g
<
RAM
Format L2 Load/store
N pipeaar

e

Computer Organization Il, Spring 2010, Tiina Niklander 1622010 39

“_‘ Load/store pipeline

Parallel to integer pipeline

E1 Memory address generated from base and index
register

E2 address applied to cache arrays

E3 load, data returned and formatted

E3 store, data are formatted and ready to be written to
cache

E4 Updates L2 cache, if required

E5 Results are written to register file

Computer Organization 1), Spring 2010, Tina Niklander 1622010 40

‘ SIMD and Floating-Point Pipeline

‘ ARM Cortex-A8 NEON & Floating Point Pipeline

NEON register writeback

SIMD and floating-point instructions pass through integer bup |l M:JL L] M;JL N m1:c Lol ASC Ll we —
pipeline Instruction decode I, [— — bﬁ':é
i inali 1 Shift 2 [-» Shift 3} > > '
Processed in separate 10-stage pipeline Frw— SHIFT
NEON unit qL":‘:e biaw [aes b B b we .

Handles packed SIMD instructions + e —
.) . Inst Non-IEEE

N FMUL [| FMUL| | FMUL | | FMUL
Provides two types of floating-point support Dec ot P o ML o MR Loy PP WB | e
FADD | [FADD | |FADD| |FADD | | o | Non-IEEE
Ifimplemented, vector floating-point (VFP) coprocessor U Z B £ FADD pipe
performs IEEE 754 floating-point operations) IFEE
Load and store VFP single/double
If not, separate multiply and add pipelines implement floating- with alignment precision VFP
point operations PERM Load/s(aor::
1 permute
Computer Organization ll, Spring 2010, Tiina Niklander 16.2.2010 41 Computer Organization ll, Spring 2010, Tiina Niklander 16.2.2010 42

Comp. Org Il, Spring 2010

Lecture 9: Superscalar processing 16.2.2010

? Review Questions / Kertauskysymyksié

Differences / similarities of superscalar and trad. pipeline?
What new problems must be solved?

How to solve those?

Whatis register renaming and why it is used?

Miten superskalaaritoteutus eroaa tavallisesta
liukuhihnoitetusta toteutuksesta?
Mita uusia rakenteesta johtuvia ongelmia tulee ratkottavaksi?
Miten niité ongelmia ratkotaan?
Mité tarkoittaa rekistereiden uudelleennimeéminen

jamita hyotya siita on?

Computer Organization Il, Spring 2010, Tiina Niklander 1622010 43

Comp. Org Il, Spring 2010 8

