
Lecture 8: RISC 11.2.2010

Comp. Org II, Spring 2010 1

CPU Examples & RISC

Ch 12.5-6 [Sta06]

Pentium/ARM

Lecture 8

Ch 13 [Sta06]
Instruction analysis
RISC vs. CISC
Register use

Computer Organization II

Pentium

11.2.2010 2Computer Organization II, Spring 2010, Tiina Niklander

X86: Processor Registers

11.2.2010Computer Organization II, Spring 2010, Tiina Niklander 3

EAX, EBX, ECX, EDX,

ESP, EBP, ESI, EDI

CS, SS, DS,

ES, FS, GS

EFLAGS
EIP

(Sta09 Table 12.2)
X86: Processor Registers

11.2.2010Computer Organization II, Spring 2010, Tiina Niklander 4

(Sta09 Table 12.2)

Function as a stack,
or store MMX values

selector, offset

Pentium: FP / MMX Registers

Aliasing
FP used as stack (pino)
MMX multimedia
instructions use the same
registers, but use them
with names
MMX-usage: bits 64-79
are set to 1 NaN
FP Tag (word) indicate
which usage is current

First MMX instr. set

EMMS (Empty MMX

State) instruction reset

(Sta06 Fig 12.22)

Programmer responsibility
11.2.2010 5Computer Organization II, Spring 2010, Tiina Niklander

(Sta09 Fig 12.24)

Pentium: EFLAGS Register

Condition of the processor: carry, parity, auxiliary, zero,
sign, and overflow

Used in conditional branches

(Sta09 Fig 12.22)

11.2.2010 6Computer Organization II, Spring 2010, Tiina Niklander

(Sta06 Fig 12.20)

Lecture 8: RISC 11.2.2010

Comp. Org II, Spring 2010 2

Pentium: Control Registers

(Sta06 Fig 12.21)

Not used!

System control
flags

Last page accessed
before page fault

11.2.2010 7Computer Organization II, Spring 2010, Tiina Niklander

(Sta09 Fig 12.23)

Pentium: Interrupts

Calling interrupt handler; atomic hardware functionality!
If not in privileged mode (etuoikeutettu tila)

PUSH(SS) stack segment selector to stack
PUSH(ESP) stack pointer to stack
PUSH(EFLAGS) status register to stack
EFLAGS.IOPL 00 set privileged mode
EFLAGS.IF 0 disable interrupts (keskeytys)
EFLAGS.TF 0 disable exceptions (poikkeus)
PUSH(CS) code segment selector to stack
PUSH(EIP) instruction pointer to stack (käskyosoitin)
PUSH(error code) if needed

number interrupt controller / INT-instruction / status register
CS interrupt vector [number].CS
EIP interrupt vector [number].EIP

Return
Privileged IRET-instruction
POP everything from stack to their places

See Sta09 Table 12.3

as subroutine call

Address translation:
Segment nunber- and
offset from interrupt vector =>
Address of the interrupt handler

11.2.2010 8Computer Organization II, Spring 2010, Tiina Niklander

11.2.2010Computer Organization II, Spring 2010, Tiina Niklander 9

Sta09 Table 12.3

Ex
ce

pt
oi

n
an

d
In

te
rr

up
t V

ec
to

r T
ab

le

Computer Organization II

ARM

11.2.2010 10Computer Organization II, Spring 2010, Tiina Niklander

ARM features

Array of uniform registers (moderate number)
Fixed length (32 bit) instruction (Thumb 16 bit)
Load/Store architecture,
Small number of addressing modes (reg + instr. field)
Autoincrement addressing mode (for program loops)
Data processing instructions allow shift or rotate to
preprocess one of source regs

Separate ALU and shifter for this purpose

Conditional execution of instructions
Fewer conditional branches, improves pipeline efficiency

11.2.2010Computer Organization II, Spring 2010, Tiina Niklander 11

ARM Processor
Organization

Varies substantially -

different versions of ARM

architecture

Simplified, generic

organization

Register file: set of 32-bit

registers, total 37 regs

31 general-purpose regs

6 status regs

Partially overlapping banks

11.2.2010Computer Organization II, Spring 2010, Tiina Niklander 12

Lecture 8: RISC 11.2.2010

Comp. Org II, Spring 2010 3

Processor modes

User mode
no access to protected system resources, can cause

exception

Supervisor mode
For OS, starts with software interrupt instruction

Abort mode – due to memory faults
Undefined mode – instruction not supported
Fast interrupt mode

Interrupt from designated fast interrupt source

Not interruptable, can interrupt normal interrupt

Interrupt mode
Any other interrupt signal, can be interrupted by fast interrupt

System mode
Only for certain priviledged OS tasks

11.2.2010Computer Organization II, Spring 2010, Tiina Niklander 13

Exception
modes

Register organization

11.2.2010Computer Organization II, Spring 2010, Tiina Niklander 14

SP – stack pointer

LR – link register

PC – program counter

CPSR – current

program status

register

SPSR – saved

program status

register

Shaded regs replaced

in exception modes!

Program status regs (CPSR & SPSR)

N,Z,C,V – condition code
Q – overflow or saturation
in SIMD-orient. instr.
J – Jazelle instruction in
use
GE[3:0] – for SIMD as
greater than or equal flags
for individual bytes or
halfwords of the result

E – endianness in
load/store
A,I,F – interrupt disable
bits (A - imprecise data aborts,
I – normal IRQ, F – fast FIQ)
T – normal / Thumb instr.
M[4:0] – mode

11.2.2010Computer Organization II, Spring 2010, Tiina Niklander 15

ARM Interrupt
vector

Table lists the

exception types

and the address in

interrupt vector for

that type.

The vector

contains the start

addresses of the

interrupt handlers.

11.2.2010Computer Organization II, Spring 2010, Tiina Niklander 16

Computer Organization II

RISC-
architecture

Ch 13 [Sta06]
Instructions
RISC vs. CISC
Register allocation

11.2.2010 17Computer Organization II, Spring 2010, Tiina Niklander

Hardware mile stones
Virtual memory, 1962

Simpler memory management
Pipeline, 1962
Architecture family concept, 1964

Set of computers using the same instruction set
Microprogrammed control, 1964

Easier control design and impl.
Multiple processors, 1964

test_and_set instruction needed
Cache, 1965

Huge improvement in performance
RISC-architecture, 1980

Simple instruction set
Superscalar CPU, 1989

Multiple instruction per cycle
Hyperthreading CPU, 2001

Several register sets and virtual processors on chip
Multicore CPU, 2005

Several full processors on chip

IBM S/360, DEC PDP-8

IBM S/360

IBM S/360

Atlas

Univac

IBM

IBM, Intel

Intel

Atlas

Intel, Sony-Toshiba-IBM

Maurice Wilkes

Tom Kilburn

Tom Kilburn

Gene Amdahl

J.P. Eckert, John Mauchly

Maurice Wilkes

John Cocke, 1974
J.L. Hennessy & D.A. Patterson

John Cocke, 1965

Intel IBM

CDC, 1964 Intel

IntelIBM

11.2.2010 18Computer Organization II, Spring 2010, Tiina Niklander

Lecture 8: RISC 11.2.2010

Comp. Org II, Spring 2010 4

CISC (Complex Instruction Set Computer)

Goal: Shrink the semantic gap (semanttinen kuilu)
between high-level language and machine instruction set

Expressiveness of high-level languages has increased

”Simple” compilations

- Language structures match nicely with instructions

Lot of different instructions for different purposes

Lot of different data types

Lot of different addressing modes

Complex tasks performed in hardware by control unit, not in

the machine code level (single instruction)

- Less instructions in one program (shorter code)

- Efficient execution of complex tasks

11.2.2010 19Computer Organization II, Spring 2010, Tiina Niklander

Year 1982, computer: VAX, PDP-11, Motorola 68000
Dynamic, occurrencies during the execution

Operations and Operands, which are used?

(Sta06 Table 13.2, 13.3)

80% of references
to local variables

11.2.2010 20Computer Organization II, Spring 2010, Tiina Niklander

Subroutine (procedure, function) calls?

Lot of subroutine calls
Calls rarely have many parameters
Nested (sisäkkäinen) calls are rare

(Sta06 Table 13.4)

98% less than 6 parameters

92% less than 6 local variables
How to use the information?

11.2.2010 21Computer Organization II, Spring 2010, Tiina Niklander

Observations

Most operands are simple
Many jumps and branches
Compilers do not always use the complex instructions

They use only a subset of the instruction set

Conclusion?

"Entia non sunt multiplicanda praeter necessitatem"
("Entities should not be multiplied more than necessary")

William Of Occam (1300-1349)
English monk, philosopher

"It is vain to do with more that which can be done with less"

Occam’s razor (Occamin partaveitsi)

11.2.2010 22Computer Organization II, Spring 2010, Tiina Niklander

Optimize
Optimize the parts that consume most of the time

Procedure calls, loops, memory references, addressing, …

Bad example: rarely used (10%) floating point instructions
improved to run 2x:

Speedup due to an enhancement is proportional
to the fraction of the time (in the original system)
that the enhancement can be used.

Speedup = ExTimeold / ExTimenew = 1 / 0.95 = 1.053 << 2

ExTimenew = ExTimeold * (0.9 * 1.0 + 0.1 * 0.5)
= 0.95 x ExTimeold

Amdahl’s law

No speedup Speedup: 1/2

11.2.2010 23Computer Organization II, Spring 2010, Tiina Niklander

Optimization

Optimize execution speed (suoritusnopeus),
instead of of ease of compilation

Compilers are good, machines are efficient

- Compiler can and has time to do the optimization

Do most important, common things in hardware and fast

- E.g. 1-dim array reference

And the rest in software

- E.g. multidim. arrays, string processing, ...

- Library routines for these

RISC architecture (Reduced Instruction Set Computer)

11.2.2010 24Computer Organization II, Spring 2010, Tiina Niklander

Lecture 8: RISC 11.2.2010

Comp. Org II, Spring 2010 5

RISC architecture
Plenty of registers (minimum 32)

Compilers optimize register usage

LOAD / STORE architecture
Only LOAD and STORE do memory referencing

Small set of simple instructions
Simple, fixed-length instruction format (32b)

Instruction fetch and decoding simple and efficient

Small selection of simple address references
No indirect memory reference

Fast address translation

Limited set of different operands
32b integers, floating-point

One or more instructions are done on each cycle

11.2.2010 25Computer Organization II, Spring 2010, Tiina Niklander

RISC architecture

CPU easier to implement
Pipeline control and optimization simpler

Hardwired (langoitettu)

Smaller chip (piiri) size
More chips per die (lastu,kiekko)

Smaller waste%

Cheaper manufacturing
Faster marketing

25% yield (OK)
75% wasted

55% yield (OK)
45% wasted

11.2.2010 26Computer Organization II, Spring 2010, Tiina Niklander

RISC vs. CISC

(Sta06 Table 13.1)

11.2.2010 27Computer Organization II, Spring 2010, Tiina Niklander

RISC vs. CISC

(Sta06 Table 13.7)

11.2.2010 28Computer Organization II, Spring 2010, Tiina Niklander

Computer Organization II

Register usage

11.2.2010 29Computer Organization II, Spring 2010, Tiina Niklander

Register storage (Register file)

More registers than addressable in the instruction
E.g. SPARC has just 5 bits for register number 0.. 31,

but the processor has 40 to 540 registers

Small subset of registers available for each instruction in
register window

In the window references to register r0-r31

CPU maps them to actual (true) registers r0-r539

(Sta06 Fig 13.3)

Current
Window
Pointer

11.2.2010 30Computer Organization II, Spring 2010, Tiina Niklander

Lecture 8: RISC 11.2.2010

Comp. Org II, Spring 2010 6

Register window (rekisteri-ikkuna)

Procedure call uses registers instead of stack
Fixed number of registers for parameters

and local variables (paikalliset muuttujat)

Overlapping area to allow parameter passing to the next

procedure and back to caller

(Sta06 Fig 13.1)

11.2.2010 31Computer Organization II, Spring 2010, Tiina Niklander

Register window (rekisteri-ikkuna)
Too many nested calls (sisäkkäinen kutsu)

Most recent calls in registers
Older activations
saved to memory
Restore when nesting
depth decreases
Overlap only when needed

Global variable?
In memory or own register window

SPARC
r0-r7 global var.
r8-r15 parameters (in caller)
r16-r23 local variables
r24-r31 parameters (to called)

(Sta06 Fig 13.2)

Virtual
registers

Real registers

11.2.2010 32Computer Organization II, Spring 2010, Tiina Niklander

Register set vs. cache

The register file acts like a small, fast buffer (as cache?)
Register is faster, needs less bits in addressing, but

Difficult for compiler to determine in advance,
which of the global variable to place in registers
Cache decides this issue dynamically

Most used and referenced stay in cache

(Sta06 Table 13.5)

time space

Number of bits

11.2.2010 33Computer Organization II, Spring 2010, Tiina Niklander

Compiler-based register optimization
(allocation of registers)

Problem: Graph coloring
Minimize the number of different
colors, while adjacent nodes
have different color

= Difficult problem
(NP-compleate)

Form a network of symbolic registers based on the program code
Symbolic register~ any program quantity that could be in register
The edges of the graph join together program quantities that are
used in the same code fragment

Allocate real registers based on the graph
Two symbolic registers that are not used at the same time (no edge
between them) can be allocated to the same real register (use the
same color)
If there are no more free registers, use memory addresses

Models of
Computation

-course

11.2.2010 34Computer Organization II, Spring 2010, Tiina Niklander

Allocation of registers
(compiler-based register optimization)

Node (solmu) = symbolic register
Edge (särmä) = symbolic registers used at the same time
n colors = n registers

(Sta06 Fig 13.4)

11.2.2010 35Computer Organization II, Spring 2010, Tiina Niklander

RISC-pipeline

(Sta06 Fig 13.6)

Single port MEM

Two port MEM
(split cache enough?)

13 10

8 11

Clock cycle?

11.2.2010 36Computer Organization II, Spring 2010, Tiina Niklander

Lecture 8: RISC 11.2.2010

Comp. Org II, Spring 2010 7

RISC-pipeline, Delayed Branch

(Sta06 Fig 13.7)

Traditional

RISC with inserted NOOP
Two port MEM

RISC with reversed instructions

Branch (ehdollinen hyppy):

JZERO 105, rA ??

11.2.2010 37Computer Organization II, Spring 2010, Tiina Niklander

RISC & CISC United?

Pentium, CISC
Each 1 – 11 byte-length CISC-instruction is ’translated’ by
hardware to one or more 118-bit micro-operations
(stored in L1 instruction cache)
Lower levels (including control unit) as RISC
Lot of work registers, used by the hardware

Crusoe (Transmeta)
Outside looks like CISC-architecture
Group of Instructions ’translated’ by software to just before
execution to fixed-length micro-operations; these can be
optimized before execution

- VLIW (very long instruction word, 128 bits)
- 4 ops/VLIW-instruction

Lower levels as RISC

Just in time (JIT) compilation

’compilation’ at
every execution

’compilation’ just
once per group

11.2.2010 38Computer Organization II, Spring 2010, Tiina Niklander

Review Questions /Kertauskysymyksiä

Main features and characteristics of RISC-architecture?
How register windows are used?

Mitkä ovat RISC arkkitehtuurin tunnuspiirteet?
Miten rekisteri-ikkunoita käytetään?

11.2.2010 39Computer Organization II, Spring 2010, Tiina Niklander

