Lecture 8: RISC

11.2.2010

»

Computer Organization Il

Pentium

Computer Organization Il, Spring 2010, Tiina Niklander 11.2.2010 2

‘ X86: Processor Registers

‘_\ X86: Processor Registers
(Sta09 Table 122) |

M FP used as stack (pino)
5 MMX multimedia
instructions use the same
registers, but use them
with names
¥ MMX-usage: bits 64-79
aresettol - NaN
M FP Tag (word) indicate
which usage is current
= First MMX instr. set
= EMMS (Empty MMX

EEEEEEEE‘

MMX Registers

State) instruction resevt\ \PrOQrammer responsibility ‘

Computer Organization Il, Spring 2010, Tiina Niklander

11.2.2010 5

(a) Integer Unit in 32-bit Mode

Type Number _Length (bt5) Purpose _ (©kloating Lomtime —
General 8 32 General-purpose user registers Type NUmber Length (bits) Putbose
Segment 6 16 Contain segment selectors B - -

) Numeric 8 80 Hold floating-point numbers
EFLAGS 1 32 Status and control bits X
Instruction Pointer 1 30 Instruction pointer _ ezt 1 Lo Contolbits
- Status 1 16 Status bits
Tag Word 1 16 Specifies contents of numeric
(b) Integer Unit in 64-bit Mode registers
A Instruction Pointer 1 48 Points to instruction interrupted
Type Number Length (bits) Purpose b 8
)y exception
Lo 2 S T ST R A Data Pointer 1 48 Points to operand interrupted by
Segment 6 16 Contain segment selectors exception
RFLAGS 1 64 Status and control bits
Instruction Pointer 1 64 Instruction pointer
‘Computer Organization I, Spring 2010, Tina Niklander 11.2.2010 3 Computer Organization I, Spring 2010, Tina Niklander 11.2.2010 4
ﬂ. (Sta09 Fig 12.24) |
- Pentium: FP / MMX Registers |(Sta06 Fig12.22)
Floating-Point
w Ali asing Tag Floating-Point Registers

flag DF = Direction flag

VIP = Virtual interrupt pending IF - Interrupt enable flag
VIF = Virtual interrupt flag TF = Trap flag
AC = Alignment check SF = SienThe
VM = Virtual 8086 mode ZF = Zeroflag
RF = Resumeflag AF = Auxiliary carry flag
NT = Nested task flag PE = Parity flag
IOPL = TO privilege level CF = Canryflag

I Condition of the processor: carry, parity, auxiliary, zero,
sign, and overflow
= Used in conditional branches

Computer Organization Il, Spring 2010, Tiina Niklander 11.2.2010 5

Comp. Org Il, Spring 2010

Lecture 8: RISC 11.2.2010

o Pentium: Control Registers . Pentium: Interrupts
& VIV o . L
. |g|g|gx HEB glg,l;;ll Calling interrupt handler; atomic hardware functionality!
Elelelele ‘E, DITIE If not in privileged mode (etuoikeutettu tila)
CR3 Page Directory Base cfv I PUSH(SS) stack segment selector to stack

CR2 Page Fault Linear Address [PUSH(ESP) stack pointer_ to stack as subroutine call
PUSH(EFLAGS) status register to stack

CRL Notused! | \ / EFLAGS.IOPL + 00 set privileged mode

R0 Al [w / |N|E|T|E|M|P EFLAGS.IF+ 0 disable interrupts (keskeytys)
M| [P E|T|SIM|P|E . . .
e et EFLAGS.TF« 0 disable exceptions (poikkeus)
7 5 g
E— BG = Pams | PUSH(CS) code segment selector to stack
Page Global Enable CD = Cache Disable PUSH(EIP) instruction pointer to stack (késkyosoitin)
ﬁavhmf g:::k Egable m = X;ﬂ Write T“hm\‘igl' PUSH(error code) if needed
ysical Address Extension M = Alignment Mas .)) ;
Page Size Extensions WP = Write Protect number « interrupt controller / INT-instruction / status register
Debug Extensions NE = Numeric Error CS + interrupt vector [number].CS Address translation:
Time Stamp Disable ET = Extension Type EIP « interrupt vector [number].EIP | Segment nunber- and
Protected Mode Virtual Interrunt TS = Task Switched ‘ Ofretomintermntvectori=
VME = Virtual 8086 Mode Extensions EM = Emulation Return errup -
PCD = Page-level Cache Disable MP = Monitor Coprocessor o i N Address of the interrupt handler
PWT = Page-level Writes Transparent PE = Protection Enable an“eged IRET instruction .
_ POP everything from stack to their places
Computer Organization I, Spring 2010, Tina Nilander 12200 7 Computer Organization I, Sping 2010, Tina Nilander 12200 8
. Vector Number Description .
‘ 0 Divide error; division overflow or division by zero
1 Debug exception; includes various faults and traps related to debugging ‘ . .
. 2 R e e ey - Computer Organization Il
3 Breakpoint; caused by INT 3 instruction, which is a 1-byte instruction useful for debugging
@ 4 INTO-detected overflow; occurs when the processor executes INTO with the OF flag set
e 5 BOUND range exceeded; the BOUND instruction compares a register with boundaries stored in
G ‘memory and generates an interrupt if the contents of the register is out of bounds.
[l 6 Undefined opcode
a 7 Device not available: attempt to use ESC or WAIT instruction fails due to lack of external device
° 8 Double fault; two interrupts occur during the same instruction and cannot be handled serially
g 9 Reserved
= 10 Invalid task state segment; segment describing a requested task is not initialized or not valid
g_ 11 ‘Segment 1ot present; required segment not present
c 12 Stack fault; limit of stack segment exceeded or stack segment not present A R M
[13 General protection; protection violation that does not cause another exception (e.g., Writing to a
c read-only segment)
- 14 Page fault
= 15 Reserved
[+ 16 Floating-point error; generated by a floating-point arithmetic instruction
c 17 Alignment check; access to a word stored at an 0dd byte address or a doubleword stored at an
o address not a multiple of 4
o 18 Machine check; model specific
3] 1931 Reserved
Ll>j 32-255 User interrupt vectors; provided when INTR signal is activated
Unshaded: exceptions
Shaded: interrupts [Sta09 Table 12.3]
Computer Organization I, Sping 2010, Tina Nilander 112200 9 Computer Organization I, Sping 2010, Tina Nilander 112200 10
. .
‘External memory (cache, main memory)
‘ ‘ ARM Processor
. ARM features .

Organization

ress register [emory buffer register

i i Varies substantially - p=—>{ Memory ad
Array of uniform registers (moderate number) ly

Fixed length (32 bit) instruction (Thumb 16 bit)
Load/Store architecture,
Small number of addressing modes (reg + instr. field) Rd
Autoincrement addressing mode (for program loops) Simpliied, generic _.I
Data processing instructions allow shift or rotate to
preprocess one of source regs

Separate ALU and shifter for this purpose
Conditional execution of instructions

different versions of ARM
™

architecture RIS (PC) e

User Register File (RO - R13)

organization &n B Ace

Tostruction register

Register file: set of 32-bit =

registers, total 37 regs

. . - - 31 general-purpose regs K
Fewer conditional branches, improves pipeline efficiency 9 purp ¢ ALU .::‘::\'.’}Z:.
6 status regs Control
unit.
Partially overlapping banks
Computer Organization I, Spring 2010, Tiina Niklander 11.2.2010 11 Computer Organization I, Spring 2010, Tiina Niklander 11.2.2010 12

Comp. Org Il, Spring 2010 2

Lecture 8: RISC

11.2.2010

“ Processor modes

‘i Register organization

N N Modes
Privileged mod
User mode e
no access to protected system resources, can cause SP — stack pointer User System | Supervisor | Abort | Undefined | Interrupt =
exception LR — link register RO RO RO RO RO RO RO
[Supervisor mode PC — program counter | ——— i+ T m | wm
For OS, starts with software interrupt instruction CPSR - current B s i L i s i
R4 R4 R4 R4 R4 R4 R4
Abort mode — due to memory faults program status B s | [m | m [w | owm
. . . . R6 R6 R6 R6 R6 R6 R6
£ . Undefined mode — instruction not supported register = o = ~ = = =
xception
modes —= Fast interrupt mode SPSR — saved RS RS RS RS RS RS RS_fig
R9 R9 R9 R9 R9 R9 R9_fiq
Interrupt from designated fast interrupt source program status RI0 RI0 RI0 R10 RI0 R0 | Riohq
R . R register RI1 RIL RIL RIL RIL RI1 RI1_fiq
Not interruptable, can interrupt normal interrupt g T =) T a5 =5 RiE Ri2.fa
I nterru pt mode R13 (SP) RI13 (SP) RI13_sve RI3_abt R13_und RI3_iq RI13_fiq
Sh d d | d RI14(LR) R14 (LR) R14_sve RI14_abt R14_und R14_irq R14_fiq
Any other interrupt signal, can be interrupted by fast interrupt aded regs replaced s ee TRise) | RI5e0 | R5@C) | RI5E0 | RISEC) | R R0
in exception modes!
System mode P [cpsr CPSR | CPSR | CPSR | CPSR | CPSR | CPsR |
Only for certain priviledged OS tasks [sPsR_sve |SPSRabe [sPSR wd |SPSRirq [SPSR fia |
Computer Organization I, Spring 2010, Tiina Niklander 11.2.2010 13 Computer Organization I, Spring 2010, Tiina Niklander 11.2.2010 14
Exception type Mode Normal Description
entry
- - address
‘ ‘ Rosct Supervisor | 0x00000000 | Occurs whea the system is mitialized_
. Program status regs (CPSR & SPSR) . Data abort “Abort 0300000010 | Occurs when an invalid memory address

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

|N|ZIC|V|QIRes |J| Reserved I GE[3:0] | Reserved |E|AI I |F|T| M[4:0] |

"
User flags

N,Z,C,V — condition code

Q — overflow or saturation

System control flags
E — endianness in
load/store

ARM Interrupt

has been accessed, such as if there is 10
physical memory for 2n address or the
correct access permission s facking

vector

Table lists the
exception types
and the address in

FIQ (fast interrupt) | FIQ

0x0000001C | Occurs when an external device asserts the
FIQ pin on the processor. An interrupt
cannot be interrupted except by an FIQ.
FIQ is designed to support a data transfer
or channel process, and has sufficient
private registers to remove the need for
register saving in such applications,
therefore minimizing the overhead of
context switching. A fast interrupt cannot

be intemrupted.
. interrupt vector for [IRQ Gaterrupt) RQ 0x00000018 | Occurs when an external device asserts the
in SIMD-orient. instr. A,lLF — interrupt disable P IRQ pin on the processor. An interrupt
. X that type. cannot be interrupted except by an FIQ.
J —Jazelle instruction in bits (A - imprecise data aborts, Prefetchabort | Abort GR0000000C | Occurs when an affempt o feich an
instruction results in a memory favlt. The
use I —normal IRQ, F — fast FIQ) ™ . exception is raised when the instruction
. e vector enters the exccute stage of the pipeline
GE[SO] — for SIMD as T —normal / Thumb instr. tains the start Undefined Undefined | 0x00000004 | Occurs when an instruction not in the
contains the stal i i i i hes the f
greater than or equal flags M[4:0] — mode o o tmetions A
i addresses of the Softwae interruj Supervisor | 0x00000008 | Generally used to allow user made
for individual bytes or LS e .
yt interrupt handlers. Z;:ﬁ?:;;&# ;;w%w?;x\;ﬁ mmgm
halfwords of the result i i i e i i
user wishes to perform.
Computer Organization l, Spring 2010, Tiina Niklander 11.2.2010 15 Computer Organization ll, Spring 2010, Tiina Niklander 11.2.2010 16

‘_ Computer Organization Il

NS
RS
- o @

o >
Yo e e

architecture %"

Ch 13 [Sta06]

Instructions
RISCvs. CISC
Register allocation

Computer Organization Il, Spring 2010, Tiina Niklander 1122010 17

Hardware mile stones

Computer Organization Il, Spring 2010, Tiina Niklander 1122010 18

Virtual memory, 1962
Simpler memory management

Pipeline, 1962

Architecture family concept, 1964
Set of computers using the same instruction set

Microprogrammed control, 1964

Easier control design and impl.

Multiple processors, 1964
test_and_set instruction needed
Cache, 1965

Huge improvement in performance
RISC-architecture, 1980 el ot e
. . N J.L. Hennessy & D.A. Patterson
Simple instruction set

Superscalar CPU, 1989
Multiple instruction per cycle [18M [intel
Hyperthreading CPU, 2001

Several register sets and virtual processors on chip
Multicore CPU, 2005
Several full processors on chip

Comp. Org Il, Spring 2010

Lecture 8: RISC

11.2.2010

»

CISC (Complex Instruction Set Computer)

Goal: Shrink the semantic gap (semanttinen kuilu)
between high-level language and machine instruction set
Expressiveness of high-level languages has increased
"Simple” compilations
Language structures match nicely with instructions
Lot of different instructions for different purposes
Lot of different data types
Lot of different addressing modes
Complex tasks performed in hardware by control unit, not in
the machine code level (single instruction)

‘ Operations and Operands, which are used?

Year 1982, computer: VAX, PDP-11, Motorola 68000
Dynamic, occurrencies during the execution

Machi Memory-R
Dynamic Occurrence Weighted Weighted
Pascal & Pascal © Pascal @

ASSIGN 38% 13% 13% 14% 15%
LOOP 5% 3% (02 | (2% | /3% [26%\
CALL 15% e [\aw/ | \8%/ | \ua/ | \sse/

IF 29% 11% 21% 7% 13%
GOTO = 3% = = = =
OTHER 6% 1% 3% 1% 2% 1%

‘Weighted Relative Dynamic Frequency of HLL Operations [PATTS2a]

Pascal C Average

. . . e e 5y ek di Dynamic Percentage | to local v
Less instructions in one program (shorter code) Secalar Variable 8% 53% 55% of Operands
Efficient execution of complex tasks Array/Structure 26% 24% 25% [(Sta06 Table 13.2,13.3)
Computer Organization I, Spring 2010, Tiina Niklander 11.2.2010 19 Computer Organization I, Spring 2010, Tiina Niklander 11.2.2010 20

»

. Subroutine (procedure, function) calls?

Lot of subroutine calls
Calls rarely have many parameters
Nested (sisakkainen) calls are rare

Percentage of Executed Compiler, Interpreter, and Small Nonnumeric
Procedure Calls With Typesetter Programs

>3 arguments 0-7% 0-5%

>5 arguments 0-3% 0%

>8 words of arguments and 1-20% 0-6%

local scalars

>12 words of arguments and 1-6% 0-3%

local scalars

Procedure Arguments and Local Scalar Variables

How to use the information? |98% less than 6 parameters
92% less than 6 local variables

Computer Organization I, Spring 2010, Tiina Niklander 1122000 21

‘ Observations

Most operands are simple

Many jumps and branches

Compilers do not always use the complex instructions
They use only a subset of the instruction set

Conclusion?

Occam'’s razor (Occamin partaveitsi)

Computer Organization I, Spring 2010, Tiina Niklander 1122000 22

‘ Optimize

Optimize the parts that consume most of the time
Procedure calls, loops, memory references, addressing, ...
Bad example: rarely used (10%) floating point instructions

improved to run 2x:
Speedup: 1/2
/

. . —
EXTime e, = ExTime,y * (0.9 * 1.0 + 0.1 * 0.5)
= 0.95 x EXTime,yq

Speedup = ExTime,y / EXTime,,,, = 1/0.95 = 1.053 << 2

Amdahl's law

Computer Organization I, Spring 2010, Tiina Niklander 1122000 23

‘ Optimization

Optimize execution speed (suoritusnopeus),
instead of of ease of compilation
Compilers are good, machines are efficient
Compiler can and has time to do the optimization
Do most important, common things in hardware and fast
E.g. 1-dim array reference

And the rest in software
E.g. multidim. arrays, string processing, ...
Library routines for these

= RISC architecture (Reduced Instruction Set Computer)

Computer Organization I, Spring 2010, Tiina Niklander 1122000 24

Comp. Org Il, Spring 2010

Lecture 8: RISC

11.2.2010

‘_ RISC architecture

Plenty of registers (minimum 32)
Compilers optimize register usage
LOAD / STORE architecture
Only LOAD and STORE do memory referencing
Small set of simple instructions
Simple, fixed-length instruction format (32b)
Instruction fetch and decoding simple and efficient

‘_ RISC architecture

CPU easier to implement
Pipeline control and optimization simpler
Hardwired (langoitettu)

Smaller chip (piiri) size
More chips per die (lastu,kiekko)

B
@

Smaller waste%

. . " 5 -
Small selection of simple address references Cheaper manufacturing %guf Y'ﬂf EjOK) iggﬂ Y'elf gOK)
. 6 waste! 6 waste!
No indirect memory reference Faster marketing
Fast address translation
Limited set of different operands
32b integers, floating-point
One or more instructions are done on each cycle
Computer Organization l, Spring 2010, Tiina Niklander 11.2.2010 25 Computer Organization I, Spring 2010, Tiina Niklander 11.2.2010 2
. .
!_ RISC vs. CISC ! RISC vs. CISC
Number Number of
of Max. Load/store Max bits for Number of
Complex Instruction Set Reduced Instruction Superscalar strue- | instme- | Numberof combined | mumberof | Unsligned | Max ineger | bitafor FP
(CISC)Computer Set (RISC) Computer Hon | tonsize | addressing | Indieot with memory | addressing | Numberof | register register
Processor sizes | inbytes modes addressing | arithmetic | operands allowed | MMUuses | specifier specifier
Characteristic IBM VAX Tntel SPARC | MIPS | PowerPC | Ulua MIPS P 7 7 T 7 7 - -
3701168 11/780 80486 R4000 SPARC | R10000 == = = ==
Year developed 1973 1978 1989 1987 1991 1993 1996 1996 [MIES RIN0 ! hd ! = =2 ! = L > 4
SPARC 1 + 2 w0 o 1 o 1 5 3
Number of 208 303 235 69 94 225
; 2 MC85000 1 4 A w0 o 1 o 1 5 3
HPPA 1 0 10 o o 1 o 1 5 3
Instruction size (bytes) 2-6 2-57 1-11 4 4 4 4 4
IBM RT/PC 2 4 1 no 1o 1 no 1 4% 3
Addressing modes 4 22 11 1 1 2 1 1
1IBM RS/6000 1 4 4 no no 1 yes 1 5 5
Number of gmeral- 16 16 8 40 -520 32 32 40 - 520 32 T 5 7 7 = . 3 o A = 7
purpose registers
IBM 3090 4 8 no® yes 2 yes 4 4 2
Control memory size 420 480 246 = = = = = = 2 _ =
(Kbits) Torel 50456 1 12 5 o 2 + 3 3
Cache size (KBytes) 6 o 8 2 | o] . 2 o s e = L L = = ‘ 2 2
MC68040 11 22 “ 2 8 4 3
Characteristics of Some CISCs, RISCs, and Superscalar Processors = = i = =
VAX 56 356 2 yes yes 6 yes 24 4 0
Clipper 4 3 9™ no no 1 o 2 4 3%
Totel 50560 > s* 5" w0 o 1 yest = 5 3
a RISC that does not conform to this characteristic
[(Sta0s Tabie13)] b CISC that does not conform to this characteristic [(CEoETaEETT]
Computer Organization I, Spring 2010, Tina Niklander 112200 27 Computer Organization Il, Spring 2010, Tina Niklander 112200 28

‘ Computer Organization Il

Register usage

Computer Organization Il, Spring 2010, Tiina Niklander 1122010 29

‘ Register storage (Register file)

More registers than addressable in the instruction
E.g. SPARC has just 5 bits for register number = 0.. 31,
but the processor has 40 to 540 registers
Small subset of registers available for each instruction in
register window
In the window references to register r0-r31

CPU maps them to actual (true) registers r0-r539
Instruction

—

Registers
Current v — Data
Window |w# Decoder
Ponter (staosFig 33
Computer Organizaton I, Spring 2010, Tina Nikiander 12200 3

Comp. Org Il, Spring 2010

Lecture 8: RISC

11.2.2010

\% Register window (rekisteri-ikkuna)

Procedure call uses registers instead of stack
Fixed number of registers for parameters
and local variables (paikalliset muuttujat)
Overlapping area to allow parameter passing to the next
procedure and back to caller

‘_ Register window (rekisteri-ikkuna)

Most recent calls in registers %™ s
Older activations
saved to memory

Restore when nesting s\d‘
depth decreases it

Overlap only when needed
Global variable?

In memory or own register window
Parameter [Local | [Temporary | [
Registers | Registers| | Registers evelJ SPARC :
— r0-r7 global var. Real registers
; Carent
Call/Return r8-r15 parameters (in caller) Virtual '\m
—~A— r16-r23 local variables s s
Parameter | [Local | Temporary 124-r31 parameters (to called) registers o
. . . Level J+1
Registers Registers Registers __‘W‘
Computer Organization I, Spring 2010, Tina Nilander 12200 3 Computer Organization I, Sping 2010, Tina Nilander 12200 32

‘_ Register set vs. cache (5ta06 Table 13.5)

Large Register File Cache

All local scalars Recently-used local scalars
Individual variables Blocks of memory
Compiler-assigned global variables Recently-used global variables
Save/Restore based on procedure Save/Restore based on cache
nesting depth replacement algorithm

Register addressi Number of bits Memory add;

The register file acts like a small, fast buffer (as cache?)
Register is faster, needs less bits in addressing, but
Difficult for compiler to determine in advance,
which of the global variable to place in registers
Cache decides this issue dynamically
Most used and referenced stay in cache

Computer Organization Il, Spring 2010, Tiina Niklander 1122010 33

\i Compiler-based register optimization
. (allocation of registers)

Problem: Graph coloring
Minimize the number of different
colors, while adjacent nodes
have different color

= Difficult problem

(NP-compleate)

Form a network of symbolic registers based on the program code
Symbolic register~ any program quantity that could be in register
The edges of the graph join together program quantities that are
used in the same code fragment

Allocate real registers based on the graph
Two symbolic registers that are not used at the same time (no edge
between them) can be allocated to the same real register (use the
same color)

If there are no more free registers, use memory addresses

Computer Organization Il, Spring 2010, Tiina Niklander 1122010 34

\i Allocation of registers

‘ RISC-pipeline

. (compiler-based register optimization) .
. X 1
Node (solmu) = symbolic register Lo -y [I[E[D TE[D]~
o))) Lot 1B—M TE[D T Telo
Edge (sarméd) = symbolic registers used at the same time Al iC—rA+iB IE 1 [E
) Store M —1C 1/ E[D N I E|D
n colors = n registers Branch X T[E 1 [E
1|E
(a) Sequential execution
A (b) Two-stage pipelined timing
I Single port MEM
. g T
A Load A=M I[ED Load A—M 1E[ED
H B—M 1|E|D Load B—M 1 E1/E2|D
D T~ 1|E /NoOP: 1E[E|
H € —rA+B 1[E A\NOO 1[E\[E
A M=1C 1|E[D Add (C—A+iB 1EE
Branch X 1E Store M=1C I |E1|Es|D
NOOP 1[E Branch X 1[EE:
NooP 1 [E1[E;
(c) Three-stage pipelined timing. NOOP, I |Ej|E;]
RlI R2 R3 Two port MEM (d) Four-stage pipelined timing
i 2 ?
() Time sequence of active use of registers (b) Register interference graph (split cache enough?) Clockcycle?
‘ ’ [(sta06Fig13.6)|
Computer Organizaton I Spring 2010, Tina Niklander 1220 3 Computer Organizaton I Spring 2010, Tina Niklander 12210 3

Comp. Org Il, Spring 2010

Lecture 8: RISC 11.2.2010

. .
‘_ RISC-pipeline, Delayed Branch ‘ RISC & CISC United?
1 2 3 4 5 6 7 8 . ‘compilation’at
100 LOAD)C?A 1 E D Pentium, CISC . . lever execution
101 ADD 1, 14" 1 E Each 1 — 11 byte-length CISC-instruction is 'translated’ by
102 JUMP 105 1 E hardware to one or more 118-bit micro-operations
103 ADD rA, 1B 1 (stored in L1 instruction cache)
105 STORETA, Z 1 E D | Traditional Lower levels (including control unit) as RISC
100 LOAD X, rA 1 B D Lot of work registers, used by the hardware
101 ADD 114 T E Crusoe (Transmeta) [Just in time (J1T) compilation |
102 JUMP 106 1 E Outside looks like CISC-architecture
‘OK{',"EB 1 E Group of Instructions ‘translated’ by software to just before
106 STORE x4, Z I | E | D |RiSCwithinserted NOOP execution to fixed-length micro-operations; these can be
100 LOAD X, Ar I TE]D Two port MEM optimized before execution
101 JUMP 105 1 E Branch (ehdollinen hyppy): VLIW (very long instruction word, 128 bits)
102 ADD L.ra 1 E JZERO 105, rA 72 4 pops/VLIW-instruction ‘compilatio
105 STORE T4, Z 1 E | D | Riscwith reversed instructions Lower levels as RISC once per group
Computer Organization 1, Spring 2010, Tiina Niander 12200 37 Computer Organization I, Sping 2010, Tina Nilander 112200 3

‘ Review Questions /Kertauskysymyksia

Main features and characteristics of RISC-architecture?
How register windows are used?

Mitka ovat RISC arkkitehtuurin tunnuspiirteet?
Miten rekisteri-ikkunoita kaytetaan?

Computer Organization Il, Spring 2010, Tiina Niklander 1122010 39

Comp. Org Il, Spring 2010 7

