Lecture 7: CPU structure and functions

9.2.2010

i General structure of CPU

= ALU ‘Arithmetic and Logic Unit

= Calculations, comparisons
I Registers

= Fast work area

Internal CPU B
Y

M Processor bus

= Moving bits
I Control Unit (Ohjausyksikké)

(lecture 10, Ch 16-17)
= What? Where? When?

i

= Clock pulse

sug

= Generate control signals
- What happens at the next pulse?
= MMU?
M Cache?

Computer Organization I, Spring 2010, Tiina Niklander

sug
s
sog s
soMppy mieq o)

i

922010

Registers

¥ Top of memory hierarchy

I User visible registers
= Programmer / Compiler decides how to use these
= How many? Names?

W Control and status registers
= Some of these used indirectly by the program

ADD R1,R2,R3

BNEQ Loop

- PC,PSW, flags, ...
= Some used only by CPU internally
- MAR, MBR, ...

W Internal latches (apurekisteri) for temporal storage during
instruction execution
= Example: Instruction register (IR) instruction interpretation;
operand first to latch and only then to ALU

Computer Organization I, Spring 2010, Tiina Niklander 922010

‘ User visible registers

1 Different processor families=>
different number of registers,
different naming conventions (nimeé&mistavat),
different purposes

I General-purpose registers (yleisrekisterit)

1 Data registers (datarekisterit)

I Address registers (osoiterekisterit)

= Segment registers (segmenttirekisterit)
= Index registers (indeksirekisterit)
= Stack pointer (pino-osoitin)
= Frame pointer (ymparistdosoitin)
I Condition code registers (tilarekisterit)

Computer Organization I, Spring 2010, Tiina Niklander

922010

Example [(Sta06 Fig 12.3) |

Data Register

Number of registers:

General Registers

b2 AX [Accumulator] (8/) 16-32 ok! (y 1977)
gi BX [Dase
s CX [Come RISC: several hundreds
= DX [Daw
Do
D7 I
Qf:""'" & Indes General Registers
Address Registers (s
2 ey EAX AX
A0 b EBX BX
Al ECX [s4
DI | DestIndex
A2 EDX DX
a1
Segment
Ad — EsP sp
Az cs ode EBP BP
as DS | Dam ' T
" ss | smek ’E;‘] o
A7 Es [Estra
Program Status
Program Counter] [TP | EEAGI Regts
Siats Regier == Tastruction Pointer
() MCE8000 (h) 8086 (€) 80386 - Pentium 4
‘Computer Organization I, Spring 2010, Tina Niklander 522010

Comp. Org Il, Spring 2010

i Design issues:
. PSW - Program Status Word |- OSsupport
- Memory and
registers in control
™ Name varies in different architectures data storing
I State of the CPU - paging
= Privileged mode vs user mode - Sub:(outines and
. . t
M Result of comparison (vertailu) stac ®
etc

= Greater, Equal, Less, Zero, ...
I Exceptions (poikkeus) during execution?
= Divide-by-zero, overflow
= Page fault, “memory violation”
™ Interrupt enable/ disable
= Each ‘class’ has its own bit
1 Bit for interrupt request?
= 1/0 device requesting guidance

Computer Organization I, Spring 2010, Tiina Niklander

922010

Lecture 7: CPU structure and functions

‘_ Instruction cycle (kaskysykli)

Indirection Indirection

e e

[Muttiple
operands

Operand

No
Instruction complete, Return for string interrupt
fetcth next instruction or vector data

£ im e g eh an g
‘address. operation address i address. - Inte ¢
ulat decoding calculati R calculation = i

Computer Organization I}, Spring 2010, Tiina Niklander

/

922010 7

9.2.2010

i Operand fetch, Indirect addressing
(Operandin nouto, epasuora 0soitus)

MAR « Address

MAR < MMU(MAR)
Control Bus + Reserve
Control Bus + Read
MBR + MEM[MAR]

MAR < MBR

MAR < MMU(MAR)
Control Bus + Read
MBR + MEM[MAR]
Control Bus + Release

Bus

ALU? Regs? « MBR

Cache!

Computer Organization I}, Spring 2010, Tiina Niklander

Address Data Coutrol

us

922010 o

‘_ Instruction fetch (kaskyn nouto)
MAR « PC
MAR + MMU(MAR)
Control Bus « Reserve

Control Bus «+ Read
PC « ALU(PC+1)
MBR « MEM[MAR]
Control Bus « Release
IR « MBR

Memary buffer register
femory addees regiter Address Data Control
IR = astracton segister Bus Bus Bus
5 = Progran couter

Cache (valimuisti)!
Prefetch (ennaltanouto)!

Computer Organization I}, Spring 2010, Tiina Niklander 922010 5

‘_ Computer Organization Il

Instruction pipelining
(liukuhihna)

Computer Organization I}, Spring 2010, Tiina Niklander

922010 11

‘_ Data flow, interrupt cycle

MAR «+ SP

MAR < MMU(MAR)
Control Bus « Reserve
MBR « PC

Control Bus « Write

MAR + SP « ALU(SP+1)
MAR + MMU(MAR)

MBR + PSW

Control Bus « Write

SP « ALU(SP+1)

PSW ¢ privileged & disable
MAR ¢ Interrupt number
Control Bus + Read

PC « MBR + MEM[MAR]
Control Bus + Release

Memory|

Address Data Control
ws Bus Bus

No address translation!

SP = Stack Pointer [STDBREENZEN

Computer Organization I}, Spring 2010, Tiina Niklander 922010 10

Comp. Org II, Spring 2010

‘_ Laundry (pesula) example (by David A. Patterson)

Ann, Brian, Cathy, Dave:
each have one load of clothes
to wash, dry and fold

Washer takes 30 min

Dryer takes 40 min

“Folder” takes 20 min ‘iF

Computer Organization Il Spring 2010, Tiina Niklander 022010 12

Lecture 7: CPU structure and functions

9.2.2010

‘.‘* Sequential Laundry

Takes 6 hours for 4 loads
If they learned pipelining, how long would laundry take?
Time
6 PM 7 8 Q 10 Midnight

B e
30 40 20 30 40 20 30 40 20 30 40 20

Average latency
(Iatenssi kesto, viive)

0 67 works per h

Throughput

?’

Computer Organization Il Spring 2010, Tiina Niklander 022010 13

‘ Pipelined Laundry

Takes 3.5 hours for 4 loads

6PM 7 9 10

e —
30 40 40 40 40 20

15 h per work
Average speed

Max speed?

1.5 work per h

At best case, laundry is completed every 40 minutes! (0.67 h / finished work)

Computer Organization Il Spring 2010, Tiina Niklander 922010 14

‘ Lessons

Pipelining does not help latency of single task, butit helps
throughput of the entire workload
Pipelining can delay single task compared with situation where it is
alone in the system

Next stage occupied, must wait
Multiple tasks operating simultaneously, but different phases
Pipeline rate limited by slowest pipeline stage

Can proceed when all stages done

Not very efficient, if different stages have different durations,
unbalanced lengths

Potential speedup

=maximum possible speedup

=number of pipe stages

Computer Organization I}, Spring 2010, Tiina Niklander 922010 15

‘ Lessons

Complex implementation,
May need more resources
Enough electrical current and

e
30 40,740 40 40 20

sockets to use both washer and
dryer simultaneously
Two (or three) people present all
the time in the laundry
Time to “fill” pipeline and time to
“drain” it reduce speedup
“Hiccups” (hikka)
Variation in task arrivals, works

itdrain

best with constant flow of tasks till
——
Computer Organization, Spring 2010, TinaNikiander 92200 15

‘ 2-stage instruction execution pipeline
(2-vaiheinen liukuhihna)
[(sta06 Fig 12.9) |

Wait New address Wait

Instruction Instruetion Result

Discard

Instruction prefetch (ennaltanouto) at the same time as execution of
previous instruction
Principle of locality (paikallisuus): assume ‘sequential’ execution
Problems

Execution phase longer = fetch stage sometimes idle

Execution modifies PC (jump, branch) = fetched wrong instr.

Prediction of the next instruction’s location was incorrect!

Not enough parallelism = more stages?

Computer Organization Il Spring 2010, Tiina Niklander 022010 17

Comp. Org II, Spring 2010

‘ 6-stage pipeline

—fime

1123456789]|10|11|12]13(14
Instruction 1 | g1 | p1 | co | Fo | E1 |wo
Instruction 2 FI | DI | CO| FO | EI [WO
Instruction 3 FI | DI | CO[FO| EI WO
Instruction 4 FI | DI [CO | FO | EI [WO
Instruction § ¥I | b1 | co | Fo | EI |[WO
Instruction 6 FI | DI | CO | FO | EI |WO
Instruction 7 1 | I | co|Fo| Er [wo
Instruction 8 FI | DI | CO[FO | EI WO
Instruction 9 FI | DI | co | Fo | EI (WO

FE - Fetch instruction FO - Fetch operands
DI - Decode instruction El - Execute instruction
CO - Calculate operand addresses | |WO - Write operand

Computer Organization I}, Spring 2010, Tiina Niklander 922010

18

Lecture 7: CPU structure and functions 9.2.2010

‘_ Pipeline speedup (nopeutus)? ‘ Pipeline performance: one cycle time
Lets calculate (based on Fig 12.10): T= rr)_zaz([fi]"‘ d= Tt d >>d
6- stage pipeline, 9 instr. — 14 time units "’ \
Same without pipeline — 9*6 = 54 time units Max time (duration) of
Speedup =54/14 =3.86 < 6! Cycle time Stage i Latch delay, (}m:ﬁ‘;ﬂ"‘;ﬁs‘v;‘iﬂzn
. X . . . P (jakson time move data from
Maximum speedup: one instruction per time unit finish: kesto) one stage to next (max) kesto)

9time units = 9 instructions; 54/9= 6 ~one clock pulse

Not every instruction uses every stage
Cycle time is the same for all stages

Time (in clock pulses) to execute the stage

Each stage takes one cycle time to execute

Slowest stage determines the pace (tahti, etenemisvauhti)
The longest duration becomes bottleneck

Will not affect the pipeline speed

Speedup may be small (some stages idle, waiting for slow)
Unused stage = CPU idle (execution “bubble”)

Serial execution could be faster (no wait for other stages)

CompuierOrganizaon I, Sping 2010, Tina Nikinder 022010 1 CompuierOrganizaon I, Sping 2010, ina Nikinder 022010 20
. .

‘ Speedup? ‘ Speedup? Assumption: no jumps, branches
- 12

n instructions , k stages, t =cycle time

k=12 stages

/— more gains from
=9 stages

Pessimistic: assumes the same

No pipeline: _ r multi;_)lestaggs when
pip T, nkt duration for all stages =T = 6 stages more instructions
o without jumps
Pipeline: I :[k+(r‘|—l)}r
0 T T T T T T
next (n-1) tasks (instructions) will finish 2 4 s 16 32 64 128
i Number of instructions (log scale)
k stages before the first each during one cycle, one after another =30 instructions
task (instruction) is finished
7 =20 i
T, nk nk : =10
Speedup: S, = i T = - 4=
T k+(-Df [k+(n-1)] 2
0 T T T
H 10 15
Number of stages
Computer Oganization1, Spring 2010, Tiina Niklander 92200 21 Computer Oganization, Spring 2010, Tiina Nikiander 92200 22

‘_ More notes

Extra issues
and move data from buffer to buffer
time than single execution

But still

Executing large set of instructions is faster
Better throughput (lapimenoaste) (instructions/sec)

down execution of single instruction

Computer Organization Il Spring 2010, Tiina Niklander

CPU must store ‘midresults’ somewhere between stages

From one instruction’s viewpoint the pipeline takes longer

The parallel (rinnakkainen) execution of instructions in the
pipeline makes them proceed faster as whole, but slows

Comp. Org II, Spring 2010

‘_ Problems, design issues

Structural dependency (rakenteellinen riippuvuus)
Several stages may need the same HW

STORE R1\VarX

Memory: FI, FO, WO ADD R2R3\VarY
ALU: CO, El MUL R3,R4,R5
Control dependency (kontrolliriippuvuus)
Jump destination of conditional branch £0D - R, R
Jump There
known only after El-stage ADD R2,R3,R4
- Prefetched wrong instructions MUL R1R4R5

Data dependency (datariippuvuus)
Instruction needs the result of the

previous non-finished instruction

Computer Organization I}, Spring 2010, Tiina Niklander 022010 24

Lecture 7: CPU structure and functions

9.2.2010

‘ Solutions

Hardware must notice and wait until dependency cleared
Add extra waits, “bubbles”, to the pipeline; Commonly used
Bubble (kupla) delayes everything behind it in all stages

Structural dependency
More hardware, f.ex. separate ALUs for CO- and El-stages
Lot of registers, less operands from memory

Control dependency
Clear pipeline, fetch new instructions
Branch prediction, prefetch these or those?

Data dependency
Change execution order of instructions
By-pass (oikopolku) in hardware: result can be accessed
already before WO-stage

Computer Organization I}, Spring 2010, Tiina Niklander 022010 25

»

Computer Organization I}, Spring 2010, Tiina Niklander 022010 26

Data dependency

Read after Write (RAW) (a.k.a true or flow dependency)
Occurs if succeeding read takes place before the preceeding
write operation is complete

Write after Read (WAR) (a.k.a antidependency)

Occurs if the succeeding write operation completes before the
preceeding read operation takes place

Write after Write (WAW) (a.k.a output dependency)

Occurs when the two write operations take place in the
reversed order of the intended sequence

The WAR and WAW are possible only in architectures
where the instructions can finish in different order

‘ Example: data dependency - RAW

1123|4567 |8|9]|10]11
MUL FI | DI | co| Fo | EI [wo
ADD FI | DI | CO | FO | EI [WO
SUB RTRL R8 ¥t | ot | co |4 ro [Ex |wo
ADD R R1, R3 w1 | o1 | co @] o 1 [wo
1123145 6]7]|8]°9 |10|11
MUL Rl R2, R3 FI | DI [CO | FO | EI [WO 'olofal, _
ADD RA,‘RS, R6 FI | DI | co|Fo | EI [WO no effect
SuB R7,‘\B7, R8 FI | DI | co | Fo | EI [wo
ADD R1, I'i‘l, R3 FI | DI | cO| FO | EI |[WO

Computer Organization I}, Spring 2010, Tiina Niklander 922010

27

»

Example: Change instruction execution order

1123|4567 |8|9]|10]11
MUL R1,R2, R3 FI | DI [cO | FO | EI [wO
ADD R4\R5, R6 FI | DI | CO [FO | EI |WO
SUB R7,R1,R8 ¥t | ot | co |4 ro [Ex |wo
CADD R9, RO, R8 FI | DI col@ Fo [EI [wo
11231456718 9|10|11|
MUL R R2, R3 FI | DI | co|Fo | EI [wo I. r!ed |
ADD RA(RS, R6 FI | DI | co|Fo | EI [WO instructions
ADD RQ,\\BO, R8 FI | DI | co | Fo | EI [wo
SUB R7, I-jll, R8 FI [DI | co | Fo | EI [Wo

Computer Organization I}, Spring 2010, Tiina Niklander 022010 28

‘ Example: by-pass (oikopolut)

MUL R1,R2, R3 FI | DI | CO | FO | EI (WO

ADD R}\\Q“Rl w1 | o1 | co | 4| &) Fo | £ |wo
SUB R7RaRL 1 [b1 | co (6| Ge)| e | | o [£x on

1]2]3]4]s5]6]7]s8]o]w]u]

MUL R1,R2, R3 FI | DI | co | Fo | EI {wo | |
4, F1 | DI [co @~F0 E1,| Wo W:thb -pasls

SuB R7\,‘R4,\‘R1 FI | DI | CO @@ FO [EI |wo |

Computer Organization Il Spring 2010, Tiina Niklander 922010

29

Comp. Org II, Spring 2010

»

Computer Organization I}, Spring 2010, Tiina Niklander 922010 30

Computer Organization Il

Jumps and pipelining
(Hypyt ja liukuhihna)

Multiple streams (Monta suorituspolkua)
Delayed branch (Viivéstetty hyppy)

Prefetch branch target (Kohteen ennaltanouto)
Loop buffer (Silmukkapuskuri)

Branch prediction (Ennustuslogiikka)

Lecture 7: CPU structure and functions

9.2.2010

"‘\ Effect of cond. branch on pipeline

.
Tine Branch Penai

L2234 |5|6|7|8]|9]|w0]|11|12{13]|14

tuste 1 [g1 | o1 [co |70 | &1 | wo

tste 2 [w1 [1 | co| o | =t [wo

Instr 3 F1 | DI | CO|FO @ wo

Tnstr 4 1 | ot |co n* @

Instr 5 FI | DI | CO b

Tnstr 6 m | o O

Instr 7 || @

Instr 15 () o1 [o ro [1 [wo

Instr 16 FI | DI | CO [FO | EI [WO

[(Sta06 Fig 12.11) |

Computer Organization I}, Spring 2010, Tiina Niklander 022010 31

‘_ Delayed branch (viivastetty haarautuminen)
Compiler places some useful instructions (1 or more) after
branch instructions;

always executed!

sub 5, 13, r7 No roll-back of instructions due incorrect prediction
add ri,r2,r3 This would be difficult to do
ump There

If no useful instruction available, compiler uses NOP

Less actual work lost
Almost done, when branch decision known
This is easier than emptying the pipeline during branch

Worst case: NOP-instructions waist some cycles
delay slot Can be difficult to do (for the compiler)

Computer Organization I}, Spring 2010, Tiina Niklander 022010 32

‘ Multiple instruction streams
(monta suorituspolkua)

Execute speculatively to both directions
Prefetch instructions that follow the branch to the pipeline
Prefetch instructions from branch target to other pipeline
After branch decision: reject the incorrect pipeline (or results)
Problems
Branch target address known after some calculations
Second split on one of the pipelines
Continue any way? Only one speculation at a time?

]
|BM 370/168, More hardware!

IBM 3033

More pipelines, speculative results (registers!), control

Speculative instructions may delay real work
Bus& register contention? More ALUs?
Capability to cancel not-taken instruction stream from pipeline

Computer Organization Il Spring 2010, Tiina Niklander 022010 33

‘_‘* Loop buffer (silimukkapuskuri)

Keep n_most recently fetched instructions in high speed
bufferinside the CPU
Use prefetch also
With good luck the branch target is in the buffer
F.ex. IF-THEN and IF-THEN-ELSE structures
Works for small loops (at most n instructions)
Fetch from memory just once
Gives better spacial locality than just cache

CRAY-1
Motorola 68010

Computer Organization I}, Spring 2010, Tiina Niklander 922010 35

Comp. Org II, Spring 2010

‘_ Prefetch branch target (kohteen ennaltanouto)

Prefetch just branch target instruction, but do not execute it
yet
Do only Fl-stage
If branch taken, no need to wait for memory
Must be able to clear the pipeline
Prefetching branch target may cause page-fault

IBM 360/91 (1967)

Computer Organization Il Spring 2010, Tiina Niklander 022010 34

‘_‘* Branch prediction (hyppyjen ennustus)
Make a (educated?) guess which direction is more
probable:

Branch or no?
Static prediction (staattinen ennustus)
Fixed: Always taken (aina hypatéan)

Motorola 68020
VAX 11/780

Fixed: Never taken (ei koskaan hypéta)
~50% correct

Predict by opcode (operaatiokoodin perusteella)
In advance decided which codes are more likely to branch
For example, BLE instruction is commonly used at the end
of stepping loop, guess a branch
~ 75% correct (reported in LILI88)

Computer Organization I}, Spring 2010, Tiina Niklander 922010 36

Lecture 7: CPU structure and functions

9.2.2010

‘_‘ Branch prediction (hyppyjen ennustus)
= Dynamic prediction (dynaaminen ennustus)
= What has happened in the recent history with this instruction
- Improves the accuracy of the prediction
= CPU needs internal space for this = branch history table
- Instruction address
- Branch target (instruction or address)
- Decision: taken / not taken

@ Simple alternative
= Predict based on the previous execution
- 1bit is enough
= Loops will always have one or two incorrect predictions

Computer Organization I, Spring 2010, Tiina Niklander 022010 37

Computer Organization I, Spring 2010, Tiina Niklander

“ Branch prediction (hyppyjen ennustus)

& Improved simple model PowerPC 620
= Don't change the prediction so soon
= Based on two previous instructions

= 2 bits enough - Not Taken

Taken
Not Taken

Not Taken

HONEL 10N

922010

‘ Branch history table strategy
(ennustaminen hyppyhistorian avulla)

Next sequential
address

[T] —
instruction Target

address _ address _State

Lookup

Which branch e
instruction is this? |[—2e")

—
Add new

Memory

IPFAR = instruction
prefix address register

entry . . .
Update . . . Prediction:
tat
e R taken/not taken
Whereto
Redirect jump, if
branch

SESEEEEE (ke
[(Sta06 Fig 12.18) |

Computer Organization I, Spring 2010, Tiina Niklander 022010 30

Comp. Org II, Spring 2010

Computer Organization I, Spring 2010, Tiina Niklander

‘ Review Questions / Kertauskysymyksia

~ What information PSW needs to contain?

~ Why 2-stage pipeline is not very beneficial?

~ What elements effect the pipeline?

~ What mechanisms can be used to handle branching?
- How does CPU move to interrupt handling?

922010

