
Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 1

CPU Structure and Function

Ch 12.1-4 [Sta06]

Registers
Instruction cycle
Pipeline
Dependences
Dealing with Branches

Lecture 7

General structure of CPU

ALU
Calculations, comparisons

Registers
Fast work area

Processor bus
Moving bits

Control Unit (Ohjausyksikkö)
(lecture 10, Ch 16-17)

What? Where? When?
Clock pulse
Generate control signals

- What happens at the next pulse?
MMU?
Cache?

Sta06 Fig 12.2

(Sta06 Fig 12.2)

9.2.2010 2Computer Organization II, Spring 2010, Tiina Niklander

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 2

Registers

Top of memory hierarchy
User visible registers

Programmer / Compiler decides how to use these
How many? Names?

Control and status registers
Some of these used indirectly by the program

- PC, PSW, flags, …
Some used only by CPU internally

- MAR, MBR, …
Internal latches (apurekisteri) for temporal storage during
instruction execution

Example: Instruction register (IR) instruction interpretation;
operand first to latch and only then to ALU

ADD R1,R2,R3

BNEQ Loop

9.2.2010 3Computer Organization II, Spring 2010, Tiina Niklander

User visible registers

Different processor families
different number of registers,
different naming conventions (nimeämistavat),
different purposes

General-purpose registers (yleisrekisterit)
Data registers (datarekisterit)
Address registers (osoiterekisterit)

Segment registers (segmenttirekisterit)
Index registers (indeksirekisterit)
Stack pointer (pino-osoitin)
Frame pointer (ympäristöosoitin)

Condition code registers (tilarekisterit)
No condition code regs.

IA-64, MIPS

9.2.2010 4Computer Organization II, Spring 2010, Tiina Niklander

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 3

Example (Sta06 Fig 12.3)

Number of registers:

(8/) 16-32 ok! (y 1977)

RISC: several hundreds

9.2.2010 5Computer Organization II, Spring 2010, Tiina Niklander

PSW - Program Status Word

Name varies in different architectures
State of the CPU

Privileged mode vs user mode
Result of comparison (vertailu)

Greater, Equal, Less, Zero, ...
Exceptions (poikkeus) during execution?

Divide-by-zero, overflow
Page fault, “memory violation”

Interrupt enable/ disable
Each ‘class’ has its own bit

Bit for interrupt request?
I/O device requesting guidance

Design issues:
- OS support
- Memory and

registers in control
data storing

- paging
- Subroutines and

stacks
- etc

9.2.2010 6Computer Organization II, Spring 2010, Tiina Niklander

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 4

Instruction cycle (käskysykli)

(Sta06 Fig 12.5)

Sta06 Fig 16.5

9.2.2010 7Computer Organization II, Spring 2010, Tiina Niklander

Instruction fetch (käskyn nouto)

MAR PC
MAR MMU(MAR)
Control Bus Reserve
Control Bus Read
PC ALU(PC+1)
MBR MEM[MAR]
Control Bus Release
IR MBR

(Sta06 Fig 12.6)

Cache (välimuisti)!
Prefetch (ennaltanouto)!

9.2.2010 8Computer Organization II, Spring 2010, Tiina Niklander

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 5

Operand fetch, Indirect addressing
(Operandin nouto, epäsuora osoitus)

(Sta06 Fig 12.7)

MAR Address
MAR MMU(MAR)
Control Bus Reserve
Control Bus Read
MBR MEM[MAR]

MAR MBR
MAR MMU(MAR)
Control Bus Read
MBR MEM[MAR]
Control Bus Release

ALU? Regs? MBR

Cache!

9.2.2010 9Computer Organization II, Spring 2010, Tiina Niklander

Data flow, interrupt cycle

(Sta06 Fig 12.8)

MAR SP
MAR MMU(MAR)
Control Bus Reserve
MBR PC
Control Bus Write
MAR SP ALU(SP+1)
MAR MMU(MAR)
MBR PSW
Control Bus Write
SP ALU(SP+1)
PSW privileged & disable
MAR Interrupt number
Control Bus Read
PC MBR MEM[MAR]
Control Bus Release

SP = Stack Pointer

No address translation!

9.2.2010 10Computer Organization II, Spring 2010, Tiina Niklander

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 6

Computer Organization II

Instruction pipelining

(liukuhihna)

9.2.2010 11Computer Organization II, Spring 2010, Tiina Niklander

Laundry (pesula) example (by David A. Patterson)

Ann, Brian, Cathy, Dave:
each have one load of clothes
to wash, dry and fold

Washer takes 30 min

Dryer takes 40 min

“Folder” takes 20 min

A B C D

9.2.2010 12Computer Organization II, Spring 2010, Tiina Niklander

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 7

Sequential Laundry
Takes 6 hours for 4 loads
If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight
Time

Throughput
(Läpimenoaste)

0.67 works per h

1.5 h per work

Average latency
(latenssi, kesto, viive)

9.2.2010 13Computer Organization II, Spring 2010, Tiina Niklander

Pipelined Laundry
Takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10
30 40 40 40 40 20

1.5 h per work

Max speed?
1.5 work per h

At best case, laundry is completed every 40 minutes! (0.67 h / finished work)

1.14 work per h
Average speed

9.2.2010 14Computer Organization II, Spring 2010, Tiina Niklander

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 8

Lessons

Pipelining does not help latency of single task, but it helps
throughput of the entire workload
Pipelining can delay single task compared with situation where it is
alone in the system

Next stage occupied, must wait
Multiple tasks operating simultaneously, but different phases
Pipeline rate limited by slowest pipeline stage

Can proceed when all stages done
Not very efficient, if different stages have different durations,
unbalanced lengths

Potential speedup
= maximum possible speedup
= number of pipe stages

9.2.2010 15Computer Organization II, Spring 2010, Tiina Niklander

Lessons

Complex implementation,
May need more resources

Enough electrical current and
sockets to use both washer and
dryer simultaneously
Two (or three) people present all
the time in the laundry

Time to “fill” pipeline and time to
“drain” it reduce speedup
“Hiccups” (hikka)

Variation in task arrivals, works
best with constant flow of tasks tfill tdrain

A

B

C

D

30 40 40 40 40 20

9.2.2010 16Computer Organization II, Spring 2010, Tiina Niklander

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 9

2-stage instruction execution pipeline
(2-vaiheinen liukuhihna)

Instruction prefetch (ennaltanouto) at the same time as execution of
previous instruction
Principle of locality (paikallisuus): assume ‘sequential’ execution
Problems

Execution phase longer fetch stage sometimes idle
Execution modifies PC (jump, branch) fetched wrong instr.
- Prediction of the next instruction’s location was incorrect!

Not enough parallelism more stages?

(Sta06 Fig 12.9)

9.2.2010 17Computer Organization II, Spring 2010, Tiina Niklander

6-stage pipeline

(Sta06 Fig 12.10)

FE - Fetch instruction
DI - Decode instruction
CO - Calculate operand addresses

FO - Fetch operands
EI - Execute instruction
WO - Write operand

9.2.2010 18Computer Organization II, Spring 2010, Tiina Niklander

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 10

Pipeline speedup (nopeutus)?

Lets calculate (based on Fig 12.10):
6- stage pipeline, 9 instr. 14 time units
Same without pipeline 9*6 = 54 time units
Speedup = 54/14 = 3.86 < 6 !
Maximum speedup: one instruction per time unit finish:

9 time units 9 instructions; 54/9= 6
Not every instruction uses every stage

Will not affect the pipeline speed
Speedup may be small (some stages idle, waiting for slow)
Unused stage CPU idle (execution “bubble”)
Serial execution could be faster (no wait for other stages)

9.2.2010 19Computer Organization II, Spring 2010, Tiina Niklander

ddd mimax
i=1..k

Pipeline performance: one cycle time

Cycle time is the same for all stages
Time (in clock pulses) to execute the stage

Each stage takes one cycle time to execute
Slowest stage determines the pace (tahti, etenemisvauhti)

The longest duration becomes bottleneck

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 20

Stage i
time

Max time (duration) of
the slowest stage

(Hitaimman vaiheen
(max) kesto)

Latch delay,
move data from
one stage to next
~ one clock pulse

Cycle time
(jakson
kesto)

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 11

Speedup?

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 21

No pipeline: Pessimistic: assumes the same
duration for all stagesnkT1

Pipeline:)1(nkTk

)1()1(
1

nk
nk

nk
nk

T
TS

k
k

Speedup:

n instructions , k stages, cycle time

k stages before the first
task (instruction) is finished

next (n-1) tasks (instructions) will finish
each during one cycle, one after another

See Sta06 Fig 12.10
and check yourself!

Speedup? Assumption: no jumps, branches

(Sta06 Fig 12.14)

more gains from
multiple stages when
more instructions
without jumps

9.2.2010 22Computer Organization II, Spring 2010, Tiina Niklander

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 12

More notes

Extra issues
CPU must store ‘midresults’ somewhere between stages
and move data from buffer to buffer
From one instruction’s viewpoint the pipeline takes longer
time than single execution

But still
Executing large set of instructions is faster
Better throughput (läpimenoaste) (instructions/sec)

The parallel (rinnakkainen) execution of instructions in the
pipeline makes them proceed faster as whole, but slows
down execution of single instruction

9.2.2010 23Computer Organization II, Spring 2010, Tiina Niklander

Problems, design issues

Structural dependency (rakenteellinen riippuvuus)
Several stages may need the same HW
Memory: FI, FO, WO
ALU: CO, EI

Control dependency (kontrolliriippuvuus)
Jump destination of conditional branch
known only after EI-stage

Prefetched wrong instructions
Data dependency (datariippuvuus)

Instruction needs the result of the
previous non-finished instruction

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 24

STORE R1,VarX
ADD R2,R3,VarY
MUL R3,R4,R5

MUL R1,R2,R3
LOAD R6, Arr(R1)

ADD R1,R7, R9
Jump There
ADD R2,R3,R4
MUL R1,R4,R5

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 13

Solutions

Hardware must notice and wait until dependency cleared
Add extra waits, “bubbles”, to the pipeline; Commonly used
Bubble (kupla) delayes everything behind it in all stages

Structural dependency
More hardware, f.ex. separate ALUs for CO- and EI-stages
Lot of registers, less operands from memory

Control dependency
Clear pipeline, fetch new instructions
Branch prediction, prefetch these or those?

Data dependency
Change execution order of instructions
By-pass (oikopolku) in hardware: result can be accessed
already before WO-stage

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 25

Data dependency

Read after Write (RAW) (a.k.a true or flow dependency)
Occurs if succeeding read takes place before the preceeding
write operation is complete

Write after Read (WAR) (a.k.a antidependency)
Occurs if the succeeding write operation completes before the
preceeding read operation takes place

Write after Write (WAW) (a.k.a output dependency)
Occurs when the two write operations take place in the
reversed order of the intended sequence

The WAR and WAW are possible only in architectures
where the instructions can finish in different order

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 26

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 14

MUL R1, R2, R3

ADD R4, R5, R6

SUB R7, R1, R8

ADD R1, R1, R3

MUL R1, R2, R3

ADD R4, R5, R6

SUB R7, R7, R8

ADD R1, R1, R3

too far,
no effect

Example: data dependency - RAW

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 27

MUL R1, R2, R3

ADD R4, R5, R6

SUB R7, R1, R8

ADD R9, R0, R8

MUL R1, R2, R3

ADD R4, R5, R6

ADD R9, R0, R8

SUB R7, R1, R8

switched
instructions

Example: Change instruction execution order

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 28

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 15

Example: by-pass (oikopolut)

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 29

MUL R1, R2, R3

ADD R4, R5, R1

SUB R7, R4, R1

MUL R1, R2, R3

ADD R4, R5, R1

SUB R7, R4, R1

With by-pass

Computer Organization II

Jumps and pipelining
(Hypyt ja liukuhihna)

Multiple streams (Monta suorituspolkua)
Delayed branch (Viivästetty hyppy)
Prefetch branch target (Kohteen ennaltanouto)
Loop buffer (Silmukkapuskuri)
Branch prediction (Ennustuslogiikka)

9.2.2010 30Computer Organization II, Spring 2010, Tiina Niklander

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 16

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 31

(Sta06 Fig 12.12)(Sta06 Fig 12.11)

Effect of cond. branch on pipeline

Delayed branch (viivästetty haarautuminen)

Compiler places some useful instructions (1 or more) after
branch instructions;

always executed!
No roll-back of instructions due incorrect prediction

- This would be difficult to do
If no useful instruction available, compiler uses NOP

Less actual work lost
Almost done, when branch decision known

This is easier than emptying the pipeline during branch
Worst case: NOP-instructions waist some cycles
Can be difficult to do (for the compiler)

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 32

sub r5, r3, r7
jump There
add r1, r2, r3
…

sub r5, r3, r7
add r1, r2, r3
jump There
…

delay slot

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 17

Multiple instruction streams
(monta suorituspolkua)

Execute speculatively to both directions
Prefetch instructions that follow the branch to the pipeline
Prefetch instructions from branch target to other pipeline
After branch decision: reject the incorrect pipeline (or results)

Problems
Branch target address known after some calculations
Second split on one of the pipelines

- Continue any way? Only one speculation at a time?
More hardware!

- More pipelines, speculative results (registers!), control
Speculative instructions may delay real work

- Bus& register contention? More ALUs?
Capability to cancel not-taken instruction stream from pipeline

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 33

IBM 370/168,

IBM 3033

Prefetch branch target (kohteen ennaltanouto)

Prefetch just branch target instruction, but do not execute it
yet

Do only FI-stage
If branch taken, no need to wait for memory

Must be able to clear the pipeline
Prefetching branch target may cause page-fault

IBM 360/91 (1967)

9.2.2010 34Computer Organization II, Spring 2010, Tiina Niklander

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 18

Loop buffer (silmukkapuskuri)

Keep n most recently fetched instructions in high speed
buffer inside the CPU

Use prefetch also
- With good luck the branch target is in the buffer
- F.ex. IF-THEN and IF-THEN-ELSE structures

Works for small loops (at most n instructions)
Fetch from memory just once

Gives better spacial locality than just cache

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 35

CRAY-1
Motorola 68010

Branch prediction (hyppyjen ennustus)

Make a (educated?) guess which direction is more
probable:

Branch or no?
Static prediction (staattinen ennustus)

Fixed: Always taken (aina hypätään)
Fixed: Never taken (ei koskaan hypätä)

- ~ 50% correct
Predict by opcode (operaatiokoodin perusteella)

- In advance decided which codes are more likely to branch
- For example, BLE instruction is commonly used at the end

of stepping loop, guess a branch
- ~ 75% correct (reported in LILJ88)

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 36

Motorola 68020
VAX 11/780

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 19

Branch prediction (hyppyjen ennustus)

Dynamic prediction (dynaaminen ennustus)
What has happened in the recent history with this instruction

- Improves the accuracy of the prediction
CPU needs internal space for this = branch history table

- Instruction address
- Branch target (instruction or address)
- Decision: taken / not taken

Simple alternative
Predict based on the previous execution

- 1 bit is enough
Loops will always have one or two incorrect predictions

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 37

Branch prediction (hyppyjen ennustus)

Improved simple model
Don’t change the prediction so soon
Based on two previous instructions
2 bits enough

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 38

(Sta06 Fig 12.17)

PowerPC 620

(Sta09 Fig 12.19)

Lecture 7: CPU structure and functions 9.2.2010

Comp. Org II, Spring 2010 20

Branch history table strategy
(ennustaminen hyppyhistorian avulla)

9.2.2010Computer Organization II, Spring 2010, Tiina Niklander 39

(Sta09 Fig 12.20b)

Prediction:
taken/not taken
Whereto
jump, if
branch
taken

”tag”
Which branch
instruction is this?

(Sta06 Fig 12.18)

Review Questions / Kertauskysymyksiä

What information PSW needs to contain?
Why 2-stage pipeline is not very beneficial?
What elements effect the pipeline?
What mechanisms can be used to handle branching?
How does CPU move to interrupt handling?

9.2.2010 40Computer Organization II, Spring 2010, Tiina Niklander

Mitä tietoja on sisällytettävä PSW:hen?
Miksi 2-vaiheisesta liukuhihnasta ei ole paljon hyötyä?
Mitkä tekijät vaikeuttavat liukuhihnan toimintaa?
Millaisia ratkaisuja on käytetty hyppykäskyjen
vaikutuksen eliminoimiseen?
Kuinka CPU siirtyy keskeytyskäsittelyyn?

