

Bus [(Sta06 Fig 3.16) |

CPU Memory || *++| Memory /O see /O
Control lines
L1l | L1l | L1l | L1l
Address lines Bus
| 1 | | | | I
Data lines

For communication with and between devices

Broadcast (yleislahetys): most common
Everybody hear everything
React to messages/signals to itself only

Each device has its own control and status information
Device driver (OS) moves control data to device controller’'s
registers
~ memory address, device address, how much, direction
Device driver reads the status from the controller’s status register
Ready? Operation successful? ...

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010

2

Bus structure

Control lines (Ohjausvéayla (~ johtimet))
Control and timing information
Operations: like memory read, memory write, 1/O read
Interrupt request
Clock
Address lines (Osoitevayla)
Source and destination ids
Memory address, device address (module, port)
For transfer source and destination
Width (number of parallel lines) determines the memory
address space (osoiteavaruuden koko)
For example: 32 b = 4 GB

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010

Bus structure

Data lines (Datavayla)
All processing information:
Instructions
Data
DMA —transfer contents
Width determines the maximum number of bits that can be
transfered at the same time
For example 38b wide line allows 32 bits data plus 6
Hamming-coded parity bits (tarkistushbitti)

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010

4

. What moves on the bus?

External

Status
Data

©
|-
—
c
(@]
@)

rT o
<)
=)
E = g n - ; n =
o E e o] n [<h) g c
(<5} O = @ = — bl .
b S o - c (48]
s S a) =1 - = jx < T
e < =~ e S &3 cS
a

- Memory-mapped I/O

- Timing _DMA

Computer Organization I, Spring 2010, Tiina Niklander 21.1.2010 5

‘ Bus = Bottleneck?

von Neumann architecture

Instructions and the data both in main memory
All memory content referred using address
Sequentially ordered instructions executed sequentially
unless order changed explicitly (jumps, branches)
Fetch-Execute Cycle

lﬁ‘[u]tiple
operands
3 Crnﬂd) ’
éﬂes &::::13—. address éjatﬂ n;_’&%:s‘s
Opera

_\‘“Smme i \R"“"* rsing nerruy

fetch next instruction or vector data

- Inter
T Internl%

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 6

‘_ Computer Organization Il

Bus

characteristics

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010

‘ Bus characteristics

Width
~ 50 — 100 lines (johdinta) — mother board, cable, connectors
Bus type
Dedicated, non-multiplexed (dedikoitu)
Address and data — separate lines

Bus

Time multiplexed (aikavuoroteltu)
Address and data share lines

Memory

Address valid / data valid -line
Arbitration (kayttdvuoron varaus)
Centralized
One bus controller, arbiter (vaylaohjain)
Distributed
Controllers have necessary logic

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010

8

Bus characteristics

Timing (ajoitus, tahdistus)
Synchronous (tahdistettu)
Regular clock cycle (kellopulssi) — sequence of Os and 1s
Asynchronous
Separate signals when needed
Shared traffic rules
everyone knows what is going to happen next
Efficiency (tehokkuus)
Bandwidth (kaistanleveys)
How many bits per second

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010

9

Synchronous timing

Based on clock
Control line has clock pulse (cycle 1-0)
All devices "hear” the same pulse
Event takes one cycle (commonly)
Start at the begin of the cycle (leading edge)
For example, reading data takes one cycle
All devices in the bus work at the same pace
Slowest determines the speed of all
Each device knows the speed of the others
= knows, when it is ready for next event
“Do this during the next cycle”
= Device can count on the other one to do it!

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010

Asynchronous timing

Devices can use arbitrary speeds (variation allowed)
Processing time depends on the device
Device can determine, when the other one is ready
How long is the event going to last to perform?
Synchronization using a special signal
Send synchronization signal, when work done and ready
Address and data on bus = send signal "write”
(for example: change "write”-line to 1)
Data stored to memory = send signal "ack”
Time of the next event depends on the finish of the previous

"Do this when you have time, inform me when ready”

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010

11

‘_ Timing diagrams (ajoituskaavio)
See Appendix 3a [Sta06, Ch 3]
Binary 1
Binary 0 J"T T'\ / \ o m_

Leading Trailing T s
edge edge Time

Time gap
(a) Signal as a function of time

113 7 f \
“ass_ert” or < D
active
= O.lovel —_ A A
All lines Each line may All lines
at 0 be O or1 at 0

(b) Groups of lines

Command

Response

Response or Response# _
(c) Cause-and-effect dependencies

Asserted on 0; asserted on 1

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 12

N

. Synchronous timing

Clock

Status
lines

Address
lines

Address
enable

Data
Read lines
cvcle

Read

Data
Write lines
cycle

Write

| 1 1
—{ Status signals }—
| | 1 1

-

Stable address

—14

Valid data in9—
1
\

-
)

Valid

/

ata out

LI B B) =T R B

Computer Organization Il, Spring 2010, Tiina Niklander

Initiator

For example
CPU

21.1.2010 13

R 3

Status
lines

Address
lines

Read

Data
lines

Acknowledge

Asynchronous timing - Read

—<
—<

Status signals >—\
Stable address >—
o\ e/)
N
& Valid data D>

o\

O/ J

Computer Organization Il, Spring 2010, Tiina Niklander

> Initiator

Target
esim. MEM

21.1.2010 14

‘ Asynchronous timing - Write

Status -
lines —(Status signals
Address
lines —(Stable address
Data
i Ny
lines ——< Valid data >
Write o\ 9 /
Acknowledge

Computer Organization Il, Spring 2010, Tiina Niklander

o\

>

Initiator

esim. CPU

Target
esim. MEM

21.1.2010 15

‘ Events on bus (vaylatapahtumia)

|
Time —

Address Data — Data and address
(1st cycle) | (2nd cycle) lsent by master
i in same cycle over
Write (multiplexed) operation i Data | separate bus lines.
Address ‘d’;’;;fss Data Write (non-multiplexed) operation
Read (multiplexed) operation Address
e mmmm -
: Data
; . Data |[Data] = ‘+t--—--——m----a
SO . read |write Read (non-multiplexed) operation

Read-modify-write operation

Data Data

Address :
write read

Read-after-write operation

Address | Data | Data | Data

Block data transfer _

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 16

‘ Bus configuration

All devices on one bus?

All must use the same technigque

Long bus = propagation delay (etenemisviive)

Combined data rates of the devices may exceed the

capacity of the bus

Collisions on the arbitration, extra wait

Synchronous? = slowest determines the speed of all
Bus hierarchy

Isolate independent traffic from each other

Maximize the most important transfer pace, CPU <& MEM

I/O can manage with lower speed

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 17

‘_ Bus hierarchy, typical Pentium 4

Monitor
Graphics
adaptor
AGP bus
Local bus @/ Memory bus
Pentium 4 l
CPU : .
Level 1 caches—p[Béli?ige < > ml(\a/lrigry
Level 2 cache ——t |
PCl b
< s - 1
doo 4
ATAPI . .
scsl USB 2 ;lame controller B_”dge (silta)
: PClslot T I Different data rates
Y T Ine ' ! Different bus protocols
Kev- Hard DVD
Mouse| | poarg disk | | drive (Tan06 Fig 3-53)

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 18

‘_ Computer Organization Il

PCIl-bus

[Sta06, Ch 3.5]

http://www.soe.ucsc.edu/classes/cmpe003/Spring02/motherboard.gif

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 19

PCI: Peripheral Component Interconnect

Time-based; 49 mandatory (+51 optional) signal lines
Address data: 32b mandatory (optional allows 64b)
Other signals: 17 mandatory (+ 19 optional)

Centralized arbiter (keskitetty vaylan varaus)

Synchronous timing (Synkroninen tahdistus)
own 33 or 66 MHz clock (PCI-X: 133/156/533 Mhz)
Transfer rate 133, 266, 532 MB/s (PCI-X: 1 GB/s,4 GB/s)

Events on the bus
read, write, read block, write block (multiplexed)

Max 16 devices

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010

20

‘ 49 mandatory signal lines

: (pakollista johdinta) Sta06 Table 33

ADI[32]: address or data, multiplexed (aikavuorottelu)
+ 1 parity

C/BE[4]: bus command tai byte enable, multiplexed
For example: 0110/1111 = memory read/all 4 Bytes

CLK, RST#: clock, reset

6 for interface control
FRAME#, IRDY#, TRDY#, STOP#, IDSEL, DEVSEL#

2 for arbitration (vaylan varaus)
REQ# requires, GNT# granted
Dedicated lines for devices

2 error reporting pins (lines)
PERRY parity, SERR# system Sl LU TN

03001 Howshafvaks.

= =
-

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 21

‘ 51 optional signal lines
. (valinnaista johdinta tai signaalia) U SO TS

4 lines for interrupt requests (keskeytyspyynto)
Each device has its own dedicated line(s)
2 lines for cache support (on CPU or other devices)
snoopy cache
32 A/D extra lines
32 mandatory + 32 optional => 64 bit address/data lines
4 additional lines for C/BE bus command tai byte enable
2 lines to negotiate 64b transfer
1 extra parity line
5 lines for testing

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 22

‘ | PCI: transactions

Bus activity as transactions

New bus request for each new transaction
First reservation

Central arbiter

send REQ, wait for GNT

Then transaction
Initiator or master (device who reserved the bus)
Begin by asserting FRAME (reserve of bus)

Stop by releasing FRAME (indicate free bus) _

I

Y Y Y
- " | =
PCI Arbiter L X O Tl o
PCI PCI PCI PCI
Device Device Device Device

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 23

Bus arbitration : A and B want bus

i 3 3 El 5 6 7
| | | | | 1 1
REACH-A [[[[1 1
| | | | | 1 1
—|—@ I I I I i i
REQ#-B 1 1 1 — I I
I I I I I | |
v T4 T
1 1 1 © I I | |
GNT#-B | I T I I L/ 1
I I I I I | |
i i Q‘ I 9 i } %3 1 3
FRAME# I . I I .
I I I I I | |
i | | | | | | |
IRDY# . . . “ / : : L 7
I I I I I | |
TRDY# I 1 (A L/ 1 N 1 S
I I I I I | |
1 1 1 1 1 1 1
AD 1 1 { Address x Data } I { Address x Data }

- aocess- A ——————— e - —access-E—————-

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 24

a) A wants bus

d) starts frame, e) Grants bus to B | g) starts frame,
b) B wants bus W requests also for ~ for next trans. nNo more req.

c) Agranted bus | next transaction | £y marks last frame transfer,

knows that it has bus Sees that both marks data ready
and bus is available still want it

Arbiter
action

Sees that
A’s target reads data | only A

wants it

1
AD 1

All ready for new trans

All ready for new trans, granted for B,
B knows that it has bus

Computer Organization Il, Spring 2010, Tiina Nikfard 25

PCI: transactions

Memory or I/0O Read/Write [Line | Multiple]
Transfer one or more words (alternatively: cache line or block)
Memory Write and Invalidate
Guarantees that at least one cache line written to memory
(Takaa, etta tieto siirtyy valimuistista muistiin)
Configuration Read/Write
Access to configuration parameters on the device (256B)
Plug-and-Play, PnP
Interrupt Acknowledge
Interrupt controller collect more interrupt information from the
device (to create interrupt vector for interrupt handler)
Special Cycle
Broadcast (yleislahetys) to one or more targets
Dual Address Cycle
Indication of using 64 bit address

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 26

A _PCIl Memory Read

ak X NSNS
2

1 3 4 5 6 7 8 F”:
I I I I I I -
I I I I I @ I GI
I &h I I I I I I
(h ' ' ' ' —
ty DATA-1 | X DATA-2 X DATA3 }_UI
I I (& | I I I I

Q
==
=
2k
=
7
ol [
=
=]

Evie Enahle x Byie Enable x Byte Enable)— {E}I— -

| | | | | | | |
1 7y | | | | (;i | | |
IRDY# | L \ | 1 | A | ,!_F
E < E
I ! 4 7 A E 4 z !
TRDY# I L | | \—E | = i = |
= = =
| N | | 1 | 1 | 1 |
| I I | | | | | / I
DEVSEL# L‘:I \ - -
Address Phase [¥ata Phase Data Phase [ata Phase
Wait State Wait State Wait State
- Bus Transaction

-

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 27

a) start trans frame, d) ack address, set data, set & indicate data
set addr, set trans. type indicate valid data data ready, read

b) recognise data ready, read set & indicate data
address, find data) sel next bytes | g) not ready: hold

c) select bytes, f) need more time, h) ready for last block:
Indicate ready to receivi indicate not valid data end frame and stop hold

Initiator
CPU
action

memory
action

data ready, read get ready for next == get ready for next

All ready for new transaction All ready for new transaction

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 28

‘ Tietokoneen rakenne

PCIl Express

[Tan06, s.212]

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 29

- Packet-switched PCI Express (PCle, PCI-E)

PCI bus is too slow for some devices
Replaces PCI bus (and possibly other 1/O-bus)
Already available on new computers
Hub on motherboard acting as a crossbar switch (kytkin)
Based on point-to-point connections (kaksipisteyhteys)
Full-dublex, one lane has two lines (one send, one receive)
One device can used one or more (2,4,8,16,32) lanes
Data stream (serial transfer)
Small packets (header + payload), bits in sequence
No reservation, no control signals.
Each device may send at any time, when it wishes
Packet header contains the control information (like target)
Data rate on one lane 250MB/s (future 3rd gen: 1GB/s)

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010 30

. Typical PCl Express system

Paired serial links

Level 2 |[fA—N Bridge [A—N
cache |y CPU <::> chip N——V/ Memory
Switch
A 4
Graphics Disk Network USB 2 Other

Computer Organization Il, Spring 2010, Tiina Niklander

21.1.2010

31

‘_‘* PCI Express advantages

Each packet contains error-detection code
CRC — cyclic redundancy check
More reliable than parity bit on PCI bus
Devices can be further from each other (partitioning)
For example, hard disk inside the monitor covers
PCI allowed max 50 cm
Expandability PCI Express: max not determined |
A device can be a switch
Allows hot-swap |Plug-and-Play |
Device can be connected /disconnected while running, PnP
Physically smaller connectors
Computers and devices can be smaller

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010

32

Review Questions

Main differences between synchronous and asynchronous
timing?

Benefits of bus hierarchy?

Main differences of PCI Express and PCI ?

See course book for more review questions

Computer Organization Il, Spring 2010, Tiina Niklander 21.1.2010

33

‘ limitin
Multiplexers
|Sta06 Fig B.12 |

Select one of many possible inputs to output

inputs

Sta06 Tabie 8.7 lack bos
0
S

truth table !
implementation 3

OUtEUt

select lines

o = Each input/output “line” can be many parallel lines
}?7 E% select one of three 16 bit values
C0..15 J II:20..15 J ALUO..lS
simple extension to one line selection
: lots of wires, plenty of gates ... [StA0GIFIg B4
Used to control signal and data routing
o 3 Example: loading the value of PC

9

DO

D1

D2

Computer Organization Il, Spring 2009, Tiina Niklander 21.1.2010 35

‘ Encoders/Decoders

Exactly one of many Encoder input or Decoder output lines
IS 1
Encode that line number as output

hopefully less pins (wires) needed this way

optimise for space, not for time _
Example: _

encode 8 input wires with 3 output pins | Ex. Choosing the
right memory

route 3 wires around the board chip from the
address bits.

decode 3 wires back to 8 wires at target

VYV VVVYYY

Computer Organization Il, Spring 2009, Tiina Niklander 21.1.2010 36

000

o]
<
fumry

Y'Y

A%

X

011

=

[
e
o

e

0

o

U

110
D

111

.

Computer Organization Il, Spring 2009, Tiina Niklander

37

. Read-Only-Memory (ROM) (5)

Given input values, get output value
Like multiplexer, but with fixed data
Consider input as address, output as contents of memory

location
Example | Sta06 Table B.8|
Truth tables for a ROM
64 bit ROM

16 words, each 4 bits wide

Implementation with decoder & or gates _

Computer Organization I, Spring 2009, Tiina Niklander 21.1.2010 38

ROM - truth table

value

address

Output

Input

39

21.1.2010

Computer Organization Il, Spring 2009, Tiina Niklander

‘ Adders

A=l
1-bit adder B=0 —

Carry=0
Sum=1

Carry=1
Sum=0

5 Carryfl —
o= e

1-bit adder with carry

o i See Sta06 Table 8.9, Fig 8.22

Implementation

A—1 ‘ o Compare to ROM?
i % ——Camy

Build a 4-bit adder from four 1-bit

adders [See Sta06 Fig 821

Computer Organization Il, Spring 2009, Tiina Niklander 21.1.2010 40

http://www.du.edu/~etuttle/electron/elect36.htm

+200 +200
‘ _) Htr. 2-7
_ Flip-Flop (kiikku) ol [T
K]
William Eccles & F.W. Jordan t]4?4nk--us:m?

with vacuum tubes, 1919
2 states for Q (0 or 1, true or false) 20

Eccle=s-Jordan Trigger

1-bit memory

Maintains state when input absent
2 outputs

complement values

both always available on different pins
Need to be able to change the state (Q)

Computer Organization Il, Spring 2009, Tiina Niklander 21.1.2010 41

‘_ S-R Flip-Flop or S-R Latch (salpa)
Usually _
R=0_.,
both O : .
S=0 — l

S=“SET” = “Write 1” = “set S=1 for a short time”
R =“RESET” = “Write 0” = “set R=1 for a short time”

Use NOR gates

R Q

Computer Organization I, Spring 2009, Tiina Niklander 21.1.2010 42

‘ Clocked Flip-Flops

State change can happen only when clock is 1
S

more control on state changes a

Clock —¢

Clocked S-R Flip-Flop

R
D Flip-Flop | Sta06 Fig B.27 | (Sta06 Fig B.26)
only one input D
D =1and CLOCK = write 1
D =0 and CLOCK = write O

J-K Flip-Flop [Sta06IRigE28]

Toggle Q when J=K=1

Computer Organization Il, Spring 2009, Tiina Niklander 21.1.2010 43

. Basic Clocked Flip-flops

< : Characteristic
Name Graphic Symbol Table
—_— S Q e rr— 5 R anl
0 O QFI
S-R > (K 0 1 0
1 0 1
R 6 1 1 -
ansemm A .] K Qua
0 0 QH
JK ——pk 0o 1| o0
1 0 1
——— K G — 1] Qn
— D Q pe———— D erf'l
0 0
D —Ck 1 1
———— C_) I

Computer Organization Il, Spring 2009, Tiina Niklander

21.1.2010

44

‘ Registers

Parallel registers [Sta06 Fig B.30 |

read/write
CPU user registers
additional internal registers

Shift Registers

shifts data 1 bit to the right
serial to parallel?

ALU ops?
rotate?
Serial In =T () D Q D Q D Q D Q= Serial Out
—DClk | =0k | k| Dok | ok
Clock

Computer Organization Il, Spring 2009, Tiina Niklander 21.1.2010 45

. Counters

Add 1 to stored counter value
Counter
parallel reqgister plus increment circuits

Ripple counter (aalto, viive)
asynchronous

increment least significant bit, |Sta06 Fig B.32 |

and handle “carry” bit
as far as needed

Syn C h rO n O U S CO U nte r A four-bit synchronous "up” cournter
modify all counter & 5
flip-flops simultaneously
faster, more complex,) al Q
more expensive cl
% PR k1
- This flp-ﬁop This f.Ip-ﬁop This flp-ﬁop This f.Ip-ﬁop
toggles on every toggles only if toggles only if toggles only if
clock pulse Q, is "high" Q, AND Q, Q. AND Q; AND Q;
are “high” are "high"

Computer Organization Il, Spring 2009, Tiina Niklander 21.1.2010 46

‘ Summary

“! Boolean Algebra = Gates = Circuits
w can implement all with NANDs or NORs
w simplify circuits (not on this course!)

“I Components for CPU design
» ROM, adder
= multiplexer, encoder/decoder
w flip-flop, register, shift register, counter

Simulations of gates and circuits:

Computer Organization I, Spring 2009, Tiina Niklander 21.1.2010 a7

Simple processor

(=
5 S
Tl e
r EEGILUERCING REGIETER
—|

Computer Organization Il, Spring 2009, Tiina Niklander

CECOOER
>
3
ADDRESS BUE Zk
L A= e fe
7 l == M aF
| g
(3
=
e
o
I
=
(=2
OATA BUE
= — =3
1'h niu L'k
= f =t
*eLock
READ |-T-I
= R L
WRITE 8] |] gkl
el
REQ"d : —
HOHIEE i :
= = ouTeUT
if ok o | DIEFLAY LT | BUFFER
1) | |
iy
~ % RESET REQ4 E1 I; ?z:
FEG -4 | INSTRUCTION [P | || = LI — |
| REGISTER o o | BUFFER
o = = C = a2
Iy = H H ﬁ =
e ’ ; FAM MEMORY =
RE 1
T I] BURRER
e b
L I P
Wit ;- e
A =

21.1.2010

48

