

581365 Tietokoneen rakenne Computer Organization II

Spring 2010

Tiina Niklander

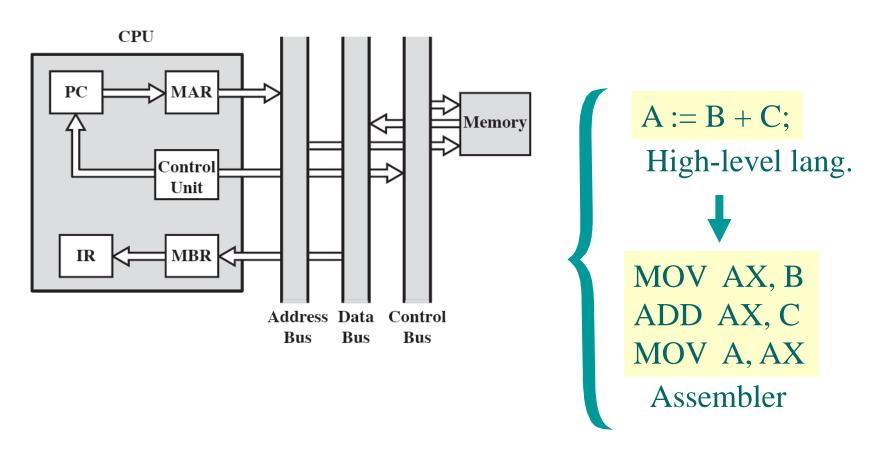
Matemaattis-luonnontieteellinen tiedekunta

Computer Organization II

- Advanced (master) level course!
- Prerequisite: Computer Organization I (TiTo)
 - Main hardware
 - Symbolic assembly language, machine instructions
 - Instruction cycle (on CPU)
- Related to Operating Systems
 - Interrupts
 - Virtual memory
 - I/O Techniques

Material

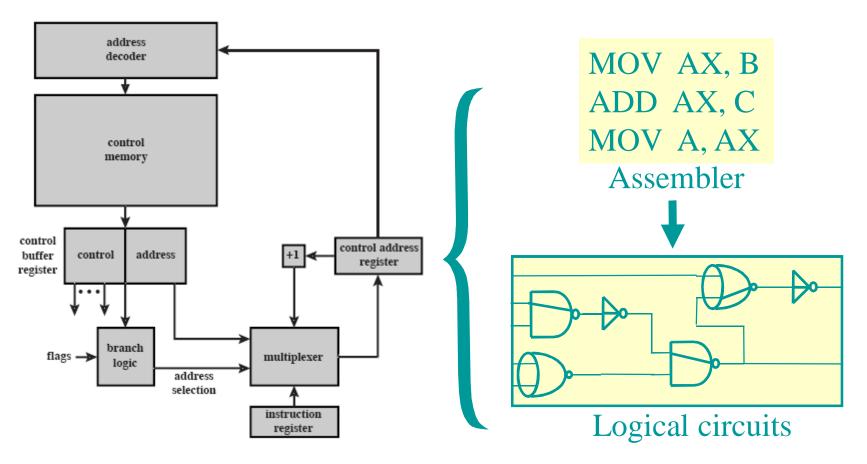
- Course book (Make sure you have one!)
 - Stallings W.: Computer Organization & Architecture,
 Designing for Performance (8th ed), Prentice-Hall, 2009.
 - (7&6th ed.) possible, but MISSING a lot of material
- Course page (for this Spring course) http://www.cs.helsinki.fi/u/niklande/opetus/tikra/2010/index. en.html
 - Slides, exercises, announcements, links, etc.
- Course main page http://www.cs.helsinki.fi/kurssit/syventavat/581365/
 - Old courses, slides in Finnish and English, etc.
- Newsgroup: hy.tktl.opiskelu.tikra



Schedule Spring 2010

- Lectures: 18.1. 26.2.2009
 - In Finnish: Tue and Thu 14-16, D122
 - English summary: Fri 12-14 CK111 (Mon 18.1. 14-16 C220)
- Exercises:
 - In English: Päivi Kuuppelomäki Wed 14-16 CK111
 - In Finnish: Tiina Niklander Wed 16-18 C222
- Course Exam
 - Wed 3.3. 16.00-19 A111
- Separate exams are also available

Comp Org I (TITO): lowest presentation level



Functionality! What happens in the system?

Sta06: Fig 12.6

Comp Org II (TIKRA): lowest presentation level

Sta06: Fig 17.7 Implementation! How is the hardware composed?

Learning goals

- Digital logic: truth table, flip-flop, ...
- Bus: multiplexing, signaling
- Memory hierarchy: cache, TLB
- Arithmetics: Booth algorithm, representations
- **Instruction set**: operands, operations, memory reference
- Processor structure and functions: pipelining, RISC,CISC
- Control: micro-operations, micro-programmed control, clock pulse
- Parallel Processing: cache coherence, multicore

More detailed learning goals (at the moment only in Finnish) are available from course main page

Course content and schedule

- Week 1
 - Overview (Ch 1 8)
 - Bus (Ch 3)
 - Self-study: Digital logic
- Week 2
 - Memory, cache (Ch 4, 5)
 - Virtual memory(Ch 8.3-8.6)
- Week 3
 - Computer arithmetics (Ch9)
 - Instruction set (Ch 10, 11)

- Week 4
 - CPU struc.& func. (Ch 12)
 - RISC-architecture (Ch 13)
- Week 5
 - Instruction-level parallelism, superscalar processor (Ch 14)
 - Control Unit (Ch 15-16)
- Week 6
 - Parallel Processing &Multicore (Ch 17-18)
 - Recapitulation

"It is not good exercise, If you do not sweat"

"Kunto ei nouse ellei tule hiki."

Work during the course

- Combine the details together to form a larger picture (in your mind)!
 - Try to continuously understand and analyse the connections
 - Stay awake!

Make notes

Write down own ideas and questions immediately

Ask questions

- Question are never too simple. (If you missed the point, then somebody else missed it also)
- Ask from teachers but also from co-students.
- Teamwork is allowed even with individual assignments
 - However, own paper must be written by you, even if you cooperated in learning the content

Be active!

- Do all exercises in advance!
 - On your own / in small teams.
 - Think about the problem during several days
 - at least before giving up
 - Learning by doing!
- Ask about the problematic parts
 - During lectures
 - While solving the questions
 - When solutions are presented
 - Afterwards from instructors
 - Beginning of next meeting

Note!

- These slides are just the "table of content"
 - ~ notes of the lecturer
- Read the book!
 - just following the lectures or summary is not enough
- Spend enough time in learning the content
 - Simple time estimation (for planning)
 - VERY OLD: ~ 6,5 weeks*(2*(4+2)) = 78 hours
 - OLD: 4 op = 2 ov: 2 * 40 = 80 hours
 - CURRENT: 1 year / 60 op = 1600 t / 60 op
 - = 26.67 t / 1 op = 107 hours / 4 op

Enjoy the course!

Credits

- Teemu Kerola 1999-2003
 - Original slides (in English), blue layout
 - Based on 5th edition
 - Updated to 6th edition 2002
- Auvo Häkkinen 2004-2005
 - Most slides translated to Finnish, orange layout
 - Figures integrated to slides
 - Updated to 7th edition 2005
- Teemu Kerola 2006
- Liisa Marttinen 2007
- Tiina Niklander
 - 2009: Translation to English from the Finnish slide set
 - 2010: Updated to 8th edition