

Control Unit (Ohjausyksikkö)

Ch 16-17 [Sta06]

Micro-operations

Control signals (Ohjaussignaalit)

Hardwired control (Langoitettu ohjaus)

Microprogrammed control (Mikro-ohjelmoitu ohjaus)

What is control?

- Architecture determines the CPU functionality that is visible to 'programs'
 - What is the instruction set ?
 - What do instructions do?
 - What operations, opcodes?
 - Where are the operands?
 - How to handle interrupts?

Functional requirements for CPU

- 1. Operations
- 2. Addressing modes
- 3. Registers
- 4. I/O module interface
- 5. Memory module interface
- 6. Interrupt processing structure
- Control Unit, CU (ohjausyksikkö) determines how these things happen in hardware (CPU, MEM, bus, I/O)
 - What gate and circuit should do what at any given time
 - Selects and gives the control signals to circuits in order
 - Physical control wires transmit the control signals
 - Timed by clock pulses
 - Control unit decides values of the signals

"read" **Control signals** (Sta06 Fig 16.4) "write" "add" Instruction register Control signals within CPU Control bus Flags Control signals Control from control bus Unit Clock-Control signals to control bus

- Main task: control data transfers
 - Inside CPU: REG ⇔ REG, ALU ⇔ REG, ALU-ops
 - CPU ⇔ MEM (I/O-controller): address, data, control
- Timing (ajoitus), Ordering (järjestys)

Micro-operations

- Simple control signals that cause one very small operation (toiminto)
 - E.g. Bits move from reg 1 through internal bus to ALU
- Subcycle duration determined from the longest operation
- During each subcycle multiple micro-operations in action
 - Some can be done simultaneously, if in different parts of the circuits
 - Must avoid resource conflicts
 - WaR or RaW, ALU, bus
 - Some must be executed sequentially to maintain the semantics

```
t1: MAR \leftarrow PC
t2: MBR \leftarrow MEM[MAR]
PC \leftarrow PC + 1
t3: IR \leftarrow (MBR)
```

If implemented without ALU

Instruction cycle (Käskysykli)

- When micro-operations address different parts of the hardware, hardware can execute them parallel
- See Chapter 12 instruction cycle examples (next slide)

Instruction fetch cycle (Käskyn noutosykli)

Example:

t1: MAR ← PC

t2: MAR ← MMU(MAR)

Control Bus ← Reserve

t3: Control Bus ← Read

PC ← PC + 1

t4: MBR ← MEM[MAR]

Control Bus ← Release

t5: IR ← MBR

Execution order? What can be executed parallel? Which micro-ops to same subcycle, which need own cycle?

Instruction cycle

- Operand fetch cycle(s)
 - From register or from memory
 - Address translation
- Execute cycle(s)
 - Execution often in ALU
 - Operands in and control operation
 - Result from output to register /memory
 - flags ← status
- Interrupt cycle(s)
 - See examples (Ch 12): Pentium, PowerPC
 - What to same micro-operation?
 - What micro-ops parallel / sequentially?

ADD r1,r2,r3:

 $t1: ALUin1 \leftarrow r2$

t2: ALUin2 \leftarrow r3

 $ALUoper \leftarrow IR.oper$

t3: r1 \leftarrow ALUout

 $flags \leftarrow xxx$

ISZ X, Increment and Skip if zero:

 $t1: MAR \leftarrow IR.address$

t2: MBR \leftarrow MEM[MAR]

t3: MBR \leftarrow MBR+1

t4: $MEM[MAR] \leftarrow MBR$

if (MBR=0) then $PC \leftarrow PC + 1$

Conditional operation possible

Instruction cycle flow chart (as state-machine?)

■ ICC: Instruction Cycle Code register 's state

(Sta06 Fig 16.3)

Instruction cycle control as state-machine (tila-automaatti)

- Functionality of Control Unit can be presented as state-machine
 - State: What stage of the instruction cycle is going on in CPU
 - Substate: timing based, group of micro-operations executed parallel in one (sub)cycle
- Control signals of substate are based on
 - (sub)state itself
 - Fileds of IR-register (opcode, operands)
 - Previous results (flags)
 - = Execution
- New state based on previous state and flags
 - Also external interrupts effect the new state
 - = Sequencing

Control signals

- Micro-operation ⇒ CU emits a set of control signals
- Example: processor with single accumulator

Control signals and micro-operations

Micro-operations	Timing	Active Control Signals	
	t_1 : MAR \leftarrow (PC)	C ₂	
Fetch:	t_2 : MBR \leftarrow Memory $PC \leftarrow (PC) + 1$	C ₅ , C _R	
	t_3 : IR \leftarrow (MBR)	C ₄	Sta06 Fig 16.5
Indirect:	t_1 : MAR \leftarrow (IR(Address))	C ₈	M ← C ₁₁
	t ₂ : MBR ← Memory	C_5, C_R	R C_{10}
	t_3 : IR(Address) \leftarrow (MBR(Address))	C ₄	C_8 C_1 \longrightarrow AC
Interrupt:	t_1 : MBR \leftarrow (PC)	C ₁	C ₆ →
	t ₂ : MAR ← Save-address PC ← Routine-address	??	M A R Control
	t_3 : Memory \leftarrow (MBR)	C ₁₂ , C _W	unit t
$C_R = Re$	ad control signal to system bus.		Clock Control signals

 C_W^R = Write control signal to system bus.

(Sta06 Table 16.1)

Internal Processor Organization

- Fig 16.5 too complex for implementation
- Use internal processor bus to connect the components
- ALU usually has temporary registers Y and Z

(Sta06 Fig 16.6)

Computer Organization II

Hardwired implementation (Langoitettu ohjaus)

Hardwired control unit (Langoitettu ohjausyksikkö)

Can be used when CU's inputs and outputs fixed

Functionality described using Boolean logic

CU implemented by one logical circuit

Eg. $C5 = P^*Q^*T2 + P^*Q^*(LDA)^*T2 + ...$

Fig 16.3, 16.5 and Tbl 16.1

ICC - bits P and Q

PQ = 00 Fetch Cycle

PQ = 01 Indirect Cycle

PQ = 10 Execute Cycle

PQ = 11 Interrupt Cycle

Instruction register

Hardwired control unit

- Decoder (4-to-16)
 - 4-bit instruction code as input to CU
 - Only one signal active at any given stage

11	12	I3	14	01	O2	O3	04	O5	06	07	08	09	010	011	O12	O13	014	015	016
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	8
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	8	1	9	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	9/	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0/	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	8	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	9	1	9	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0/	1	O C	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

opcode = 5 (bits I1, I2, I3, I4) \rightarrow signal O11 is true (1)

(Sta06 Table 16.3)

Finite State Diagram

State transitions (2)

Next state from current state

- State 0 -> State1
- □ State 1 -> S2, S6, S8, S10
- □ State 2 -> S5 or ...
- □ State 3 -> S9 or ...
- State 4 ->State 0
- □ State 5 -> State 0
- □ State 6 -> State 7
- □ State 7 -> <u>State 0</u>
- □ State 8 -> State 0
- □ State 9-> State 0
- State 10 -> <u>State 11</u>
- □ State 11 -> <u>State 0</u>

Alternatively, prior state & condition							
S4, S5, S7, S8, S9, S11 -> State0							
	-> State1						
	-> State 2						
	-> State 3						
	-> State 4						
State2 & op = SW	-> State 5						
	-> State 6						
State 6	-> State 7						
	-> State 8						
State3 & op = JMP	-> State 9						
	-> State 10						
State 10	-> State 11						

Hardwired control

- Control signal Generation in hardware is fast
- Weaknesses
 - CU difficult to design
 - Circuit can become large and complex
 - CU difficult to modify and change
 - Design and 'minimizing' must be done again
- RISC-philosophy makes it a bit easier
 - Simple instruction set makes the design and implementation easier

Computer Organization II

Microprogrammed control (*Mikro-ohjelmoitu ohjaus*)

Microprogrammed control (Mikro-ohjelmoitu ohjaus)

- Idea 1951: Wilkes Microprogrammed Control
- Execution Engine
 - Execution of one machine instruction (or micro-operation) is done by executing a sequence of microinstructions
 - Executes each microinstruction by generating the control signals indicated by the instruction
- Micro-operations stored in control memory as microinstructions
 - Firmware (laiteohjelmisto)
- Each microinstruction has two parts
 - What will be done during the next cycle?
 - Microinstruction indicates the control signals
 - Deliver the control signals to circuits
 - What is the next microinstruction?
 - Assumption: next microinstruction from next location
 - Microinstruction can contain the address location of next instruction!

Microinstructions

- Each stage in instruction execution cycle is represented by a sequence of microinstructions that are executed during the cycle n that stage
- E.g. In ROM memory
 - Microprogram or firmware

(Sta06 Fig 17.2)

Horizontal microinstruction

- All possible control signals are represented in a bit vector of each microinstruction
 - One bit for each signal (1=generate, 0=do not generate)
 - Long instructions if plenty of signals used
- Each microinstruction is a conditional branch
 - What status bit(s) checked
 - Address of the next microinstruction

Vertical microinstruction

- Control signals coded to number
- Decode back to control signals during execution
- Shorter instructions, but decoding takes time
- Each microinstruction is conditional branch (as with horizontal instructions)

(Sta06 Fig 17.1 b)

Execution Engine (Ohjausyksikkö)

- Control Address Register, CAR
 - Which microinstruction next?
 - ~ instr. pointer, "MiPC"
- Control memory
 - Microinstructions
 - fetch, indirect, execute, interrupt
- Control Buffer Register, CBR
 - Register for executing microinstr.
 - ~ instr. register, "MiIR"
 - Generate the signals to circuits
 - Verticals through decoder
- Sequencing Logic
 - Next address to CAR.

(Sta06 Fig 17.4)

ALU

Flags

Clock

- a) Explicit
- Each instruction has 2 addresses
 - In addition the conditions flags that are checked for branching
 - Next instruction from either address (select using the flags)
 - Often just the next location in control memory
 - Why store the address?
 - No time for addition!

- b) Implicit assumption: next microinstruction from next location in control memory
- instruction has 1 address
 - Still need the condition flags
 - If condition=1, use the address
- Address part not always used
 - Wasted space

(Sta06 Fig 17.7)

- c) Variable format
- Some bits interpreted in two ways
 - 1 b: Address or not
 - Only branch instructions have address
 - Branch instructions do not have control signals
 - If jump, need to execute two microinstructions instead of just one
 - Wasted time?
 - Saved space?

- d) Address generation during execution
- How to locate the correct microinstruction routine?
 - Control signals depend on the current machine instruction
- Generate first microinstruction address from op-code (mapping + combining/adding)
 - Most-significant bits of address directly from op-code
 - Least-significate bits based on the current situation (0 or 1)
 - Example: IBM 3033 CAR, 13 bit address
 - Op-code gives 8 bits -> each sequence 32 micro-instr.
 - rest 5 bits based on the certain status bits

(Sta06 Fig 17.9)

- e) Subroutines and residual control
- Microinstruction can set a special return register with 'return address'
 - No context, just one return allowed (one-level only)
 - No nested structure
 - Example: LSI-11, 22 bit microinstruction
 - Control memory 2048 instructions, 11 bit address
 - OP-code determines the first microinstruction address
 - Assumption, next is CAR ← CAR+1
 - Each instruction has a bit: subroutine call or not
 - Call:
 - Store return address (only the latest one available)
 - Jump to the routine (address in the instruction)
 - Return: jump to address in return register

Microinstruction coding

- Horizontal? Vertical?
 - Horizontal: fast interpretation
 - Vertical: less bits, smaller space
- Often a compromize, using mixed model
 - Microinstruction split to fields, each fields is used for certain control signals
 - Excluding signal combinations can be coded in the same field
 - NOT: Reg source and destination, two sources one dest
 - Coding decoded to control signals during execution
 - One field can control decoding of other fields!
- Several shorted coded fields easier for implementation than one long field
 - Several simple decoders

Microinstruction coding

- Functional encoding (toiminnoittain)
 - Each filed controls one specific action
 - Load from accumulator
 - Load from memory
 - Load from ...
- Resource encoding (resursseittain)
 - Each field controls psecific resourse
 - Load from accumulator
 - Store to accumulator
 - Add to accumulator
 - ... accumulator

Why microprogrammed control?

- ..even when its slower than hardwired control
- Design is simple and flexible
 - Modifications (e.g. expansion of instruction set) can be added very late in the design phase
 - Old hardware can be updated by just changing control memory
 - Whole control unit chip in older machines
 - There exist development environments for microprograms
- Backward compatibility
 - Old instruction set can be used easily
 - Just add new microprograms for new machine instructions
- Generality
 - One hardware, several different instruction sets
 - One instruction set, several different organizations

Review Questions / Kertauskysymyksiä

- Hardwired vs. Microprogrammed control?
- How to determine the addres of microinstruction?
- What is the purpose of control memory?
- Horizontal vs. vertical microinstruction?
- Why not to use microprogrammed control?
- IA-64 control vs. microprogrammed vs. hardwired?
- Langoitettu vs. mikro-ohjelmoitu toteutus?
- Kuinka mikrokäskyn osoite määräytyy?
- Mihin tarvitaan kontrollimuistia?
- Horisontaalinen vs. vertikaalinen mikrokäsky?
- Miksi ei mikro-ohjelmointia?
- IA-64 kontrolli vs. mikro-ohjelmointi vs. langoitettu kontrolli?

Computer Organization II

Pääotsikoita olivat

- Digitaalilogiikka
- Väylät, välimuisti, keskusmuisti
- Virtuaalimuistin osoitemuunnos, TLB
- ALU: kokonais- ja liukulukuaritmetiikka
- Käskykannoista: operaatiot ja osoittaminen
- CPU:n rakenne ja liukuhihna
- Hyppyjen ennustus, datariippuvuudet
- RISC & superskalaari CPU, nimiriippuvuudet
- IA-64: Explicit Parallel Instruction Computing
- Langoitettu vs. mikro-ohjelmoitu ohjaus

- Moore's Law will not give us faster processors (any more)
 - But it gives us now more processors on one chip
 - Multicore CPU
 - Chip-level multiprocessor (CMP)

Herb Sutter, "A Fundamental Turn Toward Concurrency in SW", Dr. Dobb's Journal, 2005. (click)

http://www.ddj.com/web-development/184405990;jsessionid=BW05DMMAOT3ZGQSNDLPCKH0CJUNN2JVN?_requestid=1416784

Borkar, Dubey, Kahn, et al. "Platform 2015." Intel White Paper, 2005. (click)

http://download.intel.com/technology/computing/archinnov/platform2015/download/Platform_2015.pdf

STI Cell Power processor element
(a) major units and
(b) pipeline

