Lecture 11: 1A-64
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EPIC (Explicit Parallel Instruction Computing)

© Parallelism explicit in machine instructions,

not hidden inside the hardware (processor)

m  New semantics on machine instructions

m  Compiler solves dependencies and decides the

parallel execution issues, processor just trusts it

® VLIW (Very Long Instruction Word)

m  Handle instructions in bundles (nippu)
© Branch predication, control speculation

m  Speculative execution of both (all) branch targets
® Spekulative loading of data

Linuksen kommentti IA-64:sta (2005): http://www.realworl for i i i1&id=60298, id=60123 id=
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3 Itanium vs. Superscalar

Superscalar

IA-64

RISC-like instructions, one per word

RISC-like instructions bundled into groups of
three

Multiple parallel execution units

Multiple parallel execution units

Reorders and optimizes instruction stream at
un time

Reorders and optimizes instruction stream at
compile rime

Branch prediction with speculative execution
of one path

Speculative execution along both paths of a
branch

Loads data from memory only when needed,
and tries to find the data in the caches first

Speculatively loads data before its needed, and
still tries to find data in the caches first

B [tanium new design and architecture

m Not backward compatible
B HP and Intel co-operated

HOW to use?

Bigger cache ?
More processors?

More superscalar?

Billions?

GR = General-purpose or integer register

FR = Floating-point or graphics register

PR = One-bit predicate register
EU = Execution unit

Computer Organization Il, Spring 2009, Tiina Niklander
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‘_ [tanium Organization
M | ot of registers => no renaming or dependency analysis
B Minimum 8 execution units
= Function of the 128 v
number of transistors s EU ¢
. . M =1 4 types:
available on chip E -unit
B GR-registers o 64 AL
O 10 |pRs B-unit,
associated with R F-unit
Y 5
NaT-bit (Not a Thing) 128
m Used in speculations o EU oo o
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Lecture 11: 1A-64

p Instruction format  fippy
< 128-bit bundle >
. . . . . . Tem-|
instruction slot 2 instruction slot 1 instruction slot 0 plate
41 41 41 5

B Fetch fromaemory one (or more) bundle a

Indicates what execution types each instruction slot n

Typical IA-64 instruction format

Major i - o 5
opcode other modifying bits GR3 GR2 GR1 PR
4 10 7 7 7 6

PR: Instructions have predicate register (for
speculative execution of instructions)

1-bit, value checked at commit
Instructions normally use 3 registers
Load/Store -architecture

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 5
_ Template Slot 0 Slot 1 Slot 2
0o M-unit T-umt T-umt
% Tem P late and 01 M-unit Lunit | Tunit
H H 02 M-unit T-unit T-unit
. Execution units e i B
03 M-unit T-unit T-unit
2 04 M-uni L- X-
Instruction Type | Description Execution Unit Type e ot e
" 8 05 M-unit L-unit X-unit
A Integer ALU T-unit or M-unit = =
= - 08 M-unit M-unit T-umt
I Non-ALU integer | I-unit 5 i T o
R Aemory TR 04 Mounit | Munit | Luait
F Floating-point F-unit 0B Gt Mt Tani
B Branch B-unit oc M-unt F-umt T-umt
X Extended T-unit/B-unit oD M-unit F-umit T-unit
OE M-unit M-unit F-unit
B Template: info for parallel execution SERRRSHT et 8| Mo R ot
. 10 M-unit T-unit B-unit
m Several bundles can be combined = & =
. 11 M-unit T-unit B-unit
- More parallel execution - - :
| k I _ STOP d d 12 M-unit B-umit B-unit
m Black line = ] ( epep ency) 13 M-unit B-unit | B-umit
= No need for NOP instructions e T i
17 B-unit B-uanit B-unit
B up to 6 instructions per clock cycle 15 Munit | Munit | Bounit
(source: Itanium data sheet) L i ||l | e
1c M-unit F-unit B-unit
1D M-unit F-unit B-unmit
Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 6
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% Assembly-language format
= (symbolinen konekieli)

[ap] mnemonic[.comps] dests = srcs

H gp qualifying predicate register
m if predicate register value =1 (true), commit
B mnemonic name of the instruction operaation
B comps completers, separated by periods
m Some instructions have extra parts to qualify it
B dests destination operands, separated by commas
W srcs source operands, separated by commas

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 7

‘_ Assembly-language format

B [nstruction group boundaries (stops) are marked ;;
m Instruction bundle template has the “black line”
m Hint: the instructions of a group can be executed parallel
m No data or output dependency within group
- no read after write (RaW) or
- no write after write (Waw)
m What about antidependency (WaR)???

1d8rl =[r5] /I first group
subr6=r8,r9 ;;
addr3=rl,r4 /I second group
st8[r6] =rl12 /I memory address in ré
Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 8
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‘ Computer Organization Il

Key mechanisms

Predicated execution

Control speculation (= speculative loading)
Data speculation

Software pipelining (ohjelmoitu liukuhihna)

lIntel slides: http://www.cs.helsinki fi/u/kerola/tikra/l A64-Architecture.pdf |

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 9

‘ Predicated execution (Predikoitu suoritus)

Compiler
W Create bundles, set template

m Describe, which instructions can be executed parallel

m Instruction execution order within one bundle undetermined
B Eliminate branches, e.g. if-then-else jumps’

m Assign own predicate register to each branch

m Both branches could be executed (in parallel?)

CPU Intel slide 18

W Start executing both branches
m Even before the condition result is known!
B Check predicates, when compare outcome known
m Discard the results of the unselected branch
m Committhe results ot the selected branch
m Predicate always ready at instruction commit?

C

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 10
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Lecture 11: 1A-64

"\ Predicated
- execution

B A graph about the
execution

W Speculate:

m Both branches executed
until the right one can be
selected

m Selection known at the
latest when the branch
instruction (3) commits

Computer Organization Il, Spring 2009, Tiina Niklander

Instruction 1
1. The branch has two
possible outcomes.

3.Al inslmcrious\

along this path point

2. The compiler assigns a
predicate register to each
following instruction,
according to its path.

4. All instructions
along this path point

to predicate register
PlL.

Instruction 4
(P1)

Instruction 5
(P1)

Instruction 6
(P1)

Instruction 3
(branch)

to predicate register
P2

5. CPU begins executing
instructions from both paths.

\ 6. CPU can execute /

instructions from different

paths in parallel because —p» |Instruction 8
they have no mutual (P2)

dependencies.

Instruetion 7
(P2)

7. When CPU knows the Tnsruction o
compare outcome, it discards (P2)
results from invalid path.

The compiler might rearrange instructions in this order, pairing

instructions 4 and 7. 5 and 8, and 6 and 9 for parallel execution.

I!nstrnction ll[ustrnction 21[nstrucli0u 3]

Iiustnlctiun 4 Ilustnlctiun 7 Ilnstnlctiull SI

llustructiun SIIustnlcﬁun GIInstruciiuu 9I

20.4.2009
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‘_ Predicated execution

Source: Pentium:

if (a&&b) cmp a,0
=i+l jeLl

else cmp b,0
if (c) jelLl

k=k+1 add j,1

else jmp L3

k=k-1 | L1:cmpc,0
i=i+1; jelL2

add k,1

jmp L3

L2: sub k,1

L3:addi,1

Computer Organization Il, Spring 2009, Tiina Niklander

1A-64:

addj=1,j

cmp.ne p4,p5=0,c
add k =1,k

add k =-1,k
addi=1,i

cmp.eqpp2=0,a;;
(p2) cmp.eq 3=0,b

addi, 1

20.4.2009
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‘_ Speculative loading
B Start data load in advance
m = speculative load ( even if unclear if the data is needed)
m Ready at processor when needed, no latency
m Straightforward unless branch or store

between load and use .Ci)mp R1. =Limit
B Branching? — control speculation JLE  Done
m Speculative loading could cause an Load RS, Table(R1)

exception (or page fault) that should not
have happened at all
B Store? — data speculation
m Speculative loading could be for the same Store R1, (R3)

memory location, the store is about to change Load RS, (R4)

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 13

i! Intel slide 26

5 Control Speculation

B = Hoist (nosta) load instruction earlier in the code
before the branch instruction

m Mark it speculative (.s)
m If speculative load cause exception, delay it (NaT bit)
- There is a possibility that exception should not happen!
m Add chk.s instruction to the original location. It checks for
exceptions and starts recovery routine

1d8.s r1=[r5
je L2 je L2
d8 r1=[r5 # chk.s rl,recovery  |«— completer
userl userl
Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 14
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Lecture 11: 1A-64

2. At run time, this
instruction loads the data
from memory before it is
needed. If the load would
trigger an exception, the
CPU postpones reporting
the exception.

1. The compiler scans the
source code and sees an
upcoming load (instruction
8). It removes the load,
inserts a speculative load
here and a speculative ~g,
check immediately before
the operation that will use
the data (instruction 9).

Instruction 1

i‘ Control
speculation

Speculative

B Compiler adds the Load

speculative load
earlier in the code
and chk.s
instruction in its
original place

B CPU delays the
(possible)
exception from
speculative load to

]
5. In effect, [A-64
has hoisted the load 1

Instruction 3 above the branch. !

(branch)

3. The compiler
replaced this load with
the speculative load
above, so instruction 8
does not actually
appear in the program.

Instruetion 7
(P2)

Instruction 4
Py

Instruction 8
(load data)

Instruction 5
P1)

Speculative
check (P2)

4. This instruction
checks the validity of
the data. If it is OK,

Instruction 6
1)

the chk.s the CPU does not
report an exception. Instruction 9
Instruction _ (P2)
Intel slides 27-28
Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 15

"*‘ Intel slides 29-30

Data speculation

B = Hoist (nosta) load instruction earlier in the code
before the store instruction

m Mark is as advanced load (.a) (ennakkolataaminen)
m Mark the original location with check (.c)
B Advanced Load Address Table (ALAT ) hardware structure
contains the memory addresses of current loads
m Each load puts its memory location to ALAT
m Each store removes its memory location from ALAT
m Load check (.c): If target not in table, load again

Id8.a r1=[r5 Aliasing issue:
r3 and r5 could point to

same memory location

Intel slide 31

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 16

jelLl jelLl
st8 [r3] =r13 ﬂ st8 [r3] =r13
1d8 r1=1r5 1d8.c r1=1r5

Comp. Org Il, Spring 2009
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‘;“ Software pipeline (Ohjelmoitu liukuhihna)
| B Hardware support to allow

= parallel execution of loop instructions

3

'S B Parallel execution can be achieved by

et executing instructions of different iteration cycles

E B Each iteration cycle uses different registers

8 m Automatic register renaming

8 B Prolog (alku) and epilog (loppu) are special cases

E handled by rotating predicate register

; W "Loop jump” replaced by special loop termination instr.
< that controls the pipeline
E m Rotate registers, decrease loop count

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 17

fori=5to 1 do y[i] = x[i] + ¢ |

Software pipeline

mov Ic=5
L1:1d4 r4=[r5],4;;

add r7=r4r9;; | very little instruction-level parallelism, small code
st4 [r6]=r7,4

br.cloop L1 ;; A lot of instruction-level parallelism!
Operate different iteration regs at the same time
Id4 r32=[r5],4;; //cycle 0 Cyele 0 - T
Id4 r33=[r5],4;; //cycle 1
Id4 r34=[r5],4 /lcycle 2 Cyclel 1d4 Prolog
add r36 =r32, 19 ;; // cycle 2 -
Id4 r35=[r5], 4 /lcycle3 | ~ ©¥e*  Jaadf Jua)
addr37=r33,r9 //cycle 3 Gycied 1 | 2an o
st4 [r6] =r36,4;; //cycle 3 Kernel
[d2 r36=[r5],4 J/cycle 4 Cycle 4 st4 | add 1d4
addr38=r34,r9 //cycle 4 I e
st4 [r6] =r37,4;; /lcycle 4 Coele? std | add
addr39=r35,r9 //cycle 5 Cycle 6 ol .
st4 [r6]=r38,4;; //cycle 5 ’ il Epilog
addr40=r36,19 //cycle 6 Cycle7 st4
gt [F =m0, 4 VorRE | e e e e e e i i
st4 [r6] =r40,4;; //cycle 7 : (Sta06 Fig15.6)
[rél A Intel slide 25
Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 18
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mov Ic =199 /I set loop count register
mov ec = 4 // set epilog count register Code
mov pr.rot = 1<<16;; /lpri6=1,rest=0
L1: (p16) Id5r32 = [r5], 4 /! CyCIe 0 _
(p17) --- /I empty stage
(p18) add r35 =34, r9 I/l cycle O
(p19) st4 [r6] = r36, 4 I/l cycle O
br.ctop L1 ;; Il cycle O [Koodi p.555 |
ol Ezecution Unit/Instruction State before br.ctop
¥e ec M 1 M B pl6 pl7 pls plo LC EC
0 9 br.ctop 1 0 0 0 199 4
1 144 br.ctop 1 1 0 4] 198 4
2 O a4 add br.ctop 1 1 1 0 197 4
3 1d4 add std br ctop 1 1 1 1 196 4
100 1d4 add std brctop 1 1 1 1 9 4
199 1 144 add std br.ctop 1 1 1 1 0 4
200 Q add std br.ctop 0 1 1 1 0 3
201 ' add std br.etop 0 0 1 1 0 2
202 4 std br.ctop 0 0 0 1 0 1
0 0 0 0 0 0
Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 19
‘_ Computer Organization Il
Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 20
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Lecture 11: 1A-64

General registers Floating-point registers 5 Branch registers Application registers
3 0 NaTs 81 0 Fredicates 63 0 63 0
0 0 fr0 400 pri) br0) | a0] KRO ]
i fri +1.0 pri L bri -

- [ KR7 ]
gl 2 _ i r2 i pr2 - ! . a7 Ka7 ]
€ % s 1 L o= 4 w7 o[RS

! 5 Vo ' s ! pris arl? BSP
I —" 1
- 31 prié arl8| BSPSTORE
b 32§ | 132 | : i ar19 RNAT
1 -
E | : : : i : 2 :: Instruction pointer ~ ar21 FGR
B | - =2 1 b i 63 0 .
| )
£ 0 g % i . DT53Ij P ar24[ EFLAG
b ( ). B ! ‘ ar25 CSD
é : g ! | ar26 SSD
l | l ! Current frame marker z;gg CFFSLF?
R e | R — ¥ 0 m—n
ard0 FDR
U k -
i a2
ar36 UNAT
Performance monitor a0 FPSR
Processor identifiers =
P o data registers ardd
cpuid0 | pmd0 arb4 PFS
cpuid1 pmd1 ar65 c
| | | , ar66 EC
(Sta06 Fig15.7) opuicy [ | Y I R

Computer Organization Il, Spring 2009, Tiina Niklander
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Computer Organiz:

Application register set
(Sovelluksen rekisterit)

B General registers(128), FP-registers (128), Predicates (64)
m Some static, some rotational (automatic renaming by hw)
m Some general registers used a stack (pino)
B Branch registers (8)
m Target address can be in a register (indirect jump!)
m Subroutine return address normally stored in register brO
m If ner call before return, br0 stored in register stack
B Instruction pointer
m Bundle address of current instruction
m not address of single instruction
B User mask
m Flags (single-bit values) for traps and performance monitoring
B Performance monitor data registers
m Supports monitoring hardware
m Information about hardware, e.g. branch predictions, usage of
register stack, memory access delays, ...

ation |1, Spring 2009, Tiina Niklander 20.4.2009 22
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Intel slides 15-17

Rekisteripino, Register Stack Engine

M 10..r31 for global variables
MW 132..r127 (total 96) for subroutine calls
B Call reserves a frame (set of regs in a register window)
m parameters (inputs/outputs) + local variables
m Size set dynamically (alloc instruction)
B Registers automatically renamed after the call
m Subroutine parameters always start from register r32
B Allocated in a circular-buffer fashion (renkaana)
m If area full, hardware moves register contents of oldest frame to
memory (= backing store). Restored when subroutine returns
- Memory address in register BSP, BSPSTORE
(backing store pointer)

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 23

Intel slide 17

Register stack

B Allocation and restoring using two dedicated registers
B CFM, Current Frame Marker
m Size of the most-recently allocated area
- sof=size of frame, sol=size of locals,
- sor=size of rotation portion (SW pipeline)
m GR/FP/PR register rotation information
- rrb=register rename base
B PFS, Previous Function State
m Previous value of CFM stored here. Older content of PFS
stored somewhere else (another register?) (alloc determines
the destination)

6 7 7 4 7 7
CFM ‘ rb.pr | b fr ‘ mb.er ‘ sor | sol ‘ sof |
PFS ‘ppll ‘ pec | | pfm |
2 4 14 38
Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 24
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Lecture 11: 1A-64

* Procedure Call and Return

‘ Instruction Execution

L}
Caller's frame (procA)

Callee's frame (procB)
after call

alloc

Caller's frame (procB)
after alloc

refurmn

Caller's frame (procA)
after return

Intel slide 17

Stacked General
Registers

‘ Local A I Output Al

€ sof, =21 —p _

o sol, = 14 —3p!

Output Bil

sofy,; =7

Output B,
Local B [ ]
l———sofy; = 19—
l— 50, = 16—

Local A Output A

—— sof, = 21—
«— sol, = 14—

Computer Organization Il, Spring 2009, Tiina Niklander

Frame Markers
CFM PFS(pfm)
sol sof sol sof

EE
1
1

/

BE [EE
(Sta06Fig 158)

20.4.2009 25

N

Application registers

Kernel registers (KRO-7)

Convey information from the operating system to the
application.

Register stack configuration (RSC)

Controls the operation of the register stack engine(RSE).

RSE Backing store pointer (BSP)

Holds the address in memory that is the save location
for r32 in the current stack frame.

stores (BSPSTORE)

RSE Backing store pointer to memory | Holds the address in memory to which the RSE will

spill the next value.

RSE NaT collection 1egister (RNAT)

18 spilling general registers.

Used by the RSE to temporarily hold NaT bits when it

Compare and exchange value (CCV)

Contains the compare value used as the third source
operand in the cmpxchg instruction.

User NaT collection register (UNAT)

Used to temporarily hold NaT bits when saving and

instructions.

festoring general régisters with the 18 till and st8_spall

Floating-point status register (FPSR)

Controls traps. rounding mode, precision control,
flags. and other control bits for floating-point
1nstmcuons.

Interval time counter (ITC)

frequency.

Counts up at a fixed relationship to the processor clock

Previous function state (FFS)

Saves value in CFM register and related information.

Loop count (LC) Used in counted loops and is decremented by counted-
loop-type branches.
Epilog count (EC) Used for counting the final (epilog) state in modulo-

scheduled loops.

Computer Organization Il, Spring 2009, Tiina Niklander
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Computer Organization Il

[tanium 2

(again just called Itanium!)

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 27

———

[tanium

M Firstimplementation released in 2001
B Second, at that time called Itanium 2, released in 2002
B Simpler than conventional superscalar CPU
m No resource reservation stations
m No reorganization buffers (ROB)
m Simpler register remapping hardware (versus register aliasing)
m No dependency-detection logic
m Compiler solved dependences and created /computed
explicit parallelism directives
B Large address space (suuri osoiteavaruus)
m Smallestaddressable unit: 1, 2, 4, 8, 10, 16 bytes
m recommendation: use natural boundaries
B Support both Big-endian and Little-endian

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 28
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‘*‘ [tanium

B Wide and fast bus: 128b, 6.4 Gbps
B Improved cache hierarchy
m L1: splitinstr, data 16KB + 16KB, set-ass. (4-way), 64B line
m L2: shared 256KB, set-ass. (8-way), 128B line
m L3: shared, 3MB, set-ass. (12-way), 64B line
m All on-chip, smaller latencies
B TLB hierarchy
m |-TLBL1: 32items, associative
n L2: 128 items, associative
m D-TLB L1: 32 items, associative
n L2: 128 items, associative

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009
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‘_*\ Memory management
B Memory hierarchy visible to applications also
[ | = possibility to give hints
m Fetch order: make sure, that earlier ops have committed
m Locality: fetch a lot/ a little lines to cache
m Prefetch: when moved closer to CPU
m Clearing: line invalidation, write policy
B Implicit control (exclusive access)
m Switching memory and register content
m Increasing memory content by a constant value
B Possibility to collect performance data
m To improve hints...

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009
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Lecture 11: 1A-64

[tanium

B 11 instruction issue port (like selection window)
B Max 6 instructions to execution in each cycle
m in-order issue, out-of-order completion

W 8-

stage pipeline

B More execution units (22)
m 6 general purpose ALU'’s (1 cycle)

m 6 multimedia units (2 cycles)

m 3 FPU's (4 cycles)
m 3 branch units

m 4 data cache memory ports (L1: 1/2 cycle load)
B Improved branch prediction

m Application is allowed to give hints

m Used to recude cache miss

Computer Organization Il, Spring 2009, Tiina Niklander
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= [tanium Processor

3-Mbyte L3 cache

16-kbyte

L1 instruction cache and
fetch/prefetch engine

ITLB

Branch
prediction

instruction queue

(8 bundles)

IA-32
decode
and

control

FETTETE T

Register stack engine/re-mapping ‘

I

Branch and

predicate registers

128

integer registers ‘ |

128 floating-point

registers |

56-kbyte 1.2 cache

I

-

I

Branch
units

redicate Na'ls, exceptions

Integer
and MMU
units

16-kbyte

dual-port

L1 data
cache

ALAT

Floating-
point
units

I

Bus controller

20.4.2009 32
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* [Itanium Pipeline

Branch prediction

»

Computer Organization Il, Spring 2009, Tiina Niklander

[ ]
LI e instruction- 1432
instruction streaming —s ¢ 'e
cache | buffer 2 L IPG
____________________________________ ___L_______ _______l____ TLB . Front
E Instruction buffer: 0t
IP-relative address 51 7 ‘
il 8 bundles (24 instructions) ROT
Pattern Instruction decode and dispersal
history MMMM|I|I F|F B[B|B EXP
REN
z
z |REG
-1
- g k-
Branch 3z FPL Back
Integer £ | EXE end
multi- f---m e e e m e m o - - - -—
m;ﬂed}m a FP2
E DET
___ Jorm e H R L.
i FP3
-3' WRB
4 p2 H eache || oo B = | . e e
cache and
system FP4
interface J

20.4.2009 33

Building Out the Itanium™ Architecture

Itanium™ Processor

2.1 GBls
64 bits wide

2FP

eg s
3 Branch 2 SIHD

800 MHz

Itanium 2

6.4 GBls
System bus 128 bits wide
400 MHz

2 Load
or 2 Store

Itanium 2 delivers performance through:

¥  Micro-architecture enhancements

Comp. Org Il, Spring 2009

3X increase

System bus bandwidth

Large on-die cache,
reduced latency

Additional
Issue ports

Additional
Execution units

Increased
Core frequency

ium 2 performance
5-2¥
m Processor

20.4.2009
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‘ Computer Organization Il

Current State (2006-08)

Intel hyper-thread and multi-core

STI multi-core

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 35

‘ Intel Pentium 4 HT (IA-32)

B HT — Hyper-threading
B 2 |ogical processors in one physical prosessor
B OS sees it as symmetric 2-processor system
B Use wait cycles to run the other thread

m memory accesses (cache miss)

m dependencies, branch miss-predictions
B Utilize usually idle int-unit, when float unit in use
W 3.06 GHz + 24%(?)

m GHz numbers alone are not so important
B 20 stage pipeline
B Dual-core hyper-thread processor

m Dual-core Itanium-2 with Hyper-threading

|http://www.intel.com/multi-core/index.htm |
Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 36
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5 Intel Multi-Core Core-Architecture

W 2 or more (> 100?) complete
cores in one chip
m Hyper-threading still in use
m Simpler structure, less power
m Private L1 cache
m Private or shared L2 cache?
M Intel Core 2 Duo E6700
m 128-bit data path
m Private 32 KB L1 data cache
m Private 32 KB L1 instr. Cache
(for micro-ops)
m Shared/private
4 MB L2 data cache

Click ' or for = = S
for Torres articles| |Pawlowski article .hardwaresecrets.com/article/366
Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009 37
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STI Cell Broadband Engine

(Sony-Toshiba-IBM)
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- STI Cell Broadband Engine
m Several dedicated vector-processing
engines (SPE), controlled by one main,
general purpose processor (PPE)
M 1 PowerPC PPE
m Power Processing Element
m RISC, 2 hyper-threads, in-order, simple
prediction logic (needs compiler support)
m 32 KB L1 data and instr. caches
m 256KB L2 cache
= "normal programs”
B 8 SPE’s
m Synergistic Processor Elements
m 256KB local data/instr memory, no cache
m Receive code/data packets from
off-chip main memory (as DMA transfer)
m 128 registers a’ 128 bit, 64 GB/s
m 2 pipelines: even, odd

‘&:XU‘ bXUHS){LHhXUHSXUHbXLl sxU||[sxu
¢

lS LS“LS
F
D“A DMA DMA pMA| [DMA] [DMA]|[DMA
i i ti o+

On-chip coheres mh (Ilplo 96 bytes per cycle) |

I
1‘ : PPE

5 Memur}'
i controller

Dual Ranbus 4] Rambus
v FlexIO*®

=
.__'l“

Bus interface
controller

(b)

m No branch prediction, "branch hint"-instr.

|http /Iresearchweb.watson.ibm.com/journal/rd/494/kahle.html
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N

STI Cell Broadband Engine

B Programming Models for SPE use
m Function offload Model
- Run some functions at SPE'’s
m Device Extension Model
- SPE as front-end for some device
m Computational Acceleration Model
- SPE’s do most of computation
m Streaming Models
- Data flow from SPE to SPE
m Shared-mem multiprocessor Model
- Local store as cache
- Cache coherent shared memory
m Asymmetric Thread Runtime Model

H

lS LS LS',LS
'
DVEA DMA DMa pma| [DMa] [Dual[[DMA
i i 1 55

uncmp ahere mh (uploJEbl:&pc cycle) ‘

PPE
Mlmor!’
controller

i
Dual Rambus
core XDR**

\5xu\ squstHsqusqust| sxU||[sxu
¢

Bus interface

for Kahle et al article]

|http /[researchweb.watson. lbm com/journallrd/494/kahle html
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* STI Cell (Cell B.E.)
B Sony
m Playstation 3 (4 cells)
N IBM
m Roadrunner supercomputer
(installed 2008)
- $110M, 1100 m?, Linux
- Peak 1.6 petaflops (1.6 * 10° flops)
- Sustained 1 petaflops
- Over 16000 AMD Opterons for file
ops and communication (e.g.)
- Normal servers processo
- Over 16000 Cells for number
crunching

- Blade centers

Computer Organization Il, Spring 2009, Tiina Niklander
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‘*“ STl Cell (Cell B.E.)
B Toshiba
m  Quad Core HD processor (or SpursEngine)
- In multimedia laptops for HD DVD'’s
B Mercury Computer Systems (year 2006)
m  Cell accelerator board (CAB) for PC’s

m 180 GFlops boost, Linux

B Blade servers

m  Mercury 42U Dual Cell Based Blade 2
Systems
- 42 Dual Cell BE Processors

m |BM BladeCenter
- 21BM PowerXCell 8i processor

IBM Blade Server pr

it &

ototype w/ 2 cells (2005)
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‘ Computer Organization Il

ARM -
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‘ ARM architecture family

W 32-bit embedded RISC microprocessor
m ARM family accounts for approximately 90% of these.

m The most widely used 32-bit CPU architecture in the world.

m The ARM architecture is used in about 3/4 of all 32 bit
processors sold. (source Intellitech)
m Exists in 95% of all cell phones (source: Intellitech)

B Architecture

m Extremely simple (ARM6 only 35,000 transistors)

- 32-bitdata bus, a 26-bit (64 Mbyte) address space and
sixteen 32-bit registers.

- low power usage, hardwired-control

m ARM: no cache, ARM4: cache

m ARMS: 5-stage pipeline, static branch prediction, double-

bandwidth memory

Computer Organization Il, Spring 2009, Tiina Niklander 20.4.2009
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‘ ARM architecture

B Conditional execution of most instructions
m 4-bit condition code in front of every instruction
B Arithmetic instructions alter condition codes only when desired
B Indexed addressing modes
B 2-priority-level interrupt subsystem

while (i'=J) | [l00p CMP Ri, Rj ; set condition "NE" if (i = j)
it (i>)) ; "GT"If (i > j),
=) : or "LT" if (i < j)

elsej =1, } SUBGT Ri, Ri, Rj ; if "GT", i = i-j:
SUBLT R, Rj, Ri : if "LT", j = j-i
— |BNE loop - if "NE", then loop

“‘ Things progress...

B X86 => Pentium =>Core =>Nehalem (Corei7)=>
Westmere
m Superscalar
- More efficient use of pipelining

- Parallel pipelines
- Branch prediction
- Out-of order -execution
- CISC => RICS translations
- Hyperthreading

m Chip —level multiprocessing -> multi-core

m Vector instruction codes (in vector processors)
- Parallel data processing

m Cache: more levels, larger cache
- OX9650: 12 MB L2
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i_! To different directions ...

B Power consumption (Virrankulutus)
m Mobile and portable devices
m density => heating up
B Superscalar improvements used?
m Improments prediction logic gives less and less benefit =>
simpler CPU
- => software based (Transmetan Crusoe tried this!)
- => compiler does and gives better ordered instructions (I1A-
64, Itanium?2, CELL, ..)
B More cores on one chip
m Different tasks (like Westmere integrated GPU)
m Coordination of the cores (processors) becomes an issue
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‘_ Review Questions / Kertauskysymyksia

EPIC?

Why does the instruction bundle have a template?
What is predicated execution? How does it work?
What means control speculation? Data speculation?
How registers are used in subroutine calls?
Difference of hyper-threading and multi-core?

EPIC?

Miksi késkynipun yhteydessa on template?

Mité tarkoitetaan predikoinnilla? Kuinka se toimii?

Mité tarkoittaa kontrollispekulointi? Enta dataspekulointi?
Miten rekistereita kaytetaan aliohjelmakutsuissa?

Mika ero hyper-threadeilla ja multi-corella?
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