

Goal

‘ Superscalar processors

Concurrent execution of scalar instructions
Several independent pipelines

Not just more stages in one pipeline
Own functional units in each pipeline

Integer Register File

Pipelined Vs

functional
units

L

Floating Point Register File

NN

Computer Organization Il, Spring 2009, Tiina Niklander

Memory

Instruction-
level
parallelism

Reference Speedup

[TJAD70] 18
[KUCK72] 8
[WEIS84] 158
[ACOSS6] 27
[SOHI9O] 18
[SMITS9] 23
[JOUPS9b] 2.2
[LEES1] 7

16.4.2009

‘_ Superscalar

]]]] |
1]] 1]
1]] 1
. Simple 4-stage ;
: ' pipeline !
1 1] |
1 1 | 1
1 1] 1
1 1]

1 |]]

1 | 1 1
-]]]] 1
= 1 1 1 1 |
= 1 1 1 1 |
= I ' ' ' 1
= 1 ! 1 1
Z : Superpipelined :
.': 1 1 1 1 1
= 1 1 1 [
4 1 1 1 1
S 1 | | 1
=~ 1 I [1 1
1 1]] 1
]] 1] 1
1]]] |
1 1 1] 1
1]]] 1
] 1 . - |
' Superscalar |
]]] 1
]]] |
] []]
1 1 1 1
1 1 1 1
] []] 1
) A . . : : !
1 >

-2
T
=
th
(=23
~1
[="]

Computer Organization I, Spring 2009, Tiina Niklander

Key: Execute

Ifetch Decndem Write

Only one instruction
execute at one time

Each stage split
Into 2 “half-stages”

Two instructions
executed at the
same time.

16.4.2009 3

Superscalar processor

Efficient memory usage
Fetch several instruction at once, prefetching (ennaltanouto)
Data fetch and store (read and write)

Concurrency

Several instructions of the same process executed

concurrently on different pipelines
Select executable instruction from the prefetched one
following a policy (in-order issue/out-of-order issue)

Finish more than one instruction during each cycle
Instructions may complete in different order than started
(out-of-order completion)

When can an instruction finish before the preceeding ones?

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009

4

Known dependencies (riippuvuus) [addrLr2
\

move r3,rl
True Data/Flow Dependency (datariippuvuus)
write-read (Read after Write, RaW)
The latter instruction needs data from former instruction
Procedural/Control Dependency (kontrolliriippuvuus)

Instruction after the jump executed only, JNZ R2, 100
ADD R1, =1

when jump does not happen
Superscalar pipeline has more instructions to waste
Variable-length instructions: some additional parts known only
during execution

Resource Conflict (Resurssiriippuvuus)
One or more pipeliine stage needs the same resource
Memory buffer, ALU, access to register file, ...

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009

5

Known dependencies (riippuvuus)

1(11 uses data mmputeah}* i0)

|
. 1 1 1 1
i0 1 1 . 1
1 1No Dependencyi
il 1 1 1 1
1 | | |
i0 1 1 1 1
— 'Data Dependency
i1 agher
, 1 1 1 1
i0 1 I . " I
I g Procedural Dependency
il/branch I I I I
L]] []
i2 1 [1
1§ I - 1
i3 I [I
» " : " R,
i: [P A
I I . eleleleleds
i3 1 1 I
1 1 I
: 1 1 1 1
i0 I [:
— ; Resource Conflict
il @ 1(i0 and il use the same

:functimlal unit) :

Computer Organization Il, Spring 2009, Tiina Niklander

n

6 7 8

16.4.2009

6

New dependencies

load r1,X
Output Dependency (Kirjoitusriippuvuus) |2dd r2§1,r3
write-after-write (Waw) add rl,r4,r5

Two instructions alter the same register or memory location,
the latter in the original code must stay

Antidependency, Read-write dependency (Antiriippuvuus)

erte-after-r_ead (WaR) move r2.rl
The former instruction must be able to fetch dd rifa.r5
the register content, before the latter stores a —

new value there

Alias?
Two registers use indirect references to the same memory
location?

Different virtual address, same physical address?
What is visible on instruction level (before MMU)?

W
store R5, 40(R1)

load R6, O(R2)

16.4.2009

Computer Organization Il, Spring 2009, Tiina Niklander

Dependencies

I; "write” R1

j: read” R1

I; "read” R1

i "write” R1

data dependency

In data dependency instruction |
cannot be executed before iInstr. i!

antidependency

I; "write” R1

i; “write” R1

Computer Organization Il, Spring 2009, Tiina Niklander

Anti- and output dependency allow

change in execution order for instructions

| and j, but afterwards must be checked
that the right value and result remains

output dependency

16.4.2009

8

N
-2 e
. N

by h
- -

S How to handle dependencies?

Starting point
All dependences must be handled one way or other
Simple solution (as before)
Special hardware detects dependency and
force the pipeline to wait (bubble)
Alternative solution
Compiler generates instructions in such a way that there will
be NO dependencies
No special hardware
simpler CPU that need not detect dependencies
Compiler must have very detailed and specific information
about the target processor’s functionality

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009

9

‘ Parallelism (rinnakkaisuus)

Instruction-level parallelism (kdskytason rinnakkaisuus)
Independent instructions of a sequence can be executed in
parallel by overlapping
Theoretical upper limit for parallel execution of instructions

Depends on the code itself
Machine parallelism (konetason rinnakkaisuus)
Ability of the processor to execute instructions parallel
How many instructions can be fetched and executed at the
same time?
~ How many pipelines can be used
Always smaller than instruction-level parallelism
Cannot exceed what instructions allow, but can limit
the true parallelism
Dependences, bad optimization?

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 10

‘_ Superscalar execution

 (wait?) erartgre
mstruction mstruction
instruction fetch dispatch issue . :
and branch) (no wait) (wait?)
. L I 1 Instruction mstruction
static prediction i execution reorder and
program rcheck in”I commit
(wait?) /,/1'
I I
1
- —_—
— 1
I
\L

Instruction window }
window of

valintaikkuna execution

Issue ~ laukaisu, liikkeellelaskeminen

dispatch ~ vuorottaminen, lahettdéa suorittamaan (Sta06 Fig 14.6)

Computer Organization I, Spring 2009, Tiina Niklander 16.4.2009 11

Superscalar execution

Instruction fetch (kdskyjen nouto)
Branch prediction (hyppyjen ennustus)
= prefetch (ennaltanouto) from memory to CPU
Instruction window (valintaikkuna)
~ set of fetched instructions

Instruction dispatch/issue (kdskyn paastaminen hihnalle)
Check (and remove) data, control and resource dependencies
Reorder; dispatch the suitable instructions to pipelines
Pipelines proceed without waits
If no suitable instruction, wait here

Instruction complete, retire (suoritus valmistuu)
Commit or abort (hyvaksy tai hylkaa)
Check and remove write and antidependencies

— wait / reorder (jarjesta uudelleen)
Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 12

In-order issue, in-order complete

Traditional sequencial execution order

No need for instruction window

Instructions dispatched to pipelines in original order
Compiler handles most of the dependencies
Still need to check dependencies, if needed add bubbles
Can allow overlapping on multiple pipelines

Instructions complete and commit in original oder
Cannot pass, overtake (ohittaa) on other pipeline

Several instructions can complete at same time
Commit/Abort

Computer Organization I, Spring 2009, Tiina Niklander 16.4.2009

13

.

. In-order issue, in-order complete

Decode
I1 12
I3 I4
I3 I4

I4
I5 | [}
I6

Execute Write
N\
{Il\ 12
\I1) -~
- M| —~|nj|n
(15) 3] 14
\I6/
I | Ie6

Computer Organization Il, Spring 2009, Tiina Niklander

Cycle

th & W i3 =

@0 =1

16.4.2009

14

.

In-order issue, out-of-order complete

Like previous, but
- Allow commit in different

order than issued order

(allow passing)
- Clear write and antidep.
before writing the results

Execute

Write

/i1

12

X,

()

Decode
I1 I2
13 14

14
15 16
16

PN

\14)

)

[15)

\I1)
i

Computer Organization Il, Spring 2009, Tiina Niklander

16

IS

I6

1

e - WL | [N SN S]

Cvele Output dependency

16.4.2009 15

‘_ Out-of-order issue, out-of-order complete

Dispatch instruction for execution in any suitable order
Need instruction window
Processor looks ahead (at the future instructions)
Must concider the dependencies during dispatch
Allow instructions to complete and commit in any suitable
order
Check and clear write and antidependencies

Anti dependency

I3 must not write to R3,
before 11 has read the content

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009

16

‘ Out-of-order iIssue, Out-of-order
. complete

Decode Window Execute Write Cycle
I1 12 1
I3 I4 1,12 I1 12 P 2
IS I6 \J3.I4 I1 13 | U2 3
J4)15(16) I6 | 4 | ~[1I1] I3 4
5 15 14 [(16) 5
IS 6

Instruction window,

(just a buffer, (Sta06 Fig 14.4c)

not a pipeline stage)
Computer Organization I, Spring 2009, Tiina Niklander 16.4.2009 17

‘ Register renaming
. (rekistereiden uudelleennimeaminen)

One cause for some of the dependencies is the usage of
names
The same name could be used for
several independent elements
Thus, instructions have unneeded
write and antidependencies
Causing unnecessary waits
Solution: Register renaming
Hardware must have more registers (than visible to the
programmer and compiler)
Hardware allocates new real registers during execution
In order to avoid name-based dependencies (nimiriippuvuus)
Need
More internal registers (register files, register set),
e.g. Pentium Il has 40 working registers
Hardware that is cabable of allocating and managing registers
and performing the needed mapping

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 18

‘_ Register renaming

Output dependency(WaW):
(Kirjoitusriippuvuus)
I3 must not finish before il

Anti dependency (RaW):
(antiriippuvuus)

I3 must not finish before i2
has read the value from R3

Rename R3 use work registers
R3a, R3b, R3c

Other registers similarly:
R4b, R5a, R7b

No more dependencies
based on names!

Computer Organization I, Spring 2009, Tiina Niklander 16.4.2009 19

‘ Impact of additional hardware
. (Sta06 Fig 14.5)
base: out-of-order issue

+|d/st: base and duplicate load/store unit for data cache

+alu: base and duplicate ALU o : 16 32
Window size - - I:I
{construction)
Speedup Without renaming Speedup
4 4
3 3
2 2
1 1
0 0
base +ld/st +alu +both base +ld/st +alu +hoth

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 20

Superscalar — conclusion

Several functionally independent units
Efficient use of memory hierarchy
Allows parallel memory fetch and store
Instruction prefetch (kdskyjen ennaltanouto)
Branch prediction (hyppyjen ennustaminen)
Hardware-level logic for dependency detections
Circuits to pass information for other functional unit at the
same time as storing to register or memory

Hardware-level logic to dispatch several independent
Instructions

Dependencies = dispatching order
Hardware-level logic to maintain correct completion order
(valmistumisjarjestys)

Dependencies = commit-order

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 21

‘_ Computer Organization Il

Pentium 4

Computer Organization I, Spring 2009, Tiina Niklander 16.4.2009 22

‘_“ Pentium 4

. E— L2 Cache and Control
r)
%
Store
g BTB > o Rk AGU »
= = Load
B H e lacu
Z 2
o
= —» = lep{aLu -
: : =
o = % 5 3 ; . —» ¥ lep{aLu i
et = = = ' =
- - : - 5 = E
= | g Ly = — 3 =1 e big =
- i = (=1 |
= # g 5 S 7 &
= =] = e [+ i ~
" =
- —
== FP move =]
—P E FP store [7]
&
3 ~ FMul
= Fadd
code —> 4| LA
AGU = address generation unit L - = MMX
ROM
BTE =branch target buffer
D-TLBE= data translation lookaside buffer
I-TLE = instruction translation lookaside buffer _

Computer Organization Il, Spring 2009, Tiina Niklander

16.4.2009

23

‘ Pipeline

Outside CISC (IA-32)

Execution in micro-operations as RISC
Fetch CISC instruction and translate it to one or more micro-
operations (pops) to L1-level cache (trace cache)
Rest of the superscalar pipeline operate with these fixed-
length micro-operations (118b)

Long pipeline
Extra stages (5 and 20) for propagation delayes

TC Nxt IP | TC Fetch (Drive|Alloc] Rename
l 1]

TC Next IP = trace cache next instruction pointer Eename = register renanung REF = repister file

TC Fetch = trace cache fetch Que = micro-op quening Ex = execute
Alloc = allocate Sch = muero-op scheduling Flos = flags
Dasp = Dispatch Br Ck = branch check

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 24

_ : I
E]
Store
: .
= Toad
: e
L = -
. % (el =
= e =
n z § H
z) — ;
B = 2
= p—
= FP move —
1 = FP store
%
= FMul
I+ = le»| Faaa
MX

a) Fetch IA-32 instruction from L2 cache and generate puops to L1
Uses Instruction Lookaside Buffer (I-TLB)
and Branch Target Buffer (BTB)
four-way set-associative cache, 512 lines
1-4 pops (=118 bit RISC) per instruction (most cases),

if more then stored to microcode ROM
b) Trace Cache Next Instruction Pointer - instruction selection
Dynamic branch prediction based on history (4-bit)
Static branch prediction, if no history information available
backward, predict "taken”
forward, predict "not taken”
c) Fetch instruction from L1-level trace cache
d) Drive — wait (instruction from trace cache to rename/allocator)

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 25

Z e
| [2 [HHE

e
[] = P ALU| j&
Resource allocation Al el el | s | L2 A=
irEr s A LA™ |G
E E é = g ? _:l‘—.g
LS -

e) Allocate resources e

3 micro-operations per cycle

Allocate an entry from Reorder Buffer (ROB) for the pops
(126 entries available)

Allocate one of the 128 internal work registers for the result
And, possibly, one load (of 48) OR store (of 24) buffer

2y
sk
282
RQ-F_. 2
33

f) Register renaming
Clear 'name dependencies’ by remapping registers
(16 architectural regs to 128 physical registers)
If no free resource, wait (= out-of-order)

v

ROB-entry contains bookkeeping of the instruction progress
Micro-operation and the address of the original 1A-32 instr.
State: scheduled, dispatched, completed, ready
Register Alias Table (RAT):

which [A-32 register = which physical register

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 26

]

w
-
I
=
5]
Y
2
| =
"

3.2 GB/s System Interface
I'EEEE

Window of Execution

Schedulers

BIB & I-TLB

L1 D-Cache and D-TLB

34

!
&8

FP Register File I | Integer Register File |

g) Micro-Op Queueing
2 FIFO queus for pops
One for memory operations (load, store)
One for everything else
No dependencies, proceed when room in scheduling
h) Micro-Op Scheduling
Retrieve pops from queue and dispatch for execution
Only when operands ready (check from ROB-entry)
1) Dispatching
Check the first instructions of FIFO-queues (their ROB-entries)
If execution unit needed is free, dispatch to that unit
Two gueues = out-of-order issue
max 6 micro-ops dispatched in one cycle
ALU and FPU can handle 2 per cycle
Load and store each can handle 1 per cycle

!
'

#

|

=
]
=2
-
Zmm
5z
&g

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 27

CCCCCCCCCCCCCCCC

‘ Integer and FP Units

—
L
|

|

{28 72K 7 2
Integer Register Fil
AEIER R

BIB & I-TLB

Schedule
G
T CTONC T Ty

]) Get data from register or L1 cache — e
k) Execute instruction, set flags (lipuke) :
Several pipelined execution units [Sta06 Fig 14.01-1 |
2 * Alu, 2 * FPU, 2 * load/store
E.g. fast ALU for simple ops, own ALU for multiplications
Result storing: in-order complete
Update ROB, allow next instruction to the unit
l) Branch check
What happend in the jump /branch instruction
Was the prediction correct?
Abort in correct instruction from the pipeline (no result storing)

m) Drive — update BTB with the branch result

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 28

Pentium 4 Hyperthreading

One physical 1A-32 CPU, but 2 logical CPUs
OS sees as 2 CPU SMP (symmetric multiprocessing)
Processors execute different processes or threads
No code-level issues
OS must be cabable to handle more processors (like
scheduling, locks)
Uses CPU wait cycles
Cache miss, dependences, wrong branch prediction
If one logical CPU uses FP unit the other one can use INT
unit
Benefits depend on the applications

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009

29

‘ Pentium 4 Hyperthreading

Duplicated (kahdennettu)
IP, EFLAGS and other control registers
Instruction TLB
Register renaming logic
Split (puolitettu)
No monopoly, non-even split allowed

Reordering buffers (ROB) Intel Nehalem arch.:
Micro-op queues 8 cores on one chip,
Load/store buffers 1-16 threads (820
Shared (jaettu) million transistors)
Register files (128 GPRs, 128 FPRs) First lauched processor
Caches: trace cache, L1, L2, L3 Core i7 (Nov 2008)

Registers needed during pyops execution
Functional units: 2 ALU, 2 FPU, 2 |d/st-units

Computer Organization I, Spring 2009, Tiina Niklander 16.4.2009 30

‘_ Computer Organization Il

PowerPC

Computer Organization I, Spring 2009, Tiina Niklander 16.4.2009 31

‘ | PowerPC 601

Instruction fetch unit

Prefetch up to 8 instructions (a’ 32b) at a time from cache
Dispatch unit
3 execution units: integer, floating-point, branch processing

256 bits

Instruction fetch
and dispatch
Unified s
imstruction'data
cache {32KB) 32 bits
Integer Unit Floating-point mﬁ;:;:;;‘g'lm
Unit
32 birs 64 hirs

Computer Organization I, Spring 2009, Tiina Niklander 16.4.2009 32

s Cycle boundary
Fetch arbitration | [Unit boundary
u — [15tTOCTION flOW
Fetch Unit — Completion tag flow
|
Y YV]
| Cache arbitration|
Cache access |
P P C 6 O 1 Cache Unit
. . Integer
Pi p el ine Instrbuffer3 W - Tetey
Instrbuffer2 W |
Instr buffer 1 *
Instr buffer 0 v | | Floating-point
Dispatch Unit + store buffer
Branch Dispatch buffer 3"|
execute Dispatch buffer 2“
] Dispatch buffer 1
Dispatch buffer 0
Mispredict
1ecover Integer
decode

Y

Branch
write back

Branch processing umq

Y

Integer
execute

k ———
‘ Multply
T

Anthmetic
+ ' write back
‘ Integer Integer -
Instruction arithmetic load > Load write
completion write back write back back
Integer unit Floating-point unit

Computer Organization Il, Spring 2009, Tiina Niklander

16.4.2009

33

Dispatch unit

= (Kéaskyjen suoritukseen valinta)
4 element Instruction buffer + (valintaikkuna)
4 element dispatch buffer = window of execution
Dispatching instruction from buffer

To Integer unit only the top-most element
To other units, closest-to-top element
out-of-order issue
Superscalar degree is 3
If dependency detected ->stall, bubble
Hardware-level logic to calculate prefetch address
Instructions from jump destination can be fetched even before

the instruction is executed

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 34

.

. Instruction execution

Changes to regs /memory in “Write Back” stage
ALU operations store to CR-register (condition register)

Branch
Instructions

Integer
Instructions

Load/store
Instructions

Floating-point
Instructions

8 field a’ 4 b, multiple (earlier) condition codes
Floating-point operations need more cycles

Fetch

Dispatch

Decode
Execute

Predict

Fetch

Dispatch

Decode

Execute

Writeback

Fetch

Dispatch
Decode

Addr gen

Cache

Dispatch

Decode

Computer Organization I, Spring 2009, Tiina Niklander

Executel

Execute2 | Writeback

16.4.2009 35

Branch processing

GOAL: Zero cycle branches
No effect on the execution pace of other units
No need to clear pipeline or reject results!
Branch target address generated already in the instruction
buffer, before execution!
Branching logic:

Unconditional branch, jump = taken (no choice)
Conditional branch and CR-register contains the result
based on the result = taken / not taken
Unknown results: speculate
backwards = taken, forwards = not taken
Speculation failed: abort instruction before “writeback”

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 36

‘ Branching
| if (a > 0)

. a=a+b+c+d+ e;
else
a=a—b—c—d4d— e;
#rl points to a,
#rl+4 points to b,
#rl1+8 points to c,
#rl+l2 points to d,
#rl+16 points to e.
1wz r8=a(rl) #load a
1wz r12=b(rl,4) #load b
1wz r9=c(rl,8) #load c
lwz rid=d(rl,12) #load d
lwz rll=e(rl, 16) #load e
cmpi cr0=r8,0 #compare immediate
é ELSE,cr0/gt=false #branch if bit false
IF:
add r12=r8.r12 #add
add r12=riz2,r9 #add
add ri2=r12,1r10 #add
add rd=ri2,rl11 #add
stw a(rl)=r4d #store
b > ouT #Funconditional branch
ELSE:
subf ri1z=ri12.r8 #subtract
subf rl12=r9,rl2 #subtract
_ subf rl12=rl10,rl2 #subtract
subf rd=rl12,ril #subtract
stw a(rl)=r4 #store
OUT:

Computer Organization Il, Spring 2009, Tiina Niklander

16.4.2009

37

lwz
lwz
lwz
lwz
lwz

cmpi

add
add

stw

ELZE: subf
subf
subf
subf
stw

QuUT:

Computer Organization Il, Spring 2009, Tiina Niklander

Branching

r8=a(rl)
rlz=hirl,4)
rf=c(rl,B)
rl0=d({xrl,12)
ril=e(xrl;ln)
cri=r8,0
ELSE,cri/gt=falsze
rl2=rB,.ri2
rlz=rl2,r9
rl2=rl2,rlo
r4=rl2, rll
a(rl)=r4

ouT

ri2=r8 rl2
rl2z=rl2,r9
riz=rl2.rl0
rd=rl2 rll
a({rl)=r4

e L e B L L R B

< B ow

{a) Correct prediction: Branch was not taken

4 5 6 7 8 9 10 11 12 13 14 15 16
C W
E C W
D E C W
D E C W
b E C conditional
2 @
® zerodelay
n E W
. 5, + D E W
N F - D E W
cache busy F 0D F °C

16.4.2009

38

‘ Branching

1 2 3 4 5 .7} 7 8 a I0 11 12 13 14 15 16
lwz r8=airl) F D E C W
lwz rlzZ=birl,4) F D E B W
lwz 19=c(rl,B) F . D E C W
lwz rl0=d(rl,1l2) F D E i W
lwz rll=e(rl,l&) F . = D E c W
cmpi cro=rs,o F - - b (® conditional
@ ELSE,crl/gt=false F g /
IF: add rl2=rg,rl2 F = D! E’ (noW)
add rlz=rlz,r9 F : : : - : D’ E (noW)
add rlz=rl2,rl0 F : F
o Akl ~ ~ - delay: 2 cycles
St aj ool cache busy
b ouUT
EL3E: subf rlZ=r&,rlz F |} @ W
subf rlZ=rlz,r9 F 2 D E W
subf rliZ=rl2,rld F D E W
subf rd=rlz,rll F D E W
stw al(rl)=r4 F jb] = e

OuUT:=

(b) Incorrect prediction: Branch was taken

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 39

The PowerPC 620 microprocessor: a high performance
superscalar RISC microprocessor
Levitan, D.; Thomas, T.; Tu, P,;

64b architecture

PowerPC 620

Compcon '95. Technologies for the Information
Superhighway’,
Digest of Papers. 5-9 March 1995 Page(s):285 - 291

6 independent execution units
Instruction unit (dispatcher)

3 integer units [HePa96 Fig. 4.49 |

Load/Store unit

FP unit (floating-point)
Max 4 instructions executed concurrently
Reservation stations

Each unit has two or more units

If instruction cannot progress (due dependencies) it walits in

this unit and does not delay later instructions
Renaming: 8 integer and 12 FP extra registers

Reduces dependencies

Temporal storage of partial results
In-order-complete

max 4 instructions at a time

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 40

PowerPC 620

Branching logic
256 entries in branch target buffer (BTB)
Set-associative, set size 2
2048 entries in branch history table
Used only if branch target is in BTB
Speculative execution of max 4 unresolved branch
Instructions
Results in the extra (renaming) registers
Commit: copy to actual target register
Abort: release register for other use

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009

41

Review Questions / Kertauskysymyksia

Differences / similarities of superscalar and trad. pipeline?
What new problems must be solved?

How to solve those?

What is register renaming and why it is used?

Miten superskalaaritoteutus eroaa tavallisesta
liukuhihnoitetusta toteutuksesta?
Mita uusia rakenteesta johtuvia ongelmia tulee ratkottavaksi?
Miten niita ongelmia ratkotaan?
Mita tarkoittaa rekistereiden uudelleennimeaminen

ja mita hyotya siitd on?

Computer Organization Il, Spring 2009, Tiina Niklander 16.4.2009 42

