Lecture 9: RISC

Computer Organization Il

Pentium

Computer Organization II, Spring 2009, Tiina Niklander

6.4.2009

Comp. Org Il, Spring 2009

6.4.2009

Lecture 9: RISC

L}
(a) Integer Unit

‘ Pentium: Registers

Computer Organization Il, Spring 2009, Tiina Niklander

Type Number Length (bits) Purpose
General 8 39 General-purpose user registers
Segment 6 16 Contain segment selectors
Flags 1 32 Status and control bits
Instruction Pointer I 32 Instruction pointer
(b) Floating-Point Unit
Type Number Length (bits) Purpose
Numerie 8 80 Hold floating-point numbers _
Control 1 16 Control bits
Status 1 16 Status bits
Tag Word 1 16 Specifies contents of numeric
registers
Instruction Pointer 1 48 Points to instruction interrupted _
by exception
Data Pointer 1 48 Points to operand interrupted by
e (Sta06 Table 12.2)

6.4.2009

B Aliasing
B FP used a stack (pino)
B MMX multimedia
instructions use the same
registers, but use them
with names
B MMX-usage: bits 64-79
are setto 1 - NaN
B FP Tag (word) indicate
which usage is current
m First MMX instr. set
m EMMS (Empty MMX

State) instruction reset
Computer Organization Il, Spring 2009, Tiina Niklander

‘ Pentium: FP / MMX Registers (Sta06 Fig 12.22) |

Floating-Point

Tag Floating-Point Registers

9 63

MM3
MM2
MM1
MMO
MMX Registers

IProgrammer responsibility |

6.4.2009

Comp. Org Il, Spring 2009

6.4.2009

Lecture 9: RISC

N

Pentium: EFLAGS Register (51206 Fig 12.20).

31 2L 16 /1= [
l}'VAVR Nl IO [o|D|I|T|S|Z| |A| |P| |C
Dip|s|CIMF T|PL |[F|F|F|F|F|F| |F F F

ID = Idenufication flag DF = Direction flag
VIP = Virtual interrupt pending |IF = Interrupt enable flag |
VIF = Virtwal interrupt flag TF = Trap flag
AC = Alignment check SF = Signflag
VM = Virtual 8086 mode ZF = Zero flag
RF = Resume flag AF = Auxihary carry flag
NT = Nested task flag PF = Panty flag
IOPL = 1/O privilege level CF = Carry flag
| OF = Overflow flag

Computer Organization Il, Spring 2009, Tiina Niklander

W Condition of the processor: carry, parity, auxiliary, zero,
sign, and overflow
m Used in conditional branches

6.4.2009

5

N

Pentium: Control Registers

Computer Organization Il, Spring 2009, Tiina Niklander

51 3 /7 /6 /5 /4 /3 /2 /1 Jo
. clelelals 2] 7]
S Ele|EIE]E|E)Dl1 |E
PIP
CR3 Page Directory Base c|w
DIT
CR? Page Fault Linear Address /
o | ke .]
PICIN Al W NIE|TE|M]| P
CRO GD|W Ml |P / E|IT SMlPE
31030\29 13 16 Ji SNAN\3\2\1\0
= able PG = Paging
PGE = Page Global Enable CD = Cache Disable
MCE = Machine Check Enable NW = Not Write Through
PAE = Physical Address Extension AM = Alignment Mask
PSE = Page Size Extensions WP = Write Protect
DE = Debug Extensions NE = Numeric Error
TSD = Time Stamp Disable ET = Extension Type
PVI = Protected Mode Virtual Interrupt TS = Task Switched
VME = Virtual 8086 Mode Extensions EM = Emulation
PCD = Page-level Cache Disable MP = Momitor Coprocessor
PWT = Page-level Writes Transparent PE = Protection Enable

6.4.2009

6

Comp. Org Il, Spring 2009

6.4.2009

Lecture 9: RISC

N

. [See Sta06 Table 12.3]
Pentium: Interrupts

B Calling interrupt handler; atomic hardware functionality!

If not in privideged mode (etuoikeutettu tila)
PUSH(SS) stack segment selector to stack
PUSH(ESP stack pointer to stack |as subroutine call |
PUSH(EFLAGS) status register to stack
EFLAGS.IOPL « 00 set privileged mode
EFLAGS.IF « 0 disableinterrupts (keskeytys)
EFLAGS.TF + 0 disable exceptions (poikkeus)
PUSH(CS) code segment selector to stack
PUSH(EIP) instruction pointer to stack (kaskyosoitin)
PUSH(error code) if needed

number + interrupt controller / INT-instruction / status register

CS « interrupt vector [number].CS |Address translation:
EIP « interrupt vector [number].EIP |Segment nunber- and

M Return offset from interrupt vector =>
Address of the interrupt handler

m Privileged IRET-instruction

m POP everything from stack to their places

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009

N

Computer Organization Il

PowerPC

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009

Comp. Org Il, Spring 2009

6.4.2009

Lecture 9: RISC

»‘_ PowerPC
- 2 cache
On-chip
caches
L1 mstruetion cache L1 data cache
Tnstroetion fetch Instruetion fetch Branch
and decode lugic and decode umit
Instruction .
dispatch zroup 1 = 3 1

J | J L

T, i
Velocity engine
Exceutlon [e 2e |z
units 3 5 E H £E S
H E E | *& EF|==
g Z » 2 1=
Instruction 1 » 3 1 -
(StaOG Fig4.14) """ ™™

Computer Organization Il, Spring 2009, Tiina Niklander

6.4.2009 9

N

Fixed-Point Unit

0 63
RO
32b
b, and
R31
0 31

PowerPC: user visible registers

B Fixed point unit:
m 32 general-purpose
registers, a’ 64 b, and
m Exception Register (XER),

B Floating-Point unit:
m 32 general-purpose
floating-pointregs , a’ 64

m FP Status & Control
Register (FPSCR), 32 b

Floating-Pomnt Umt

63

FPRO

FPR31

31

0
FPSCR

Comp. Org Il, Spring 2009

6.4.2009

Lecture 9: RISC 6.4.2009

[]
‘ Floating-Point Status and Control Register
[]
Vector Number Description
0 Divide error; division overflow or division by zero
1 Debug exception; includes various faults and traps related to debugging
2 NMI pin interrupt; signal on NMI pin
3 Breakpoint: caused by INT 3 instruction, which is a 1-byte instruction useful for debugging
4 INTO-detected overflow; occurs when the processor executes INTO with the OF flag set
5 BOUND range exceeded: the BOUND instruction compares a register with boundaries stored in
memory and generates an interrupt if the contents of the register is out of bounds.
6 Undefined opcode
7 Device not available; attempt to use ESC or WAIT instruction fails due to lack of external device
Double fault; two interrupts occur during the same instruction and cannot be handled serially
9 Reserved
10 Invalid task state segment: segment describing a requested task is not initialized or not valid
11 Segment not present; required segment not present
12 Stack fault; limit of stack segment exceeded or stack segment not present
I nt er ru pts 13 General protection; protection violation that does not cause another exception (e.g_, writing to a
1 read-only segment)
others are p e
15 Reserved
eXCe p‘t io n S 16 Floating-point error; generated by a floating-point arithmetic instruction
17 Alignment check; access to a word stored at an odd byte address or a doubleword stored at an
address not a multiple of 4
18 Machine check; model specific
19-31 Reserved
32-255 User interrupt vectors; provided when INTR signal is activated
Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 11

Branch Processing Unit
‘_ PowerPC: user visible registers
0 o 63
B Branch processing unit, 3 registers | Count }

m Condition Register, 32b, 8 fields,a’ 4 b
- CRO integer instr, CR1 floating-pointinstr (> 0, < 0, = 0,
Overflow)
- Set by every instruction execution
- CRO-CR7 compare results (opl > op2,0pl < op2, opl = op2)
- Set by compare instructions, can store result
m Link Register, 64 b
- For example: subroutine return address
m Count Register, 64 b
- For example iteration counter, indirect addressing in branch.

() 3 /4 7 /8 1 A2 15 /A6 19 /A0 23 A 27 fs 31
CRO CRI1 CR2 CR3 CR4 CR5 CR6 CR7
O S
mstructions mstructions
Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 12

Comp. Org Il, Spring 2009 6

Lecture 9: RISC

‘_ PowerPC: Registers (control & status)
B Machine State Register, MSR, 64 b

m 48: External interrupts enabled/disabled (ulkoiset keskeytykset)
m 49: Privileged/ nonprivileged state (etuoikeutettu/kayttajatila)
_ m 53: OS (intr. handler) gets control after each instruction
Tracing { m 54: OS gets control after each branch
m 52&55: Floating-point exception modes (when to create
exception)
m 58&59: Address translations (in MMU) ON/OFF
m 63: big/little endian
B Save/Restore Registers: SRR0O and SRR1
m For interrupt handling only \ \
- Storage space for program counter (PC) and status word
(MSR)

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 13

‘ PowerPC: Interrupts

B Caused by system condition or instruction execution
B Interrupt handling (starting phase) (Hardware task!)
m SRRO «+ PC
m SRR1 «+ MSR (interrupt bits with interrupt type specific values)
m MSR « hardware-defined value specific to interrupt type
- ALL: privileged ON, interrupts OFF, address translation OFF
m PC + address of the interrupt handle (from Interrupt Table)
- Selection of the handler depends on the interrupt “number”
- Bit 57 in MSR gives the base address: 000h tai FFFh
W Return from handler
m Privileged rfi- (return from interrupt) instruction
m MSR « SRR1
m PC « SRRO

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 14

Comp. Org Il, Spring 2009

6.4.2009

Lecture 9: RISC

N

2 PowerPC Interrupt Table

Description.

Entry Point Interrupt Type
00000k Reserved
00100h System reset
Caused by /7 00200k Machine check
00300h Data storage

Instruction
execution o

Instruction storage

00500h External
00600k Alignment
00700k Program

Not caused by
Instruction 008008
execution 00900k

Floating-point unavailable

Decrementer
00AO0h Reserved
00BOOh Reserved
00CO0h System call
00D00h Trace
00EOOh Floating-point assist

00E10h through ~ Reserved

O0FFFh
01000h through ~ Reserved (implementation
02FFFh specific)

Assertion of the processor's hard or soft reset input
sienals by external logic

Assertion of TEA# to the processor when it is
enabled to recognize machine checks

Examples: data page fault; access rights violation
on load/store

Code page fault; attempted instruction fetch from
/O segment; access rights violation

Assertion of the processor's external interrupt input
signal by external logic when external interrupt
recognition is enabled

Unsuccessful attempt to access memory due to
misaligned operand

Floating-point interrupt; user attempts to execute
privileged instruction; trap instruction executed
with specified condition met; illegal instruction
Attempt to execute floating-point instruction with
floating-point unit disabled

Exhaustion of the decrementer register when
external interrupt recognition is enabled

Execution of a system call nstruction

Single-step or branch trace intermupt

Attempt to execute relatively infrequent, complex
floating-point operation (e_g_, operation on
denormalized number)

Computer Organization Il, Spring 2009, Tiina Niklander

6.4.2009

15

N

RISC-

Ch 13 [Sta06]
Instructions

Computer Organization Il, Spring 2009, Tiina Niklander

architecture =*

RISCvs. CISC
Register allocation

p Computer Organization Il

\ﬁ‘:_)ow; &/"

6.4.2009

16

Comp. Org Il, Spring 2009

6.4.2009

Lecture 9: RISC 6.4.2009

Hardware mile stones

. [EEEEIm Virtual memory, 1962
= Simpler memory management '
[AEESIm Pipeline, 1962

_l Architecture family concept, 1964

m Set of computers using the same instruction set

_l Microprogrammed control, 1964

m Easier control design and impl.

@™ Multiple processors, 1964 [3.P. Eckert, John Mauchly]
m test_and_set instruction needed
W Cache, 1965

[1em s/z60] m Huge improvementin performance
B RISC-architecture, 1980 John Cocke, 1974
[1BM] u Simple instruction set J.L. Hennessy & D.A. Patterson |
W Superscalar CPU, 1989
m Multiple instruction per cycle fntel
B Hyperthreading CPU, 2001
m Several register sets and virtual processors on chip

B Multicore CPU, 2005
[IRESISORETOSHBEIBNI w Several full processors on chip

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 17

‘_ CISC (Complex Instruction Set Computer)

B Goal: Shrink the semantic gap (semanttinen kuilu)
between high-level language and machine instruction set
m Expressiveness of high-level languages has increased
m "Simple” compilations
- Language structures match nicely with instructions
m Lot of different instructions for different purposes
m Lot of different data types
m Lot of different addressing modes
m Complex tasks performed in hardware by control unit, not in
the machine code level (single instruction)
- Less instructions in one program (shorter code)
- Efficient execution of complex tasks

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 18

Comp. Org Il, Spring 2009 9

Lecture 9: RISC 6.4.2009

‘ Operations and Operands, which are used?

W Year 1982, computer: VAX, PDP-11, Motorola 68000
B Dynamic, occurrencies during the execution

Machine-Instruction Memory-Reference
Dynamic Occurrence Weighted Weighted
Pascal (& Pascal (o) Pascal (!

ASSIGN 38% 13% 13% 14% 15%
LOOP 5% 3% (aa\ | e\ | A\ | (6%
\atw/

CALL 15% 12% a9/ | \we/ | \ese/
IF 29% 11% 21% 7% 13%
GOTO o= 3% = = = =
OTHER 6% 1% 3% 1% 2% 1%

‘Weighted Relative Dynamic Frequency of HLL Operations [PATTS2a]

Pascal C Average
Integer Constant 16% 23% 20%

80% of references

Dynamic Percentage |to local variables
Scalar Variable of Operands
i b B L (Sta06 Table 132,13.3)
Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 19

‘ Subroutine (procedure, function) calls?

B Lot of subroutine calls
B Calls rarely have many parameters
B Nested (sisakkainen) calls are rare

Percentage of Executed Compiler, Interpreter, and Small Nonnumeric
Procedure Calls With Typesetter Programs

>3 arguments 0-7% 0-5%

>5 arguments 0-3% 0%

>8 words of arguments and 1-20% 0-6%

local scalars

>12 words of arguments and 1-6% 0-3%

local scalars

Procedure Arguments and Local Scalar Variables

B How to use the information? |98% less than 6 parameters

92% less than 6 local variables

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 20

Comp. Org Il, Spring 2009 10

Lecture 9: RISC 6.4.2009

‘ Observations

B Most operands are simple

B Many jumps and branches

B Compilers do not always use the complex instructions
m They use only a subset of the instruction set

W Conclusion?

Occam’s razor (Occamin partaveitsi)

Computer Organization I, Spring 2009, Tiina Niklander 6.4.2009 21

‘ Optimize

B Optimize the parts that consume most of the time
m Procedure calls, loops, memory references, addressing, ...
B Bad example: rarely used (10%) floating point instructions
improved to run 2x:

No speedup Speedup: 1/2
prr=n

ExTime,.,, = ExTimey,q * (0.9* 1.0+ 0.1*0.5)
= 0.95 x ExTime,q

Speedup = EXTime,q / EXTime,,, =1/0.95=1.053 << 2

)

Amdahl’s law

Computer Organization I, Spring 2009, Tiina Niklander 6.4.2009 22

Comp. Org Il, Spring 2009 11

Lecture 9: RISC 6.4.2009

‘ Optimization

B Optimize execution speed (suoritusnopeus),
instead of of ease of compilation
m Compilers are good, machines are efficient
- Compiler can and has time to do the optimization

m Do most important, common things in hardware and fast

- E.g. 1-dim array reference
m And the rest in software

- E.g. multidim. arrays, string processing, ...

- Library routines for these

= RISC architecture (Reduced Instruction Set Computer)

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 23

‘ RISC architecture

B Plenty of registers (minimum 32)
m Compilers optimize register usage
B L OAD / STORE architecture
m Only LOAD and STORE do memory referencing
B Small set of simple instructions
B Simple, fixed-length instruction format (32b)
m Instruction fetch and decoding simple and efficient
B Small selection of simple address references
m No indirect memory reference
m Fast address translation
Bl Limited set of different operands
m 32b integers, floating-point
B One or more instructions are done on each cycle

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 24

Comp. Org II, Spring 2009 12

Lecture 9: RISC 6.4.2009

ﬁ_“ RISC architecture

B CPU easier to implement
m Pipeline control and optimization simpler
m Hardwired (langoitettu)

B Smaller chip (piiri) size

~ss Y. 27
= More chips per die (lastu,kiekko) (SR (&7

e 7
= Smaller waste% &&% i

B Cheaper manufacturing 25% yield (OK) 55% yield (OK)
0,
W Faster marketing 75%wasted 45% wasted

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 25

L}
‘_ RISC vs. CISC
Complex Instruction Set Reduced Instruction Superscalar
(CISC)Computer Set (RISC) Computer
Characteristic IBM VAX Intel SPARC MIPS PowerPC Ultra MIPS
370/168 11/780 80486 R4000 SPARC R10000
Year developed 1973 1978 1989 1987 1991 1993 1996 1996
Number of 208 303 235 69 a4 225
instructions
Instruction size (bytes) 2-6 2-57 1-11 4 4 4 4 4
Addressing modes 4 22 11 1 1 < 1 1
Number of general- 16 16 8 40 -520 32 = 40 - 520 32
purpose registers
Control memory size 420 480 246 — — — — —
(Khits)
Cache size (KBytes) 64 64 8 2 | s || w3 32 64
Characteristics of Some CISCs, RISCs, and Superscalar Processors
Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 26

Comp. Org Il, Spring 2009 13

Lecture 9: RISC

[]
ii RISC vs. CISC
Number Number of
of Max Load/store Max bits for Number of
instrue- instrue- | Number of combined number of | Unaligned Max integer bits for FP
tion tion size | addressing Indirect with memory addressing | Number of register register
Processor sizes inbytes modes addressing arithmetic operands allowed MMU uses specifier specifier
AMD20000 1 4 1 no no 1 no 13 8 32,
MIPS R2000 1 4 1 no no 1 no 1 5 4
SPARC 1 4 2 no no 1 no 1 5 4
MC88000 1 4 1) no no 1 no 1 5 4
HP PA 1 4 10" no no 1 no 1 5 4
IBM RT/PC 27 4 1 no no 1 no 5 42 3*
IBM RS/6000 i} 4 4 no no 1 yes 1 5 5
Intel 1860 i 4 4 no no 1 no 1 5 4
IBM 3090 4 3 2 no* ves 2 yes 4 4 3
Intel 80486 12 12 15 no” yes 2 yes 4 3 3
NSC 32016 21 21 23 yes ves 2 yes 4 3 3
MC68040 11 22 44 yes yes 2 yes 8 4 3
VAX 56 56 2 yes ves 6 yes 24 4 0
Clipper 4 8* L no no 25 (] 2 4= 3%
Intel 80960 25 8 i no no 1 yes® = 5 34
a RISC that does not conform to this characteristic.
b CISC that does not conform to this characteristic
(Sta06 Table 13.7).
Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 27
[]
‘_*‘ Computer Organization Il
-
Register usage
Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 28

Comp. Org Il, Spring 2009

6.4.2009

14

Lecture 9: RISC

“ Register storage (Register file)

B More registers than addressable in the instruction
m E.g. SPARC has just 5 bits for register number = 0.. 31,
but the processor has 40 to 540 registers
B Small subset of registers available for each instruction in
register window
m In the window references to register r0-r31
m CPU maps them to actual (true) registers r0-r539

Instruction
[Ix]
Registers
Current \ 4 — Data
Window Decoder
Pointer
(Sta06 Fig 13.3).

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 29

‘_‘ Register window (rekisteri-ikkuna)
B Procedure call uses registers instead of stack
m Fixed number of registers for parameters
and local variables (paikalliset muuttujat)
m Overlapping area to allow parameter passing to the next
procedure and back to caller

Parameter Loeal Temporary
o . 5 £ Level J
Registers Registers Registers

L_;—Y—-__)

Call/Return

—~—A—

Parameter Local Temporary Level J +1

Registers Registers Registers

6.4.2009 30

Computer Organization Il, Spring 2009, Tiina Niklander

Comp. Org Il, Spring 2009

6.4.2009

15

Lecture 9: RISC

N

5 Register window (rekisteri-ikkuna)

Restore gpe

m Most recent calls in registers
m Older activations
saved to memory
= Restore when nesting T
depth decreases i
m Overlap only when needed
B Global variable?
m In memory or own register window

B SPARC .
m r0-17 global var, Real registers
m r8-r15 parameters (in caller) : o
m r16-r23 local variables Vlri_:ual \‘”"“”
m r24-r31 parameters (in called) registers ‘_M

__W'

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 31

N

Individual variables
Compiler-assigned global variables

Save/Restore based on procedure
nesting depth

Blocks of memory
Recently-used global variables

Save/Restore based on cache
replacement algorithm

Register addressing Number of bits Memory addressing

B The register file acts like a small, fast buffer (as cache?)
m Register is faster, needs less bits in addressing, but
B Difficult for compiler to determine in advance,
which of the global variable to place in registers
B Cache decides this issue dynamically
m Most used and referenced stay in cache

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009

2 Register set vs. cache (Sta06 Table 13.5)
Large Register File Cache
All local scalars Recently-used local scalars

32

Comp. Org Il, Spring 2009

6.4.2009

16

Lecture 9: RISC 6.4.2009

"*‘ Compiler-based register optimization
= (allocation of registers)

B Problem: Graph coloring
m Minimize the number of different
colors, while adjancent nodes

have different color
W = Difficult problem
(NP-compleate)

B Form a network of symbolic registers based on the program code
m Symbolic register~ any program quantity that could be in register

m The edges of the graph join together program quantities that are
used in the same code fragment

B Allocate real registers based on the graph

m Two symbolic registers that are not used at the same time (no edge

between them) can be allocated to the same real register (use the
same color)

m If there are no more free registers, use memory addresses

Computer Organization Il, Spring 2009, Tiina Niklander

6.4.2009 33

% Allocation of registers
= (compiler-based register optimization)

m Node (solmu) = symbolic register

m Edge (sdrma) = symbolic registers used at the same time
mn colors = n registers

A B C D E F
¢ o ——]
' X IS
iD i
1 1
v 77 E R

v

Rl R2 R3

(a) Time sequence of active use of registers (b) Register interference graph
—

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 34

Comp. Org Il, Spring 2009 17

Lecture 9: RISC

5 RISC-pipeline
Load tA—M 1[E[D |
Load 1B—M I|E|D

Add rCer1A+1B

Store Me1C

Branch X
Load A<M
Load fB+=M

Add 1C — 1A +1B

Store M =—1C
Branch X
NOOP

(a) Sequential execution

—mlg

—

D
E
1{E

(c) Three-stage pipelined timing

Two port MEM

(split cache enough?)

Computer Organization Il, Spring 2009, Tiina Niklander

10
Load rA=—M I(E\D
Load B=—M I E\D
Add e+ [V 1] [E
Store M —1C I|E|D
Branch X if
L|E
(b) Two-stage pipelined timing
Single port MEM
)
Load A<M I(E[EpD
Load B=—M I |E1[E;|D
1EE
00 I [E;[Ez
Add C — 1A +1B 1 [E1|E2
Store M 1C I |[E;|Ez(D
Bragch X I |E1|Es
1EE
NOOP, 1 [Ey[E>

(d) Four-stage pipelined timing

Clock cycle?

6.4.2009 35

N

RISC-pipeline, Delayed Branch

~ 1 2 3 4 5 6 ;. 8
100 LOAD X, rA 1 E D
101 4DD 1, r4” 1 (E
102 JUMP 105 I E
103 ADD A, rB 1
105 STORETA, Z I E D Traditional
100 LOAD X, rA 1 E D
101 ADD 1,1’ 1 E
102 JUMP 106 1 E
103500P) 1| E
106 STORE rA, Z | E D RISC with inserted NOOP
100 LOAD X, Ar 1 E D Two port MEM
101 JUMP 105 1 E Branch (ehdollinen hyppy)
102ADD LA 1 E JZERO 105, rA ??
105 STORETA, Z I E D RISC with reversed instructions

Computer Organization Il, Spring 2009, Tiina Niklander

6.4.2009 36

Comp. Org Il, Spring 2009

6.4.2009

18

Lecture 9: RISC 6.4.2009

!_! RISC & CISC United?

_ ‘'compilation’ at
B Pentium, CISC every execution

m Each 1 — 11 byte-length CISC-instruction is 'translated’ by
hardware to one or more 118-bit micro-operations
(stored in L1 instruction cache)

m Lower levels (including control unit) as RISC

m Lot of work registers, used by the hardware

B Crusoe (Transmeta) [Just in time (J1T) compilation |

m Outside looks like CISC-architecture

m Group of Instructions 'translated’ by software to just before
execution to fixed-length micro-operations; these can be
optimized before execution

- VLIW (very long instruction word, 128 bits)

- 4 pops/VLIW-instruction ‘compilation’ just
m Lower levels as RISC once per group
Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 37

‘_ Review Questions /Kertauskysymyksia

Main features and characteristics of RISC-architecture?
How register windows are used?

Mitka ovat RISC arkkitehtuurin tunnuspiirteet?
Miten rekisteri-ikkunoita kaytetaan?

Computer Organization Il, Spring 2009, Tiina Niklander 6.4.2009 38

Comp. Org Il, Spring 2009 19

