Lecture 7: Instruction sets

30.3.2009

‘ Instruction cycle

I CPU executes instructions “one after another”
% Execution of one instruction has several phases (see state
diagram). The CPU repeats these phases

Multiple
results

Instruction complete,
fetch nest i i

Return for string
or vector data

Computer Organization I, Spring 2009, Tiina Niklander 3032009

‘ Computer Instructions (konekéaskyt)

& Instruction set (kaskykanta) =
= Set of instructions CPU ‘knows’
% Operation code (kaskykoodi)
= What does the instruction do?
I Data references (viitteet) — one, two, several?
= Where does the data come for the instruction?
- Registers, memory, disk, /0
= Where is the result stored?
- Registers, memory, disk, /0
™ What instruction is executed next?
= Implicit? Explicite?
wo?
= Memory-mapped I/0O - references as if in memory

Computer Organization I, Spring 2009, Tiina Niklander

3032009 3

“_‘ Instructions and data (kaskyt ja data)

@ [Address Contents Address Contents
S|(11 0010 0010 0000 0001 101 2201
S|J 102 0001 0010 0000 0010 102 1202
S| 103 0001 0010 0000 0011 103 1203
g|Los oom 000 o000 0100 104 3204
“lr201 0000 0000 0000 qo10 201 0002
&) 202 0000 0000 0000 Qo0il 202 0003
B[] 203 0000 0000 0000 0100 203 0004
204 0000 0000 0000 0000 204 0000
() Binary program (b) Hexadecimal program
Address Instruction Label
101 LDA 2017 (g FORMUL 2)
102 ADD 202 || g8
103 ADD 203 (|3 2 s
104 STA 204) |8 & =
201 DAT 2w 1
202 DAT 3 U3]
203 DAT 1 (|2 K
204 DAT 0 N
() Symbolic program (d) Assembly program
Computer Organization, Spring 2009, TinaNikiander 3032000 4

‘ Instruction types?

= Transfer between memory and registers
= LOAD, STORE, MOVE, PUSH, POP, ...
I Controlling /O
= Memory-mapped I/O - same as

@ Arithmetic and logical operations

I Conversions (esitystapamuunnokset)
= TRANS, CONV, 16bT032b, IntToFloat, ...

conditional, unconditional
= JUMP, BRANCH, JEQU, CALL, EXIT, HALT, ...
I Service requests (palvelupyynto)
= SVC,INT, IRET, SYSENTER, SYSEXIT, ...
I Privileged instructions (etuoikeutetut kaskyt)
= DIS, IEN, flush cache, invalidate TLB, ...

Computer Organization I, Spring 2009, Tiina Niklander

= ADD, MUL, CLR, SET, COMP, AND, SHR, NOP, ...

= /0 not memory-mapped — own instructions to control

I Transfer of control (késkyjen suoritusjarjestyksen ohjaus),

3032009 5

Comp. Org I, Spring 2009

‘ What happens during instruction execution?

Transfer data from one location to another

If memory is involved:
Determine memory address
Perform virtual-to-actual
Check cache
Initiate memory read/write

May involve data transfer, before and/or after

Perform function in ALU

Set condition codes and flags

Logical Same as arithmetic

Similar to arithmetic and logical. May involve special logic to

perform conversion

Data Transfer

ry address

Arithmetic

Conversion

Update program counter. For subroutine call/return, manage
parameter passing and linkage

Issue command to /O module
If memory-mapped /O, determine memory-mapped address

Transfer of Control

o

Computer Organization I, Spring 2009, Tiina Niklander 3032009

Lecture 7: Instruction sets

‘ What kind of data?

Operation Number of Bits|
Mnemonic Name Transferred
Integers, floating-points L Load 32
. LH Load Halfword 16
Boolean (totuusarvoja)
LR Load 32
Characters, strings LER Load (Short) 2
IRA (aka ASCII), EBCDIC 35 — =
Vectors, tables
LDR Load (Long) 64
N elements in sequence
LD Load (Long) 64
Memory references
ST Store 32
)) STH Store Halfword 16
Different sizes STC Store Character] 8
8/16/32/ 64b, ... STE Store (Short) 2
Each type and size has its STD Store (Long) 64
own operation code [(Gt06 Tabie105)|

Computer Organization I}, Spring 2009, Tiina Niklander 30.3.2000 7

30.3.2009

‘_ How many registers?

Minimum 16 to 32
Work data in registers
Different register (sets) for different purpose?
Integers vs floating points, indices vs data, code vs. data
All sets can start register numbering from 0
Opcode determines the set that is used
More registers than can be referenced?
CPU allocates them internally
Register window
Example subprogram parameters always in registers
Programmer thing that registers are always r8-r15,
CPU used register set of 8-132
(We'll come back to this later)

‘_ Instruction representation (kaskyformaatti)

How many bits for each field in the instruction?
How many different instructions?
Maximum number of operands per instruction?
Operands in registers or in memory?
How many registers?

Fixed or variable size (vakio vai vaihteleva koko)?

Number of Addresses Symbolic
3 OPA,B,C A —BOPC
2 OPA,B A — AOPB
1 OoPA AC — ACOPA
0 OoP T— (T-1)OPT
AC ccumulator T = top of stack
A,B.C = memory or register locations (T-1) = sccond element of stack
[(5ta06 Table 101) |
Computer Organization1, Spring 2009, Tiina Niklander 3032000 8

Computer Organizaon!, Spring 2008, Tina Niander 032008 s
. Byte ordering (tavujarjestys):
‘ Big vs. Little Endian
. [Ks. Sta06 Appendix 108 |
How to store a multibyte scalar value?
0x1200: | | | | |

0x1200 0x1201 0x1202 0x1203
Byte (tavuosoitteet)

STORE 0x11223344 0x1200 722
Big-Endian: > [0l [o2 [oxa [ou4

Most significant byte _
in lowest byte addr 0x1200 0x1201 0x1202 0x1203

(sanaosoite) Word

Little-Endian: > ‘ Oxd4 |0x33 ‘0)(22 ‘lel

Least signifant byte
i 0x1202 0x1203
in lowest byte addr 0x1200 0x1201 X. x1203

0x00000044 = [0x44 Jox00 [ox00 [o0x00
0x1200 0x1201 0x1202 0x1203

Computer Organization I}, Spring 2009, Tiina Niklander 3032000 11

‘_ Kaskyarkkitehtuureja

Accumulator-based architecture (akkukone)
Just one register, accumulator, implicit reference to it

Stack-based (pinokone) _
Operands in stack, implicit reference
PUSH, POP

Register-based (yleisrekisterikone)

Example: VM

All registers of the same size

Instructions have 2 or 3 operands
Load/Store architecture

Only LOAD/STORE have memory refs

ALU-operations have 3 regs

Computer Organization I}, Spring 2009, Tiina Niklander 3032000 10

Comp. Org Il, Spring 2009

‘_ Big vs. Little Endian

ALU uses only one of them
Little-endian: x86, Pentium, VAX
Big-endian: IBM 370/390, Motorola 680x0 (Mac),
most RISC-architectures
Power-PC, a bi-endian machine, accepts both
machine status register, MSR, has 2 bits to incidate the
endian mode (one bit forkernel, one for the current mode)
Byte order must be known, when transfering data from one
machine to another
Internet uses big-endian format
Socket library (pistokekirjasto) has routines htoi() ja itoh()
(Host to Internet & Internet to Host)

Computer Organization I}, Spring 2009, Tiina Niklander 3032000 12

Lecture 7: Instruction sets

30.3.2009

0010...10010
0010...10100
0010...11000
16b data starts with even (parillinen) (byte)address
32b data starts with address divisible (jaollinen) by 4
64b data starts with address divisible by 8
Aligned data is easier to access
32b data can be loaded by one
operation accessing the word address (sanaosoite)
Unaligned data would contain no ‘wasted’ bytes, but
For example, loading 32b unaligned data requires two loads

Data alignment (kohdentaminen)

from memory (word address) and combining it

load r1, 0(r4) 11 |22
shl r1, =16
load r1, 0(r4) load r2, 1(r4) 331
shr r2, =16
or rl,r2
Computer Oganization1, Spring 2009, Tiina Nikiander 3032000 13

»

Computer Organization Il

Memory references

(Muistin osoitustavat)
Ch 11 [Sta06]

Computer Organization I}, Spring 2009, Tiina Niklander 3032000 14

»

Where are the operands?

In the memory

Variable of the program, stack (pino), heap (keko)
In the registers

During the instruction execution, for speed
Directly in the instruction

Small constant values
How does CPU know the specific location?

Bits in the operation code

Several alternative addressing modes allowed

Computer Organization I}, Spring 2009, Tiina Niklander 30.3.2000

‘_ Addressing modes (osoitusmuodot)

stauction Lusicuction Tusrucicn stevction
o —] - —-—]
Memory Memory l Memory
Registers Registers.
ia) Inmcdiare ©)Dist (© Repiste Indirest (6 Displacement
structon Lnsiucton Tnsrueicn
= [ina) []
Memory
Tnplcit
Top of Sack
» Register
egarn
© Indireet (@ Registr (@ stk

Computer Organization I}, Spring 2009, Tiina Niklander 3032000 16

»

Addressing modes

Register Operand = (R) Nomemory reference

Mode Algorithm Principal Advantage Principal Disadvantage
Tmmediate Operand = A No memory reference Limited operand magnitude
Direct EA=A Simple Limited address space
Indircet EA=(4) Large address space Multiple memory references

Limited address space

Register indirect EA = (R) Large address space Extra memory teference
Displacement ~ EA=A+(R) Flexibility Complexity
Stack EA=top of stack No memory reference Limited applicability

EA = Effective Address
(A) = content of memory location A

(R) = content of register R
One register for the top-most stack item’s address
Register (or two) for the top stack item (or two)

Computer Organization I}, Spring 2009, Tiina Niklander 30.3.2000

»

Displacement Address (siirtyma)

(tehollinen muistiosoite)
Effective address = (R1) + A

register content + constant in the instuction
Constant relative small (8 b, 16 b?)

Usage
Relational to PC

JUMP *+5
CALL SP, Summation(BX)
ADDF F2,F2, Table(R5)

Relational to Base
Indexing a table

Comp. Org Il, Spring 2009

Ref to record field
Stack content
(aktivointitietue)

Computer Organization I}, Spring 2009, Tiina Niklander

MUL F4,F6, Salary(R8)
STORE F2, -4(FP’

3032000 18

Lecture 7: Instruction sets

: More addressing modes
Autoincrement (before/after)
Example Currindex=i++;

Autodecrement (before/after)
Example Currindex=--i

Autoincrement deferred
Example Sum = Sum + (*ptrX++);

Autoscale
Example Double X;

X=ThI[][];

EA=(R),R <« (R)+S

Size of

operand
d R« (R)-S EA=(R)

EA=Mem(R), R« (R) +S

EA= A+(R) +(R)*S

Computer Organization I}, Spring 2009, Tiina Niklander

3032000 19

30.3.2009

»

Pentium: Registers

General registers (yleisrekisterit), 32-b
EAX, EBX, ECX, EDX accu, base, count, data
ESI, EDI source & destination index
ESP, EBP stack pointer, base pointer

Part of them can be used as16-bit registers
AX, BX, CX, DX, SI, DI, SP, BP

Or even as 8-bit registers
AH, AL, BH, BL, CH, CL, DH, DL

»

Computer Organization I}, Spring 2009, Tiina Niklander

Computer Organization Il

Pentium

30.3.2000

20

Segment registers 16b General Registers
CS, SS, DS, ES, FS, GS EAX A
code, stack, data, stack, extra data |Epx BX
Program counter (kaskynosoitin) ECX X
EIP Extended Instruction Pointer EDX DX
Status register Esp 5
EFLAGS EBP BP
overflow, sign, zero, parity, carry,... | Est SI

EDI DI

Computer Organization I}, Spring 2009, Tiina Niklander

3032000 21

Pentium: Data types Not aligned

PentiumData Type

Little Endian

Description

Gl Byte, word (16 bits), doubleword (32 bits), and quadword (64 bits)
locations with arbitrary binary conteats.

Integer A signed binary value contained in a byte, word, or doubleword,
using twos complement representation.

Ordinal An unsigned integer contained in a byte, word, or doubleword.

Unpacked binary coded A representation of a BCD digit in the range 0 through 9, with one

decimal (BCD) digit in each byte.

Packed BCD Packed byte representation of two BCD digits; value in the range 0
099,

Near pointer A 32-bit effective address that represents the offset within a
segment. Used for all pointers in a nonsegmented memory and for
references within a scgment in a scgmented memory.

Bit field A contiguous sequence of bits in which the position of cach bit is
considered as an independent unit, A bit string ca begin at any bit
position of any byte and can contain up ‘

Byte string A contiguous sequence of bytes, words, or doublewords,
containing form zero td2: byte:

Floating point Single / Double / Extended precision IEEE 754 standard

Computer Organization I}, Spring 2009, Tiina Niklander

30.3.2000

2

2

Data transfers, arithmetics,
‘ Pentium: Operations (ust part of) | MOVes: Jumps, stricts, etc
.
High-Level L
ENTER. Creates a stack frame that can be used w implement the rules of 2 block-structured
high-level 1
LEAVE | kim; the action of the previous ENTER.
BOUND. | Check arrav bounds. Venfies that the value in operand 1 s within lower and upper
Segment Register
DS Load poinier into D segment register.
System Control

HLT Halt

LOCK ‘Asserts a hold on shared memory so that the Pentium has exclusive use of it during
the in: that follows the LOCK.

ESC Processor extension eseape. An cscape code that indicaies the succeeding
instructions are to be exceuted by a numeric coprocessor that supports high-
preeision integer and floating-point

WATT, ‘Wait until BUSY# negated. Suspends Pentium progsam exccution until the
processor deteets that the BUSY pin is inactive, indicating that the numeric

has finished exccution.
Protection

SGDT [Store global descriptor table.

LSL | Load scement limit. Loads a user-specified register with a sepment limit.

VERR/VERW | Venty seading/writing

Cache
INVD | Flushes the intemal cache memory.
WBINVD] | Flushes the internal cache memory after writing disty lines to memory.
P Tovalidates a translation lookaside buffer (TLB) cnt
Computer Organization I, Spring 2009, Tina Nilander 3032000 23

Comp. Org Il, Spring 2009

Pentium: MMX Operations (just part of)

[Tnstruction ipti

PADD [B. W, D] Parallel 4dd of packed eight bytes, four 16-bit words, or two 32-bit
doublewards, with wraparor

PADDS [B, W1 dd with saturation |

PADDUS [B. W] A dd unsigned witizaturationy N0 under/overflow. |

PSUB [B.W. D] ubtract with wraparound__Use closest representation _

PSUBS [B, W] Subtract with saturation.

Arithmetic PSUBUS [B. W] ned with saturation

PMULHW Parallel multiply of four signed 16-bit words, with high-order 16
bits of 32-bit result chosen.

PMULLW Parallel multiply of four signed 16-bit words, with low-order 16 bits
of 32-bit result chosen.

PMADDWD Parallel multiply of four signed 16-bit words: add tosether adjacent
pairs of 32-bit results

PACKUSWB Pack words into bytes with unsigned saturation.

PACKSS [WB,DW] Pack words into bytes, or doublewords into words, with signed
saturation.

Conversion PUNPCKH [BW, WD, | Parallel uapack (interleaved merge) high-order bytes, words, of

ot from MMX repiste

PUNPCKL [BW, WD, | Parallel unpack (interleaved merge) low-order bytes, words, or

DQl from MMX repister.

Computer Organization Il, Spring 2009, Tiina Niklander

30.3.2000

24

Lecture 7: Instruction sets

30.3.2009

‘ Pentium: Addressing modes (osoitustavat)

Pentium Addressing Mode Algorithm
Immediate Operand = A 1,2,4,88B
Register Operand Operand = (R))
Displacement. LA=(SR)+A Registers:
Bas e S 1,2,4,88

LA=(SR)+(B) +A For indexing arrays
LA=(SR)+()xS+A [Forarraysinstack or for

Basc with Displacement
Scaled Index with Displacement
Base with Index and Displacement

LA=(SR)+(B)+ M +A [two dimensional arrays

Base with Scaled Index and Displacement

Relative
LA = linear address R = register

(X) = contents of X B = base register

SR = scgment register I = indexregister

PC = program counter S = scaling factor

A = contents of an address ficld in the instruction

Computer Organizaionil, Sping 2008, ina Nikander 3032000 25

‘_ Pentium: Addressing Mode Calculation

Segment Registers

[LA=(SR)+()*S+(B)+A |

Base Register |

Effective
Address

Descriptor Registers
S

Linear
Address

E

ficcess Right”

Timit

L|Base Addresd]

Computer Organization I}, Spring 2009, Tiina Niklander 3032000 26

‘_ Pentium: Instruction format

CIsC

Complex Instruction Set Computer
Lot of alternative fields
Part may be present or absent in the bit sequence
Prefix 0-4 bytes
Interpretation of the rest of the bit sequence depends on the
content of the preceding fields
Plenty of alternative addressing modes (osoitustapa)
At most one operand can be in the memory
24 different

Backward compatibility
OLD 16-bit 8086-programns must still work
Howto handle old instructions: emulate, simulate?

Computer Organization I}, Spring 2009, Tiina Niklander 3032000 27

‘_ Pentium: Instruction format

Oorl Oorl _ Oorl Oorl bytes
| G | | [
refis | override | Z¢ sze
G override | override
.
.
R
e Addressing
.
3ordbytes 2 lor2 Oorl Oorl 0,1,2,0r4 0.1,2,0r4
Instruction prefixes Opcode | MoakM | sIB Displacement | Immediate I

|"Mm | RegiOpeode | rM
T 6 s 4 3, 1

1. Operand 2. operand (register)
(register) or form part of the addressing-mode

Computer Organization I}, Spring 2009, Tiina Niklander 3032000 28

- EesawrE]

Pentium: Instruction format

Instruction prefix (optional)
LOCK —exclusive use of shared memory in multiprocessor env.
REP — repeat operation to all characters of a string
Segment override (optional)
Use the segment register explicitely specified in the instruction
Else use the default segment register (implicit assumption)
Operand size override (optional)
Switch between 16 or 32 bit operand, override default size
Address size override (optional)
Switch between 16 or 32 bit addressing. Override the default,
which could be either

29

Computer Organization I}, Spring 2009, Tiina Niklander 30.3.2000

Comp. Org Il, Spring 2009

»'* [SesSwos P TEe]

Pentium: Instruction format

Opcode

Each instruction has its own bit sequence (incl. opcode)

Bits specify the size of the operand (8/16/32b)
ModR/m(optional)

Indicate, whether operand is in a register or in memory

What addressing mode (osoitusmuoto) to be used

Sometimes enhance the opcode information (with 3 bits)
SIB = Scale/Index/Base (optional)

Some addressing modes need extra information

Scale: scale factor for indexing (element size)

Index: index register (number)

Base: base register (number)

Computer Organization I}, Spring 2009, Tiina Niklander 3032000 30

Lecture 7: Instruction sets

‘ [See Sta06 Fig 118]

. Pentium: Instruction format
Displacement (optional)
Certain addressing modes need this
0,1, 2 or4 bytes (0, 8, 16 or 32 bits)
Immediate (optional)
Certain addressing modes need this, value for operand
0,1, 2 or 4 bytes

Computer Organization I}, Spring 2009, Tiina Niklander 30.3.2000

31

30.3.2009

‘_ PowerPC: Instruction set (kaskykanta)

RISC
Reduced Instruction Set Computer

Fixed instruction length (32b), few formats and modes
Instructions usually have 3 operands

Small number of different instructions
Easier hardware implementation, faster execution
Longer programs?

Only 2 memory reference formats
Load/Store-architecture

32 general registers

Fixed data size (32/64)

No string operations in the instruction set
Libraries (in the programs)

Computer Organization I}, Spring 2009, Tiina Niklander 30.3.2000

33

‘ Computer Organization Il

PowerPC

Computer Organization I}, Spring 2009, Tiina Niklander 30.3.2000

PowerPC: Instruction format [(sta06 Fig 11.9) |

‘ X0=0pcode extension, R=Record condition in CR1, O=Record overflow in XER
. S = Part of Shift Amount field, *=64 bit implementations only

<— 6 bits —><— 5 bits —><— 5 bits 16 bit
L/St Indirect [Dest Register| Base Register Displacement
LSt Indirect_|Dest Register| Base Register Indes Register] __ Size, Sign, Update | /
Ld/St Indirect [Dest Register| Base Register Displacement XO| *
() Load/store instructions
Arithmetic _[Dest Register] Src Register | Sre Register O] Add, Sub,ete. __|R]

Add, Sub, etc._[Dest Register| Src Register
Logical | Src Register | Dest Register | Src Register | ADD, OR, XOR, ete. |R
AND, OR, ete. | Src Register | Dest Register

Signed Immediate Value

Unsigned Immediate Value

Rotate | Svc Register | Dest Register | Shift Amt_| Mask Begin | Mask End |R|
Rotate or Shift | Src Register | Dest Register | Src Register | Shift Type or Mask |R|

Rotate | Src Register | Dest Register | Shift Amt Mask | XO [S[R] *

Rotate Sre Register | Dest Register | Sr Register Mask | X0 |R|*

Shift Sre Register | Dest Register Shift Type or Mask [s|R] =

(d) Integer arithmetic, logical, and shift/rotate instructions
Flt sgl/dbl | Dest Register [Src Register | Sre Register [Sre Register | Fadd, ete.
(e) Floating-point arithmetic instructions
Computer Organization I, Spring 2009, Tina Nilander 30.3.2000

35

‘ PowerPC: Addressing modes

Mode Algorithm
Load/Store Addressing
Indirect EA=(BR) +D
Tndirect Iudexed EA=(BR) +(IR) effective address

contents of X
base register

Branch Addressing

Absolute FA=I index register
Relative EA=(RC) +1 link or count register
general-purpose register
Indirect EA = (LICR) Aloating-point register
Fixed Point Computation D = [displaccment
_ I = iomediate value
Register Operand = (GPR) PC = program counter
Tmmediate Operand — 1
Floating-Point Computation

Register (Operand = (FPR)

Gomputerrganizaoni, Sping 2009, Tina ikander 3032009

34

Comp. Org Il, Spring 2009

‘_ PowerPC: Instruction format

Simple branch (jump) instructions
CR: which bit of the condition register (CR) is tested
L (Link): subroutine call (return address to link register!)
A (Absolute): addressing mode absolute (destination address
fully here) or relative to program counter (PC)

Branch Long Immediate [A]lL
Br Conditional | Options | CRBit | Branch Displacement___|A|L|
Br Conditional | Options | CR Bit _|Indirect through Link or Count Register|L
() Branch instructions
CR Dest Bit_|Source Bit | Source Bit | _Add, OR, XOR,ete. | /]
(b) Condition register logical instructions
Computer Organizaionl, Sping 2009, ina Nikander 3032008

36

Lecture 7: Instruction sets

30.3.2009

‘ RISC vs. CISC

High-level High-level
programming programming
language language

High-level
programming
language

CISC
support
high-level
languages

difficult
to execute

RISC
easy to execute

Computer Organization I, Spring 2009, Tiina Niklander

CISC
support high-level lang

difficult to execute

RISC
easy to execute

3032009

37

Comp. Org I, Spring 2009

Review Questions / Kertauskysymyksia

Fields of the instruction?

How does CPU know if the integer is 16 b or 32 b?
Meaning of Big-Endian?

Benefits of fixed instruction size vs variable size instruction
format?

Millaisista osista konekielinen kasky muodostuu?

Miten CPU tietaa onko sen kasittelema kokonaisluku 16
bittinen vai 32 bittinen?

Mita tarkoittaa Big-Endian?

Mita hy6tya on kiinteasta kaskyformaatista verrattuna
vaihtelevanpituiseen formattiin?

Computer Organization I, Spring 2009, Tiina Niklander 3032009

