Disk storage

- Teemu’s Cheesecake

Register, on-chip cache, memory, disk, and tape speeds
relative to times locating cheese for the cheese cake you

are baking...

hand
e

Ji
=

1 sec
(cache)

0.5 sec
(register)

Computer Organization Il, Spring 2009, Tiina Niklander

refridge-
rator

10 sec
(memory)

\ 1
§

(disk)

S

Europa
(Jupiter)

ST

[T

ﬁ

T
1)

——
——1

I

L T [
—~ [[[|
\

N

23.3.2009

2

N
2> S

by N

Virtual Memory (virtuaalimuisti)

Problem: How can | make my (main) memory as big as my
disk drive?
Answer: Virtual memory
keep only most probably referenced data in memory, and rest
of it in disk
disk is much bigger and slower than memory
address in machine instruction may be different than
memory address
need to have efficient address mapping
most of references are for data in memory
joint solution with HW & SW

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009

Other Problems Often Solved with VM

If you must want to have many processes in memory at the
same time, how do you keep track of memory usage?

How do you prevent one process from touching another
process’ memory areas?

What if a process needs more memory than we have?

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009

4

Memory Management Problem

How much memory for each process?
Is it fixed amount during the process run time or can it vary
during the run time?
Where should that memory be?
In a continuous or discontinuous area?
Is the location the same during the run time
or can it vary dynamically during the run time?
How is that memory managed?
How is that memory referenced?

Computer Organization I, Spring 2009, Tiina Niklander 23.3.2009

Partitioning

How much physical memory for each process?
Static (fixed) partitioning (kiinteat partitiot, kiintea ositus)
Amount of physical memory
determined at process creation time
Continuous memory allocation for partition
Dynamic partitioning (dynaamiset partitiot)
Amount of physical memory given to a process varies in time
Due to process requirements (of this process)
Due to system (l.e., other processes) requirements

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009

6

‘ Static Partitioning

Equal size - give everybody the
same amount

Fixed size - big enough for everybody

too much for most

Need more? Can not run!

Jnequal size [Fig. 8130 [5t206 1

sizes predetermined

Can not combine

Variable size
)

Size determined at process
creation time

Computer Organization I, Spring 2009, Tiina Niklander 23.3.2009 7

Computer Organization Il, Spring 2009, Tiina Niklander

Operating System
M

Operating System
s M

2M

4 M

6 M

Equal-size partitions

Unequal-size partitions
23.3.2009

8

Dynamic Partitioning

Process must be able to run with varying amounts of main
memory
all of memory space is not in physical memory
need some minimum amount of memory
New process?
If necessary reduce amount of memory for some (lower
priority) processes
Not enough memory for some process?
reduce amount of memory for some (lower priority) processes

kick (swap) out some (lower priority) process

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 9

Corr

Operating
System

(a)

Operating
System

Process 1

Process 3

(e)

_ Operating
3' M System
Process 1 20M
> S56M
} 36M
J J
(b)
Operating
System
20M Process 1 20M
Process 4 SM
14M
6M
18M Process 3 I18M
4M 4M

yring 20!

(f)

Operating
System

Process 1

Process 2

(c)

Operating
System

Process 4

Process 3

()

20M

14M

22M

20M

SM
6M

18M

4M

Operating
System

Process 1 20M
Process 2 14M
Process 3 18M
aM
(d)
Operating
System

Process 2

14M

oM

Process 4

8M

6M

Process 3

18M

4M

(h)

J9 10

‘ Fragmentation

Internal fragmentation (sisainen pirstoutuminen)
unused memory inside allocated block

- e.g., equal size fixed memory
L paritons e
e

External fragmentation (ulkoinen pirstoutuminen)
enough free memory, but it is splintered as many un-
allocatable blocks
e.g., unequal size partitions

or dynamic fixed size (variable _
size) memory partitions _

Computer Organization I, Spring 2009, Tiina Niklander 23.3.2009 11

- ¢

. Address Mapping (osoitteen muunnos)

Pascal, Java: : .
’ Svymbolic Assembler:
——> y

while (.....)_ | / loop: LOAD R1,Y
X=Xz, ADD R1, Z
Textual machine language: STORE R1, X
1312. LOAD R1, 2510 | Execution time:
ADD R1, 2514
STORE R1, 2600 [101312: LOAD R1,102510
ADD R1,102514
(addresses relative to 0) ADD R1,102600
s (real, actual!)

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 12

Address Mapping
logical address

Textual machine language:

1312: LOAD R1, 2510 +100000?

Execution time;
101312: LOAD R1,102510 or

101312: LOAD R1, 2510 77

N

— physical address (constant?)

-Want: Rl1— Mem[102510] or Mem[2510] ?
- Who makes the mapping? When?

logical addr

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 13

Address Mapping, address translation

At program load time
Loader (lataaja)
Static address binding (staattinen osoitteiden sidonta)
At program execution time
CPU
With every instruction
Dynamic address binding (dynaaminen osoitteiden sidonta)
Swapping (heittovaihto)

Virtual memory

Computer Organization I, Spring 2009, Tiina Niklander 23.3.2009

14

Swapping (heittovaihto)

Process has continuous memory area -
Process fully in memory or on disk
Process control block, PCB (prosessinkuvaaja) always in
memory

Address translation at execution time(ajonaikainen)
Logical address = physical memory address

Memory management unit ,MMU, - hardware support
Base and limit registers (Kanta- ja rajarekisteri)
“Bounds exceeded’-interrupt

Operating System (OS), (kayttojarjestelma)
Bookkeeping about unallocated (free) memory areas
Process swapping between memory and disk

Process swich: set new values to base and limit registers
lllegal (unauthorized) memory access: kill the process

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009

15

Virtual Memory Implementation
(Virtuaalimuistitoteutus)

Methods
Base and limit registers (kanta- ja rajarekisterit)
Segmentation (segmentointi)
Paging (sivutus)
Segmented paging, multilevel paging
Hardware support
MMU - Memory Management Unit
Part of processor
Varies with different methods
Sets limits on what types of virtual memory (methods) can be

Implemented using this HW

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 16

‘ Base and Limit Registers

Continuous memory partitions
One or more (4?) per process
May have separate base and limit registers

Code, data, shared data, etc
By default, or given explicitly in each mem. ref.

BASE and LIMIT registers in MMU
All addresses logical in machine instructions
Exec. time address mapping for address (X):

Check: 0 < x < LIMIT
Physical address: BASE +x

Computer Organization I, Spring 2009, Tiina Niklander 23.3.2009 17

‘ Address Mapping using Base and Limit Registers

5 (Osoitteenmuunnos rajarekistereita kayttaen)
Relative address
Process Control Block
Base Register - -—-——-—-———-"pF - ————"——————- >
» Adder Program
l Absolute
Bounds Register ——»{ Comparator |- — - _E_lldﬂl‘ESS
| | |
| | |
| ' |
| 1 === »
I \ 4 Data
: Interrupt to
I operating system
[
S -+
(Sta05 Operating Systems Fig 7.8) Stack

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 18

‘_ Virtual memory -

Only needed chunks in the memory, no need to be

contiguously
Demand paging (Tarvenouto)

Fixed size = Paging

Variable size = Segmentation
Combined = Paged segments
OS bookkeeping (KJ:n kirjanpito)

Page frame table (sivutilataulu)
Which page frames are free, which are occupied

Each process has its own page table (sivutaulu)
Page in memory or on disk? Presence-bit
In memory, which page frame contains this page?
Other control? Bits: Modified, Referenced

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 19

‘ Virtual Memory: Paging (sivutus)

Process A

Page 0
Page 1
Page 2
Page 3

—

Free frame list
13
14
15
18
20

Computer Organization Il, Spring 2009, Tiina Niklander

oad A Main x

memory

Process A
Page 0

Free frame list

20

Process A
page table

18
13
14
15

Main
Memory

Page 1
of A

Page 2
of A

Page 3
of A

In
use

In
use

17

Page 0

18 of A

In
use

[0

19

23.3.2009

20

Address Mapping with Paging VM
(Sivuttavan virtuaalimuistin

relative address
within frame

Y

30

Main

Memory

Page 1
of A

Page 2
of A

|
osoitteenmuunnos)
page relative address frame
number within page number
Logical - Physical
Address 1130 Address | 13
A
18
ﬁ-— 13 ——
14
15
Page Table

Computer Organization Il, Spring 2009, Tiina Niklander

Page 3
of A

Page (
of A

23.3.2009

14

16

17

18

21

. Paged Address Translation
Virtual address Access type

Page table D

i Check access
ire ISter Page table rights
0: r e {rw}
I (virt. mem.
2: used to
Check for ' solve
' memor
valid entry progelct%/c;n
Valid entry problem
Access rights -
Page frame Physical address

Computer Organization I, Spring 2009, Tiina Niklander 23.3.2009

22

i

Page table

reiister

Check for
valid entry:
not valid!

Computer Organization Il, Spring 2009, Tiina Niklander

Page Fault

Page table

Virtual address Access type

Check access
rights
r e {rw}

23.3.2009

23

Virtual memory: Translation Lookaside Buffer
(TLB) (osoitteenmuunnospuskuri)

Address translation for each memory reference, at least
once for each instruction
Page table elements in memory

= extra (even more) memory access?
Too slow!

Solution _

Principle of Locality! Page table element needed soon again
Store recently used page table elements (of this process) on
CPU’s memory management unit
TLB, translation lookaside Buffer
Just like cache
Fast set of registers (Pentium: 32 registers)
Associative search
Hit ratio (Osumatodennakoisyys) 99.9% ? (Almost always!)

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 24

= Physical address

Example:
Direct Mapped 16-entry TLB

page offset

tag Index
28 4
ABOOC7D AJ

Computer Organization Il, Spring 2009, Tiina Niklander

000:

0111:

1000:
1001:
1010:

page frame
28 32
ABOOCT7D ||| 00B6CB8EG6

23.3.2009 25

Translation Lookaside Buffer (TLB)
“Hit” on TLB?
address translation is in TLB - real fast
“Miss” on TLB?

must read page table entry from memory
takes time — not much, just a memory reference
Entry might be in cache!

cpu waits idle until it is done

Just like normal cache, but for address mapping
Implemented just like cache
instead of cache line data have physical address
split TLB? 1 or 2 levels?

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009

26

faulted mstruction
CPU checks the TLB

Page Fault?

(S Ivu n - hﬁ.ng‘:llﬁfgf:::ﬁne
puutos- 0S instructs CPU
to read the page

from disk

keskeytys)

¥
Page transferred
from dask to

Iaim memaory

Memory Yes
full? |
No

-
-
L

Page tables
updated

Computer Organization I, Spring 2009, Tiina Niklander 23.3.2009 27

Virtual memory

Hardware support: MMU and its special registers
PTR (page table register)
Physical start address of process page table (copied from
PCB — process control block)
TLB (translation lookaside buffer)
Caches page table entries from earlier address mappings
“Page fault” —interrupt
Updating reference and modified bits
Process switch
PTR « Physical start address of process page table
Invalidate old TLB content (process specific)
Each location has valid bit
Changed elements back to memory (“cache block”)

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 28

. Memory Organisation

Computer Organization I, Spring 2009, Tiina Niklander 23.3.2009 29

.

TLB and cache

TLB Operation
Virtual Address
| v
Page # | Offset
TLB
TLE miss |
TLB
hit
—

Page Table

Computer Organization Il, Spring 2009, Tiina Niklander

Cache Operation
Real Address
¥ Hit
Tag | Remaind Value
—>| E| emain er| — -
e —
Miss]
il) Main
Memory
Value
¥
23.3.2009

30

. TLB vs. Cache

TLB Miss Cache Miss
CPU waits idling CPU waits idling
HW implementation HW implementation
Invisible to process Invisible to process
Data is copied from Data is copied from
memory to TLB memory to cache

from page table from page data
data
from cache?
Delay 4 (or 2 or 8?) Delay 4 (or 2 or 8?)
clock cycles clock cycles

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 31

TLB Misses vs. Page Faults
TLB Miss Page Fault

CPU waits idling Process is suspended
and cpu executes some
other processes

HW implementation SW implementation

Data is copied from Data is copied from disk

memory to TLB to memory

(or from cache)

Delay 1-4 (?) f‘-“ﬁ Delay 1-4 (?)

clock cycles clock cycles

| ;

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 32

Replacement policy (Korvauspolitiikka)

Which page should be replaced, where there is not enough
free page frames in main memory?

Local/ global policy
Select from the processes own pages
Select from all pages (of all processes)
Algorithm
Clock, Second change, LRU, ...
MMU
At page access set Referenced=1 (read)
set Modified=1, page content changed (write)
OS
Reset Referenced and Modified “periodically”
Replace a page where R=0, M=0
M=1 = write the page to disk before reusing the page
frame

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009

33

" Inverted page table
‘ (kaanteinen sivutaulu)

« Just one shared inverted page table
* MMU: PTR (page table reg),
PidR (process id register), TLB

Virtual Address
Page # | Offset

Page Table
Pid Page # Entry Chain
—>
(hash)
——
Frame #
——»
. 4
Frame #| Offset
Hash Table Inverted Page Table Real Address

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 34

4-kbyte root
page table
= Page Dir

4-Mbyte user
page table

4-Gbyte user
address space

Hierarchical page table (monitasoinen sivutaulu)

Several systems allow large virtual address space

Page table split to pages, some of it on the disk

Top level of page table fits to one page, always in memory

1 K items (= 1024 = 210)

N

32b osoite

Dir Page Offset
I |
10 10 12

1K * 1K = 1M items

Computer Organization Il, Spring 2009, Tiina Niklander

— _

23.3.2009 35

Virtual Memory Policies

Fetch policy (noutopolitiikka)
demand paging: fetch page only when needed 1st time
working set: keep all needed pages in memory
prefetch: guess and start fetch early
Placement policy (sijoituspolitiikka)
any frame for paged VM
Replacement policy (poistopolitiikka)
local, consider pages just for this process for replacement
global, consider also pages for all other processes
dirty pages must be written to disk (likaiset, muutetut sivut)

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009

36

‘_ Computer Organization Il

Example
Pentium (1A-32)

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 37

Pentium support for memory management

Unsegmented unpaged, max 232 =4 GB
Virtual address = physical address
Efficient = feasible in real-time systems

Unsegmented paged (Sivuttava), max 4 GB
Linear address space (lineaarinen osoiteavaruus)
Page and frame size: 4KB or 4MB
Protection frame based

Segmented unpaged (Segmentoiva), max 248 = 64 TB
Several segments = several linear memory spaces
Protection segment based

Segmented paged (Sivuttava segmentointi), max 64 TB
Memory management using pages and page frames
Protection segment based

Computer Organization I, Spring 2009, Tiina Niklander 23.3.2009

38

Pentium: Address translation

Logical Address
ISegme:m | Offset I
16 32

Linear Address

|
I |
.@T.[Dir | Page | Offset I | /—_’
0] 10] 12 o
|

|
|
|
|
|
|
|
!
L ||
!
|
!
!
!
|
|
|

I
I
I |
| |
I |
I |
base | |
I |
Segment | Rt - — |
Table | |
I |
| Page PE.EE' |
| Directory Table | /—"'__’
) |) | Main Memeory
Segmentation Paging

(Sta06 Fig 8.21)
» I'f Paging=Enabled, use page tables

else linear address = physical address (OS, f.ex. Devide drivers?)
e Control registers, see page 444 [Sta06]

Computer Organization I, Spring 2009, Tiina Niklander 23.3.2009 39

‘ Pentium: Address translation

Segment selector Bits 13 .
INDEX

Global / Local Table ’

Segment number
Global/Local 0= GDT| Privilege level (0-3)

1=LDT|
Descriptor Table (GDT/LDT)
CS/DS selectors for code/data segments

Segment descriptor
- o2 Bt - Doate
BASE 0-15 LIMIT 0-15 0

BASE 24-31 |G|D|0| [LIMIT 16-19|P|DPL| TYPE BASE 16-23 4
A

0 : LIMIT is in bytes Segment type and protection

1 : LIMIT is in pages —— Privilege level (0-3)
0 : 16-bit segment [0: Segment is absent from memory
1 : 32-bit segment | 1:Segmentis present in memory

Computer Organization I, Spring 2009, Tiina Niklander 23.3.2009

40

. Pentium: Segment Desriptor (segmenttikuvaaja)

Segment Descriptor (Segcment Table Entry)
Base

Defines the starting address of the segment within the 4-GByte linear address space.
D/B bit

In a code segment. this 1s the D bit and indicates whether operands and addressing modes
are 16 or 32 buts.

Descriptor Privilege Level (DPL)

Specifies the privilege level of the segment referred to by this segment descriptor.
Granularity bit (G)

Indicates whether the Limut field is to be interpreted in units by one byte or 4 KBytes.
Limit

Defines the size of the segment. The processor mnterprets the limit field in one of two ways.

depending on the granularity bit: in units of one byte, up to a segment size limit of 1 MBvyte,
or m umts of 4 KBytes. up to a segment size limit of 4 GBytes.

S bit
Determines whether a given segment 1s a system segment or a code or data segment.
Segment Present bit (P)

Used for nonpaged systems. It indicates whether the segment 1s present in main memory.
For paged systems, this bit 1s always set to 1.

Type

Distinguishes between various kinds of segments and indicates the access attributes.

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 41

g Pentium: Page Table (sivutaulu)

‘! Page Directory Entry and Page Table Entry

= Accessed bit (A)

This bit 1s set to 1 by the processor in both levels of page tables when a read or write
operation to the corresponding page occurs.

Dirty bit (D)

This bit 15 set to 1 by the processor when a write operation to the corresponding page
occurs.

Page Frame Address

Provides the physical address of the page in memory if the present bit 1s set. Since page
frames are aligned on 4K boundaries. the bottom 12 bits are 0. and only the top 20 bits are
included in the entry. In a page directory. the address is that of a page table.

Page Cache Disable bit (PCD)
Indicates whether data from page may be cached.
Page Size bit (PS) (Sta06 Table 8.5)
Indicates whether page size 1s 4 KByte or 4 MByte.
Page Write Through bit (PYWT)

Indicates whether write-through or write-back caching policy will be used for data in the
corresponding page.

Present bit (P)
Indicates whether the page table or page 15 1n main memory.
Read/VWrite bit (RW)

For user-level pages. indicates whether the page 1s read-only access or read/write access for
user-level programs.

User/Supervisor bit (US)

Indicates whether the page 1s available only to the operating system (supervisor level) or 1s
available to both operating system and applications (user level).

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 42

‘_“ Pentium: Protection (suojaus)

Privilege level indicated in CPU’s status register PSW
00=highest, 11 = lowest
Higher can access lower level data

Possible uses of

Privileged instructions only on level=00 the levels

Processes and segments have level

Segment descriptor
DPL, descriptor privilege level
Type: code/data? -> R/W
Pagetable: R/W-bit
Linux and Windows:
Only two of the levels in use

Level

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009 43

Page-tmme Page cPU Data page-ame Page

addre=s o30e atsefs 18 addres <30 ot lds
I I
=]] Instucian <64>= Data Oul <5d= T T Dala i «6d=
o Hin 2 21 @ stz Yogen W Dain @
I Tm Phy=lzl addre== o WOR W Tag Phy==al addre==
T " B T =B
B B
[11 I |
Tl 1]
{Hgh-ard=r 21 Hi= a1 @ 12:1 hux {Hgh-ard=r 21 b= o
Pyl ddre=s) 1, \—!—I Phyial addres) o,
Qe |§ E]E,
g G Gy ah
I hnd=x Badk o Ind=x Hadh Deayed wri= bt
al =i
s . @
2 (258 Wald Tag Lot 3 6} ”'C (256 valld Tag Cat
Hadm] 1= «f1x Hadm] <= «fi= Bk r
H E
E (23 E
il 1 @
2% Y Insiudlan pree=ich siream botler — |
[229 @,
Tag =29 Data <256
[ﬂ (=7) Tag <29 Doin <255
(E}I—.®.,
l T ¥rd -@ |@

Alpha AXP 21064

¥ O Tag Dala
213= ¢ =16 T -:EE:-@
L2 Tag Ind=x
c @,
[(85 538
H bhadi=]
E

Review Questions / Kertauskysymyksia

What hardware support is needed for virtual memory
Implementation?

Differences of paging and segmentation?

Why to combine paging and segmentation?

Relationship of TLB and cache? Similarities, differences?

Mita laitteistotason tukea tarvitaan VM:n toteuttamiseksi?
Miten sivutus ja segmentointi eroavat toisistaan?

Miksi ne joskus yhdistetaan?

Miten TLB ja valimuisti suhtautuvat toisiinsa?

Computer Organization Il, Spring 2009, Tiina Niklander 23.3.2009

45

