Computer Deshto
99 The Computer Lan:

L1 Cache
{(built into chip)

&

L2 Cache

RAM (SRAM

{main memory) memory bank)

Key Characterics of Memories / Storage

Location Performance
Processor Access time
Internal (main) Cycle time
External (secondary) Transfer rate
Capacity Physical Tvpe
Word size Semiconductor
Number of words Magnetic
Unit of Transfer Optical
Word Magneto-Optical
Block Physical Characteristics
Access Method Volatile/nonvolatile
Sequential Erasable/nonerasable
Direct Organization
Random
Associative

Goals

| want my memory lightning fast
| want my memory to be gigantic in size

Register access viewpoint
data access as fast as HW register

data size as large as memory

Memory access viewpoint
data access as fast as memory

data size as large as disk

Memory Hierarchy

“ Most often needed data kept close
“1 Access to small data sets
can be made fast
w simpler circuits
w smaller gate delays
“ Faster ~ more expensive
“! Large can be bigger
and cheaper (per B)

up: smaller, faster,

more expensive, more frequent access
down: bigger, slower,

less expensive, less frequent access

“ Principle of locality (paikallisuus)

In any given time period, memory references occur only to
a small subset of the whole address space
= The reason why memory hierarchies work

Average cost is close to the cost of small data set
How to determine data for that small set?

How to keep track of it? [Sta06 Fig 4.2]

Principle of locality

In any given time period
memory references occur only to a small subset of the whole
address space

Temporal locality (ajallinen)
it is likely that a data item referenced a short time ago will be

referenced again soon
Spatial locality (alueellinen)
it is likely that a data items close to the one referenced a short

time ago will be referenced soon

MEM: [345|23]| 711 81305] 63 91| 2

‘_ Computer Organization Il

Cache

Teemu’s Cheesecake

Register, on-chip cache, memory, disk, and tape speeds
relative to times locating cheese for the cheese cake you
are baking...

_ Europa
refridge- (Jupiter)
hand rator e

ST

LT > S

ﬁ

LT[>
=)

——
——1

) —
L T [

o

0.5 sec 10 sec

(register) \(cache)/ (memory) 4 years

(tape)

Cache Memory (valimuisti)

How to access main memory as fast as registers?
Locality = Use (CPU) cache!
Keep most probably referenced data in fast cache
close to processor, and rest in memory
Most of data accesses only to cache
hit ratio 0.9-0.99
Cache is much smaller than main memory

Cache is (much) more expensive (per byte) than memory

.

CPU

Ca

che

Block Transfer

Word Transfer M_/_‘

~A

m‘:’ Main Memory
Line

Number Tag Block
o
1
2
L]
L]
-
Cc-1
Block Length
(K Words)

Memory
address
0
1
2 Block
3 (K words)
L]
L]
L]
Block
e |
Word
Length

‘_“ Cache Read

Receive address (RA = Real Address)
RA from CPU

Access main

»| memory for block
contamming RA

Alloeate cache
line for main
memory block

| |

Deliver RA word
o CPU

Load mam
memory block
into ¢ache line

Cache Organization

Processor

Address

Control

k4

Cache

v

>

Address
buffer

Control

F 3

System Bus

Data
buffer

>

Data

1<

Cache Design

Cache Size Write Policy
Mapping Function Write through
Direct Write back
Associative Write once
Set Associative Line Size
Replacement Algorithm Number of caches
Least recently used (LRU) Single or two level
First in first out (FIFO) Unified or split
Least frequently used (LFU)
Random
Cache Size & Line Size Typical sizes:
Many blocks help for temporal locality L1- 8 KB — 64 KB
Large blocks help for spatial locality L2- 256KB - 8 MB

Larger cache is slower

Multi-level cache

Mapping

“ Which block contains the memory location?
" Is the block in cache?
" Where is it located?

“1 Solutions
m direct mapping (suora kuvaus)
w fully associative mapping (taysin assosiatiivinen)

» set associative mapping (joukkoassosiatiivinen)

“ Direct Mapping

Each block has only one possible location (line) in cache

determined by index field bits
Several blocks may map into same cache line
identified with tag field bits 0x2480

0xA480

‘ Direct Mapping Example

block, 64b

tag index offset 000:
2 3 3 001:

010:
011:

No match

Read new memory block from memory
address 0xA0=1010 0000 to cache location 100,
update tag, and then continue with data access

‘ Direct Mapping Example 2

2 64
000:

001:

tag index offset
010:
011.:

2 3 3
100:
| 101;
111:

‘_“ Fully Associative Mapping (6)

Each block can be in any cache line

tag must be complete block number

29 5

I s \tag L

‘ Fully Associative Example

tag block
64

Parallel! @ -

“S" Fully Associative Mapping

Lots of circuits
tag fields are long - wasted space?
each cache line tag must be compared parallelly
with the memory address tag
lots of wires, comparison circuits
large surface area on chip
Final comparison “or” has large gate delay
did any of these 64 comparisons match?
log2(64) = 6 levels of binary OR-gates
how about 262144 comparisons?
18 levels?
= Can use it only for small caches

‘_ Set Associative Mapping

With set size k=2, each cache entry contain 2 blocks
Use set (set index) field to find the cache entry
Use tag to determine if the block belongs to the set
Use offset to find the proper byte in the block

- tag set offset /

5
4/

‘ 2-way Set Associative Cache

1 k=2 — Two blocks in each set (= in one cache entry)
" 4 sets — 2 bits for set index

“ 2 words in a block = 8 Bytes — 3 bhits for byte offset
“1 3 bits for tag

set tag block ta block

‘ 2-way Set Assoc. Cache Example

Set Associative Mapping

Set associative cache with set size k=2
= 2-way cache (common)
Degree of associativity = nbr of blocks in a set =v
Large degree of associativity?
More data items in one set
Less “collisions” within set
Final comparison (matching tags?) gate delay?
Maximum (nr of cache lines) :
Whole cache is one set!
= fully associative mapping
Minimum (1) Each cache line is a set!
= direct mapping

Cache Replacement Algorithm

Which cache block to replace
to make room for new block from memory?

Direct mapping: trivial

First-In-First-Out (FIFO)?

Least-Frequently-Used (LFU)?

Random?

Which one is best / possible?
Chip area?

Fast? Easy to implement?

Coherence
problems:

- More users of

the same data:

memory valid?
cache valid?

- multiple
processors
with own
caches

Cache Write Policy — memory writes?

Write through (lapikirjoittava)
Each write goes always to cache and memory
Each write is a cache miss!
Write back (lopuksi/takaisin kirjoittava)
Each write goes only to cache
Write cache block back to memory
only when it is replaced in cache -
Memory may have stale (old) data
cache coherence problem (yhdenmukaisuus, yhtapitavyys)
Write once ("vain kerran kirjoittava?”)
Write-invalidate Snoopy-cache coherence protocol for
multiprocessors
Write invalidates data in other caches
Write to memory at replacement time, or when some other
cache needs it (has read/write miss)

Cache Line Size

How big cache line?

Optimise for temporal or spatial localitv?

»

bigger cache line

= better for spatial locality

more cache lines

= better for temporal locality
Best size varies with program or program phase?
Best size different with code and data?
2-8 words?

word = 1 float??

v

Types and Number of Caches

Same cache for data and code, or not?
Data references and code references
behave differently
Unified vs. split cache (yhdistetty/erilliset)
split cache: can optimise structure separately for data and
code Trend towards sit caches: Pentium, Power PC,.. (instruction pipelining)
One cache too large for best results
Multiple levels of caches
L1 on same chip as CPU
L2 on same package or chip as CPU
older systems: same board
L3 on same board as CPU

iExample: Pentium 4 Block Diagram

System Bus
Out-of-order < Instruction |
execution cache (12K uops) fetch/decode i
logic it
&4 ¥V
4
hits
L3 cache
l i1 MEB)
Integer register file iTh FP register file
v vt vt vty v 1 v 1
Load Store Simple Siumple Complex FP/ FP i
address address integer integer integer MMX maove
unit unit ALU ALU ALU it it L2 cache
(512 KB)
L1 data cache (16 KB) —
hits

‘_ Computer Organization Il

Main Memory

‘ Main Memory Types

Memory Type Category Erasure Write Mechanism Volatility
Random-access Fead-write memory Electrically, byte-level Electrically Volatile
memory (FANM) l o g
Read-only

Facrony Masks
memory (ROM)
Read-only memory Not possible
Programmatle
ROM (PROM)

: / _ _ Nonvolatil
Erasable PROM UV light, chip-level onvolatile
(EPROM) Electrically
Electrically Erasable Read-mostly memory Flectricallv. bte-level
PROM (EEPROM) SCICaly, Dyte-ieve
Flash memory Electrically, block-level

Random access semiconductor memory
Direct access to each memory cell
Access time same for all cells

‘ RAM

Dynamic RAM, DRAM g charge o cpatrs

Periodic refreshing required
Refresh required after read
Simpler, slower, denser, bigger (bytes per chip)
Access time ~ 60 ns
Main memory? (early systems)
Static RAM, SRAM Digital: lip-flop gates
No periodic refreshing needed
Data remains until power is lost
More complex (more chip area/byte), faster, smaller
Access time ~ 2-5 ns
Level 2 cache?

.

DRAM Access, 16 Mb DRAM (4M x 4)

REAS CAS WE OE

vV vy

Timing and Conirol

; 2048

mMOTY aITay
Address * * De- | . 048 = 3048 « 4
ﬁ? Buffer coder| . {) .
—
m : Data Input

Al0 Columm —1 | Buffer D1
Address Refresh circuitry ' 03
Buifer L_.| Data Output Di

Buffer
ﬁ Column Decoder

‘ 256-KB DRAM Memory Organization

e 512 words by
Memory address " & 512 bits
register (MBR) [+ < ;| Chip#l
2
row |9 = .| Decode 1 of
. “| 512 bit-sense Memory buffer
. register (MBR)
L] = 1
»
column| g ;
R
5
* e
7
— 8
Simultaneous access to 256K < | 512 words by
. . T 512 bits
8-bit word memory chip to < 2| chip#l
S
access larger data items =
Decode 1 of

Access 64-bit words In B 512 bitsense

parallel? Need 8 chips. (Sta06 Fig 5.5)

SDRAM (Synchronous DRAM)

CPU clock synchronizes also the bus
Runs on higher clock speeds than ordinary DRAM
CPU knows how long it takes to make a reference,
can do other work while waiting
16 bits in parallel
Access 4 DRAMs (4 bits each) in parallel
Access time ~ 18 ns, transfer rate ~ 1.3 GB/s
DDR SDRAM, double data rate
Current main memory technology
Supports transfers both on rising and falling edge of the clock
cycle
Consumes less power

Access time ~ 12 ns, transfer rate ~ 3.2 GB/s

. Rambus DRAM (RDRAM)

Controller

RDRAM1 RDRAM2 (+++ | RDRAMn

Vierm

INITo | | L_.‘._J

INIT

RC [7:0]

RCIk [2]
| TClk [2]

Viref %
Gmd (3018
Vdids
400 MHz
Works with fast Rambus memory bus (800Mbps)
Controller + RDRAM modules _

Access time ~ 12 ns, transfer rate ~ 4.8 GB/s
Speed slows down with many memory modules

Serially connected on Rambus channel

Not good for servers with 1 GB memory (for now!)

Flash memory

Based on transistors that are separated by a thin oxide layer
Flash cell is analog, not digital storage:
uses different charge levels to store 2 (or more) bits
in each cell

Non-volatile, data remains with power off
Electrical erasing in blocks = "flash”
Slow to write
Access time ~ 50 ns

Used as a solid state storage
No moving parts
FlashBIOS in PC’s, USB-memory
In phones, digital cameras, hand-held devices,....

MRAM

Magnetoresistive Random Access Memory (MRAM)

Data stored with magnetic fields on two plates
Magnetic field directions determine bit value

Non-volatile, data remains with power off

Future open <

Fast to read/write

No upper limit for write counts (Flash has upper limit)
Access time comparable to DRAM

Almost as fast as SRAM

Small market share now direction
Expensive now (2006: $25 4Mbit) '
Still under development

May replace flash in a few years
May replace SRAM later on
May replace DRAM and
become "universal memory”

MRAM write operation

http://www.research.ibm.com/journal/rd/501/maffitt.html

Kertauskysymyksid/Review questions

