

Bus (Väylä)

Stallings: Ch 3

What moves on Bus?
Bus characteristics
PCI -bus
PCI Express

Bus CPU Memory I/O I/O Control lines Address lines Bus

- For communication with and between devices
- Broadcast (yleislähetys): most common
 - Everybody hear everything
 - React to messages/signals to itself only
- Each device has its own control and status information
 - Device driver (OS) moves control data to device controller's registers
 - ~ memory address, device address, how much, direction
 - Device driver reads the status from the controller's status register
 - Ready? Operation successful? ...

Bus structure

- Control lines (Ohjausväylä (~ johtimet))
 - Control and timing information
 - Operations: like memory read, memory write, I/O read
 - Interrupt request
 - Clock
- Address lines (Osoiteväylä)
 - Source and destination ids
 - Memory address, device address (module, port)
 - For transfer source and destination
 - Width (number of parallel lines) determines the memory addresses space (osoiteavaruuden koko)
 - For example: 32 b ⇒ 4 GB

Bus structure

- Data lines (Dataväylä)
 - All processing information:
 - Instructions
 - Data
 - DMA –transfer contents
 - Width determines the maximum number of bits that can be transfered at the same time
 - For example 38b wide line allows 32b dataa plus 6
 Hamming-coded parity bits (tarkistusbitti)

- Timing

- Memory-mapped I/O
- DMA

Bus = Bottleneck?

- von Neumann architecture
 - Instructions and the data both in main memory
 - All memory content referred using address
 - Sequentially ordered instructions executed sequentially
 - unless order changed explicitly (jumps)
- Fetch-Execute Cycle

Computer Organization II

Bus characteristics

Bus characteristics

- Width
 - ~ 50 100 lines (*johdinta*) mother board, cable, connectors
- Bus type
 - Dedicated, non-multiplexed (dedikoitu)
 - Address and data separate lines
 - Time multiplexed (aikavuoroteltu)
 - Address and data share lines
 - Address valid / data valid -line
- Arbitration (käyttövuoron varaus)
 - Centralized
 - One bus controller, arbiter (*väyläohjain*)
 - Distributed
 - Controllers have necessary logic

Bus characteristics

- Timing (ajoitus, tahdistus)
 - Synchronous (tahdistettu)
 - Regular clock cycle (kellopulssi) sequence of 0s and 1s
 - Asynchronous
 - Separate signals when needed
 - Shared traffic rules everyone knows what is going to happen next
- Efficiency (tehokkuus)
 - Bandwidth (kaistanleveys)
 - How many bits per second

Synchronous timing

- Based on clock
 - Control line has clock pulse (cycle 1-0)
 - All devices "hear" the same pulse
- Event takes one cycle (commonly)
 - Start at the begin of the cycle (leading edge)
 - For example, reading data takes one cycle
- All devices in the bus work at the same pace
 - Slowest determines the speed of all
 - Each device knows the speed of the others
 - ⇒ knows, when it is ready for next event
- "Do this during the next cycle"
 - ⇒ Device can count on the other one to do it!

Asynchronous timing

- Devices can use arbitrary speeds (variation allowed)
 - Processing time depends on the device
 - Device can determine, when the other one is ready
 - How long is the event going to last to perform?
- Synchronization using a special signal
 - Send synchronization signal, when work done and ready
 - Address and data on bus ⇒ send signal "write"
 (for example: change "write"-line to 1)
 - Data stored to memory ⇒ send signal "ack"
 - Time of the next event depends on the finish of the previous
- "Do this when you have time, inform me when ready"

Timing diagrams (ajoituskaavio)

See Appendix 3a [Sta06, Ch 3]

Synchronous timing

Asynchronous timing - Read

(Sta06 Fig 3.20a)

Asynchronous timing - Write

(Sta06 Fig 3.20b)

Events on bus (väylätapahtumia)

Write (multiplexed) operation

Read (multiplexed) operation

Read-modify-write operation

Address	Data	Data
	write	read

Read-after-write operation

Block data transfer

(Sta06 Fig 3.21)

Bus configuration

- All devices on one bus?
 - All must use the same technique
 - Long bus ⇒ propagation delay (etenemisviive)
 - Combined data rated of the devices may exceed the capacity of the bus
 - Collisions on the arbitration, extra wait
 - Synchronous? ⇒ slowest determines the speed of all
- Bus hierarchy
 - Isolate independent traffic from each other
 - Maximize the most important transfer pace, CPU ⇔ MEM
 - I/O can manage with lower speed

Bus hierarchy, typical Pentium 4

Computer Organization II

PCI-bus

[Sta06, Ch 3.5]

http://www.soe.ucsc.edu/classes/cmpe003/Spring02/motherboard.gif

PCI: Peripheral Component Interconnect

- Time-based; 49 mandatory (+51 optional) signal lines
 - Address data: 32b mandatory (optional allows 64b)
 - Other signals: 17 mandatory (+ 19 optional)
- Centralized arbiter (keskitetty väylän varaus)
- Synchronous timing (Synkroninen tahdistus)
 - own 33 or 66 MHz clock (PCI-X: 133/156/533 Mhz)
 - Transfer rate 133, 266, 532 MB/s (PCI-X: 1 GB/s,4 GB/s)
- Events on the bus
 - read, write, read block, write block (multiplexed)
- Max 16 devices

49 mandatory signal lines (pakollista johdinta)

Sta06 Table 3.3

- AD[32]: address or data, multiplexed (aikavuorottelu)
 - + 1 parity
- C/BE[4]: bus command tai byte enable, multiplexed
 - For example: 0110/1111 = memory read/all 4 Bytes
- CLK, RST#: clock, reset
- 6 for interface control
 - FRAME#, IRDY#, TRDY#, STOP#, IDSEL, DEVSEL#
- 2 for arbitration (väylän varaus)
 - REQ# requires, GNT# granted
 - Dedicated lines for devices
- 2 error reporting pins (lines)
 - PERR# parity, SERR# system

51 optional signal lines (valinnaista johdinta tai signaalia)

(ks. Sta06 Table 3.4)

- 4 lines for interrupt requests (keskeytyspyyntö)
 - Each device has its own dedicated line(s)
- 2 lines for cache support (on CPU or other devices)
 - snoopy cache
- 32 A/D extra lines
 - 32 mandatory + 32 optional => 64 bit address/data lines
- 4 additional lines for C/BE bus command tai byte enable
- 2 lines to negotiate 64b transfer
- 1 extra parity line
- 5 lines for testing

PCI: transactions

- Bus activity as transactions
 - New bus request for each new transaction
- First reservation
 - Central arbiter
 - send REQ, wait for GNT
- Then transaction
 - Initiator or master (device who reserved the bus)
 - Begin by asserting FRAME (reserve of bus)
 - Stop by releasing FRAME (indicate free bus)

(Sta06 Fig 3.24)

Bus arbitration: A and B want bus

(Sta06 Fig 3.25)

- a) A wants bus
- b) B wants bus
- c) A granted bus

knows that it has bus | Sees that both and bus is available

d) starts frame, requests also for next transaction

still want it

e) Grants bus to B for next trans.

g) starts frame, no more req.

f) marks last frame transfer,

marks data ready

Sees that only A wants it

A action

B action

Arbiter action

All ready for new trans

All ready for new trans, granted for B, B knows that it has bus

PCI: transactions

- Memory or I/O Read/Write [Line | Multiple]
 - Tansfer one or more words (alternatively: cache line or block)
- Memory Write and Invalidate
 - Guarantees that at least one cache line written to memory (Takaa, että tieto siirtyy välimuistista muistiin)
- Configuration Read/Write
 - Access to configuration parameters on the device (256B)
 - Plug-and-Play, PnP
- Interrupt Acknowledge
 - Interrupt controller collect more interrupt information from the device (to create interrupt vector for interrupt handler)
- Special Cycle
 - Broadcast (yleislähetys) to one or more targets
- Dual Address Cycle
 - Indication of using 64 bit address

PCI Memory Read

(Sta06 Fig 3.23)

PCI Express

[Tan06, s.212]

Packet-switched PCI Express (PCIe, PCI-E)

- PCI bus is too slow for some devices
- Replaces PCI bus (and possibly other I/O-bus)
 - Already available on new computers
- Hub on motherboard acting as a crossbar switch (kytkin)
- Based on point-to-point connections (kaksipisteyhteys)
 - Full-dublex, one lane has two lines (one send, one receive)
 - One device can used one or more (2,4,8,16,32) lanes
- Data stream (serial transfer)
 - Small packets (header + payload), bits in sequence
- No reservation, no control signals.
 - Each device may send at any time, when it wishes
 - Packet header contains the control information (like target)
- Data rate on one lane 250MB/s (future 3rd gen: 1GB/s)

Typical PCI Express system

(Tan06, Fig 3-57)

PCI Express advantages

- Each packet contains error-detection code
 - CRC cyclic redundancy check
 - More reliable than parity bit on PCI bus
- Devices can be further from each other (partitioning)
 - For example, hard disk inside the monitor covers
 - PCI allowed max 50 cm
- Expandability

PCI Express: max not determined

- A device can be a switch
- Allows hot-swap

Plug-and-Play

- Device can be connected /disconnected while running, PnP
- Physically smaller connectors
 - Computers and devices can be smaller

Review Questions

- Main differences between synchronous and asynchronous timing?
- Benefits of bus hierarchy?
- Main differences of PCI Express and PCI?
- See course book for more review questions