

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

581365 Tietokoneen rakenne Computer Organization II

Spring 2009

Tiina Niklander

Matemaattis-luonnontieteellinen tiedekunta

Advanced (master) level course!

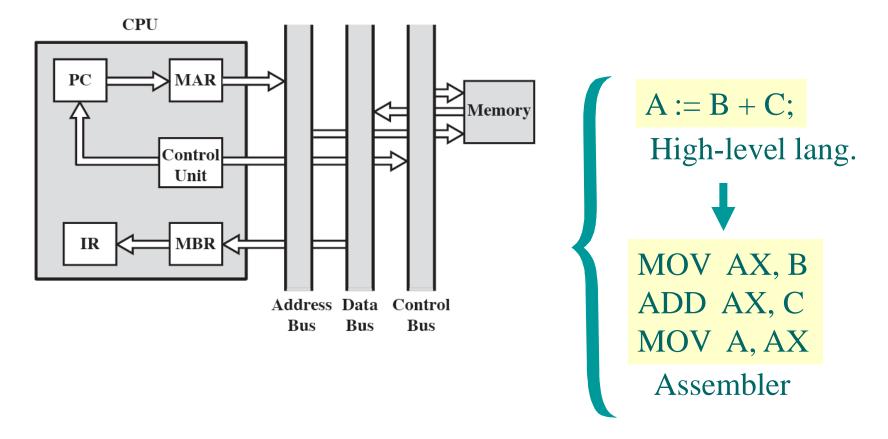
Prerequisite: Computer Organization I (TiTo)

- Main hardware
- Symbolic assembly language, machine instructions
- Instruction cycle (on CPU)
- Related to Operating Systems
 - Interrupts
 - Virtual memory
 - I/O Techniques

Material

- Course book (Make sure you have one!)
 - Stallings W.: Computer Organization & Architecture, Designing for Performance (7th ed), Prentice-Hall, 2005.
 - (6th ed.) still OK, but missing some material
- Course page (for this Spring course) http://www.cs.helsinki.fi/u/niklande/opetus/tikra/2009/index. en.html
 - Slides, exercises, announcements, links, etc.
- Course main page
 - http://www.cs.helsinki.fi/kurssit/syventavat/581365/
 - Old courses, slides in Finnish and English, etc.
- Newsgroup: hy.tktl.opiskelu.tikra

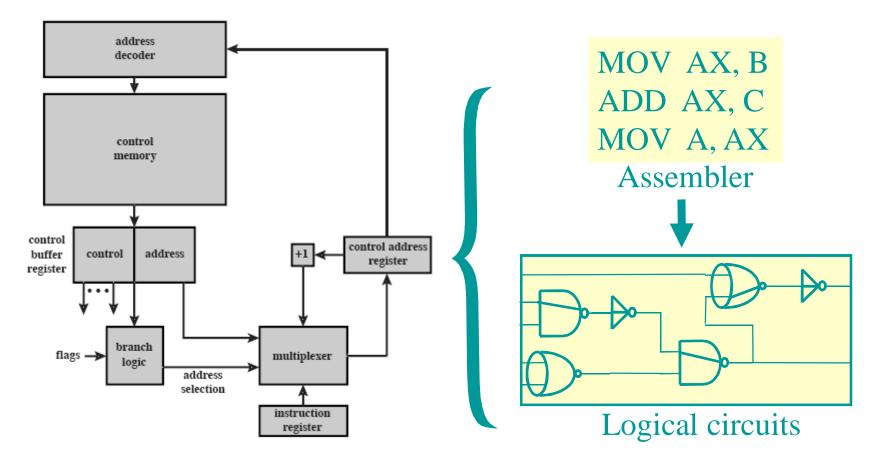
Schedule Spring 2009


- Lectures: 9.3. 24.4.2009
 - In Finnish: Tue and Thu 14-16, B222
 - English summary: Fri 14-16 C220

Exercises:

- In Finnish, 1. to 12.03. 16-18 B119, 2. pe 20.03. 14-16 C221,
 - 3.-6. to 23.03.-24.04. 16-18 B119 (Liisa Marttinen)
- In English Fri 13.3. 24.4. 12-14 C220
- Course Exam
 - Wed 29.4. 9.00-12 A111

Separate exams are also available



Functionality! What happens in the system?

Y.

Comp Org II (TIKRA): lowest presentation level

Sta06: Fig 17.7 I mplementation! How is the hardware composed?

Computer Organization II, Spring 2009, Tiina Niklander

Learning goals

- Digital logic: truth table, Karnaugh-maps, flip-flop, ...
- **Bus:** multiplexing, signaling
- **Memory hierarchy:** cache, TLB
- **Arithmetics**: Booth algorithm, representations
- **Instruction set**: operands, operations, memory reference
- Processor structure and functions: pipelining, RISC,CISC
- Control: micro-operations, micro-programmed control, clock pulse

More detailed learning goals (at the moment only in Finnish) are available from course main page

Course content and schedule

- Week 1
 - Overview (Ch 1 8)
 - Bus (Ch 3)
- Week 2
 - Digital logic (App B)
 - Memory, cache (Ch 4, 5)
- Week 3
 - Virtual memory(Ch 8.3-8.6)
 - Computer arithmetics (Ch
 - 9)

- Week 4
 - Instruction set (Ch 10, 11)
 - CPU struc.& func. (Ch 12)
- Week 5
 - RISC-architecture (Ch 13)
 - Instruction-level parallelism,
 superscalar processor (Ch
 - 14)
- Week 6
 - IA-64 and other architectures (Ch 15)
 - Control Unit (Ch 16-17)

Motto

"It is not good exercise, If you do not sweat"

"Kunto ei nouse ellei tule hiki."

Work during the course

- Combine the details together to form a larger picture (in your mind)!
 - Try to continuously understand and analyse the connections
 - Stay awake!

Make notes

Write down own ideas and questions immediately

Ask questions

- Question are never too simple. (If you missed the point, then somebody else missed it also)
- Ask from teacher, assistant, but also from co-students.
- **Teamwork is allowed** even with individual assignments
 - However, own paper must be written by you, even if you cooperated in learning the content

Be active!

Do all exercises in advance!

- On your own / in small teams.
- Think about the problem during several days
 - at least before giving up
- Learning by doing!
- Ask about the problematic parts
 - While solving the questions
 - When solutions are presented
 - Afterwards from instructors
 - Beginning of next meeting

Note!

- These slides are just the "table of content"
 - ~ notes of the lecturer

Read the book!

- just following the lectures or summary is not enough
- Spend enough time in learning the content
 - Simple time estimation (for planning)
 - VERY OLD: ~ 6,5 weeks*(2*(4+2)) = 78 hours
 - OLD: 4 op = 2 ov: 2 * 40 = 80 hours
 - CURRENT: 1 year / 60 op = 1600 t / 60 op
 - = 26.67 t / 1 op = 107 hours / 4 op

Enjoy the course!

Credits

- E Teemu Kerola 1999-2003
 - Original slides (in English), blue layout
 - Based on 5th edition
 - Updated to 6th edition 2002
- Auvo Häkkinen 2004-2005
 - Most slides translated to Finnish, orange layout
 - Figures integrated to slides
 - Updated to 7th edition 2005
- E Teemu Kerola 2006
- Liisa Marttinen 2007
- Tiina Niklander 2009
 - Translation to English from the Finnish slide set