From Computer Desktop Encyclopedia
= 1999 The Computer Language Co. Inc.

L1 Cache
(built into chip)
<

Memory,

Stallings: Ch 4,Ch5
»n Key Characteristics
n Locality

n Cache

L2 Cache
(SRAM
memory bank)

Main Memory

Location
Processor
Internal (main)
External (secondary)
Capacity
Word size
Number of words
Unit of Transfer
Word
Block
Access Method
Sequential
Direct
Random
Associative

Performance
Access time
Cycle time
Transfer rate
Physical Tvpe
Semiconductor
Magnetic
Optical
Magneto-Optical
Physical Characteristics
Volatile/nonvolatile
Erasable/nonerasable
Organization

(Sta06 Table 4.1)

| want my memory lightning fast
| want my memory to be gigantic in size

Register access viewpoint
u data access as fast as HW register

u data size as large as memory HW solution

Memory access viewpoint
u data access as fast as memory

u data size as large as disk
HW help for

SW solution

Most often needed data kept close
Access to small data sets

can be made fast
u Simpler circuits

Faster ~ more expensive
Large can be bigger
and cheaper (per B)

up: smaller, faster,
more expensive, more frequent access

down: bigger, slower,
less expensive, less frequent access

(Sta06 Fig 4.1)

» In any given time period, memory references occur
only to a small subset of the whole address space

= The reason why memory hierarchies work

Prob (small dataset) =99% “Cost” (small data set) =2 s

Prob (the rest) = 1V)< Cost” (therest) = 20 ns

Aver cost=99% * 2ns+ 1% * 20ms 2.2 M8

» Average cost is close to the cost of small data set
» How to determine data for that small set?
» How to keep track of it?

Sta06 Fig 4.2

» In any given time period

u memory references occur only to a small subset of the
whole address space

» Temporal locality (ajallinen) OO

u It is likely that a data item referenced a short time ago
will be referenced again soon

» Spatial locality (alueellinen)

u It is likely that a data items close to the one referencec
a short time ago will be referenced soon

MEM: [345] 23] 711 8]305] 63 91| 2

» How to access main memory as fast as registers?

» Locality G Use (CPU) cache!
u Keep most probably referenced data in fast cache
close to processor, and rest in memory
u Most of data accesses only to cache

& hit ratio 0.9-0.99
u Much smaller than main memory
u (much) more expensive (per byte) than memory

Block Transfer

Word Transfer M_’_\

N

Length

(Sta06 Fig 4.3, 4.4)

(RA = Real Address)

(Sta06 Fig 4.5)

System Bus

(Sta06 Fig 4.6)

Cache Size Write Policy

Mapping Function Write through
Direct Write back
Associative Write once
Set Associative Line Size

Replacement Algorithm Number of caches
Least recently used (LRU) Single or two level
First in first out (FIFO) Unified or split
Least frequently used (LFU)
Random |

n Size

u Many blocks help for temporal locality
u Large blocks help for spatial locality
u Multi-level cache (Sta06 Table 4.2)

Which block contains the memory location?
Is the block in cache?
Where is it located?

Solutions

u direct mapping (suora kuvaus)
u Fully associative mapping (Joukkoassosiatiivinen)
u Set associative mapping (taysin assosiatiivinen)

» Each block has only one possible location (line) in cache
u determined by index field bits

» Several blocks may map into same cache line
u Identified with tag field bits

Block number (in memory) Cache line size ~

34 bit address < \' ~ byte Block size
: s
(byteaddress) |9 index| offset / 25=32B
:rzlgﬁc?e?gstt? ;t Fixed location in cache
each block O fixed cache size

=28 =256 blocks=8KB |Sta06 Fig 4.7
PaHe98 Fig 7.10

Stored into cache line

Word = 48 (here Block size = 2° = 8 bytes = 64 bits
\ Cacheline size
ReadW 12, OxA4 tao block, 64b
Gag index offsat 000:
8 bit address 2 3 3 00L
N’
L 011:/01 [54 A7 0091 23 66 32 11

- 100:(il) 77 55 55 66 66 22 44 22
101:/01 |65 43 21 98 76 65 43 32

compare 0:
Read new memory block from memory
address 0xA0=1010 0000 to cache location 100,

update tag, and then continue with data access

ReadW 12, OxB4

@i ndex
3

offseat
3

2
(10 110

\

100

T

\

4th

byte 101;

000:

001:
010:

with 100:

teg

block
64

01

54 A7009123663211

11

7755 5566 66 22 44 22

01

6543 21 98 76 65 43 32

compare |

—110:
111:

1

00 11 22 33144 5566 77

_J

» Each block can be in any cache line
u tag must be complete block number

Alpha AXP uses 34 bit
memory addresses

34 bit address
(byte address)

Offset from the beginning
Block number (in memory) ©F the block (in bytes)
\ / Block size
— 9O _
tag offset =2"=328B
29 5

/

Unique bits that
are different for
each block

Each block can be anywhere
Cache size can be any number
of blocks

Sta06 Fig 4.9

ReadW 12, OxB4

block
64

12 34 56 78 9A 01 23 45

87003289 65A1B200

87540089 65A1B200

54 A7009123663211

/55 55 66 66 22 44 22
65 452198 76 65 43 32

0011 22 331445566 77

87543289 65A1B200

» Lots of circuits
u tag fields are long - wasted space?
u each cache line tag must be compared parallelly

with the memory address tag
§ lots of wires, comparison circuits
§ large surface area on chip
» Final comparison “or” has large gate delay
u did any of these 64 comparisons match?
§ log,(64) = 6 levels of binary OR-gates

u how about 262144 comparisons?
5 18 levels?

O Can use it only for small caches

» With set size k=2, each cache entry contain 2 blocks
u Use set (set index) field to find the cache entry

u Use tag to determine if the block belongs to the set
u Use offset to find the proper byte in the block

34 bit address

Block size
=2°2=-32B

/

Nr of sets=v = 27 = 128 blocks=4 KB

Total cachedze=k*v =2*4 KB =8 KB

(byte address) tag set |offset
22 ! 5
/ \
Unique bits that are
different for each block,
stored with block

(without tag bits!)

Sta06 Fig 4.11
PaHe98 Fig 7.19

k=2 g Two blocks in each set (=in one cache entry)

4 sets g 2 bits for set index
2 words in a block = 8 Bytes g 3 bits for byte offset
3 bits for tag
S 2 S 8 bit add
ff I ress
tag | set |olfset (byte address)
tag block tag block
1110(12 3456 78 9A 01 2345|011 (77 55 55 66 66 22 44 22
111087 00328965 A1B200(101|16543 2198 76 6543 32

11100

87 54 0089 65A1B200

101

0011 2233445566 77

1101

54 A7 009123663211

111

0011 2233445566 77

3

64

3

64

ReadW 12, OxB4

tag block
12 34 56 78 9A 01 23 45101177 55 55 66 66 22 44 22

87 00 32 89 65 A1 B2 00101 65 4321 98 76 65 43 32
87 54 00 89 65 A1 B2 00{101)00 11 22 3344)5 66 77
54 A7 00 91 111|00 11 2233445566 77
64

Wi

- Set associative cache with set size k=2
= 2-way cache (common)

» Degree of associativity = nbr of blocksina set=v

u Large degree of associativity?
§ More data items in one set

s Less “collisions” within set

§ Final comparison (matching tags?) gate delay?

u Maximum (nr of cache lines)
O fully associative mapping

u Minimum (1)
O direct mapping

Which cache block to replace
to make room for new block from memory?

Direct mapping: trivial
First-In-First-Out (FIFO)?
Least-Frequently-Used (LFU)?
Random?

Which one is best / possible?
u Chip area?

u Fast? Easy to implement?

» Write through (lapikirjoittava)

u Each write goes always to cache and memory

u Each write iIs a cache miss!
» Write back (lopuksi/takaisin Kirjoittava)

u Each write goes only to cache

u Write cache block back to memory

only when it is replaced in cache

u Memory may have stale (old) data

s cache coherence problem (yhdenmukaisuus, yhtépitéavyys)
& Write once (”vain kerran Kirjoittava?)

§ Write-invalidate Snoopy-cache coherence protocol for
multiprocessors

§ Write invalidates data in other caches

§ Write to memory at replacement time, or when some other
cache needs it (has read/write miss)

How big cache line?

Optimise for temporal or spatial locality?
u bigger cache line & better for spatial locality
u more cache lines © better for temporal locality

Best size varies with program or program phase?

Best size different with code and data?

2-8 words?
u word = 1 float??

n

n

n

n

Same cache for data and code, or not?
u Data references and code references
behave differently
Unified vs. split cache (yhdistetty/erilliset)
u Split cache: can optimise structure separately for data

and code
One cache too large for best results
Multiple levels of caches

u L1 on same chip as CPU

u L2 on same package or chip as CPU
§ older systems: same board

u L3 on same board as CPU

Integer register file *T.‘

v vt vt vty v + v ¢

Load Store Simple Siumple Complex FP/ FP
unit unit ALU ALU ALU it umit

L1: split, 4-way set-associative, line size 64 B

L2, L3: unified, 8-way set-associative, line size 128 B (Sta06 Fig 4.13)

Main Memory

Memory Type Category Erasure Write Mechanism Volatility

Random-access

Read-write 1 d level | Electri Volatile

RAM) memory Elecincally, byte- cally
Read-only
Masks

memory (RON) .

Read-only memory Not possible
Programmable
ROM (PROM)
Erasable PROM UV light, chip-level Nonvolatile
(EPROM) Electrically
Electrically Erasable Read-mostly memory st et
PROM (EEPEOM) ’
Flash memory Electrically, block-level

(Sta06 Table 5.1)

» Random access semiconductor memory
u Direct access to each memory cell
u Access time same for all cells

» Dynamic RAM, DRAM
u Periodic refreshing required
u Refresh required after read
u Simpler, slower, denser, bigger (bytes per chip)
u Access time ~ 60 ns

u Main memory? (early systems)

» Static RAM, SRAM
u No periodic refreshing needed
u Data remains until power is lost
u More complex (more chip area/byte), faster, smaller
Access time ~ 2-5 ns
Level 2 cache?

22 bit address

n

n

n

row access select (RAS)
column access select (CAS)
interleaved on 11 address pins

REAS

;i

i1l

4A4M

data locations

2048

id

= -

. ﬂlﬂ:ﬂlﬂi#}

4 bit

data items

L —

j N
- g

e

(Sta06 Fig 5.3)

= 512 words by
Memory address > o 512 bits
register (MBR) ['§ w| Chip#1
) 2
row S ~— 5| Decode L of
512 bit-sense Memory buffer
register (MBR)
> 1
2
column | g . 3
4
I
[
r
e §
n Simultaneous access to 256K = | 512 wordsby
8-bit word memory chip to Sa| H2bie
. I p
access larger data items E -
n Access 64-bit words in
. Decode 1 of
parallel? Need 8 chips. 512 bit-sense

(Sta06 Fig 5.5)

» CPU clock synchronizes also the bus
u Runs on higher clock speeds than ordinary DRAM
u CPU knows how long it takes to make a reference,
can do other work while waiting

» 16 bits in parallel
u Access 4 DRAMSs (4 bits each) in parallel
u Access time ~ 18 ns, transfer rate ~ 1.3 GB/s

»~ DDR SDRAM, double data rate
u Current main memory technology

u Supports transfers both on rising and falling edge of
the clock cycle

u Consumes less power
u Access time ~ 12 ns, transfer rate ~ 3.2 GB/s

(Sta06 Fig 5.14)

Vierm

INITo

RC[7:0]
RCIE[2]

| TClk [1]

Vred
Gund (2218
Vdid

400 0 Hz

» Works with fast Rambus memory bus (800Mbps)
u Controller + RDRAM modules STI Cell processor

u Access time ~ 12 ns, transfer rate ~ 4.8 GB/s

» Speed slows down with many memory modules
u Serially connected on Rambus channel
u Not good for servers with 1 GB memory (for now!)

» Based on transistors that are separated by a thin oxide layer
u Flash cell is analog, not digital storage:
uses different charge levels to store 2 (or more) bits

In each cell
» Non-volatile, data remains with power off
u Electrical erasing in blocks = "flash”
u Slow to write
u Access time ~ 50 ns
» Used as a solid state storage
u No moving parts
u FlashBIOS in PC's, USB-memory
u In phones, digital cameras, hand-held devices,....

» Magnetoresistive Random Access Memory (MRAM)
u Data stored with magnetic fields on two plates
u Magnetic field directions determine bit value
» Non-volatile, data remains with power off
u Fast to read/write
u No upper limit for write counts (compare to Flash)
u Access time comparable to DRAM
u Almost as fast as SRAM
n Future open
u Small market share now
Expensive now (2006: $25 4Mbit)
Still under development
May replace flash in a few years
May replace SRAM later on

May replace DRAM and
become "universal memory”

c ¢ ¢ ¢ C

MRAM write operation

http://www.research.ibm.com/journal/rd/501/maffitt.ntml

http://www.research.ibm.com/journal/rd/501/maffitt.html

Muistihierarkia ja paikallisuus?

Milla tavoin paikallisuutta huomiodaan
valimuistiratkaisussa?

Assosiatiivisen ja joukkoassosiatiivisen
kuvauksen erot?

Miksi kaskyille oma valimuisti ja datalle oma?

