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(virtuaalimuisti)

Virtual Memory

Problem: How can | make my (main)
memory as big as my disk drive?

» Answer: Virtual memory

— keep only most probably referenced datain

memory, and rest of it in disk
* disk is much bigger and slower than memory

* addressin machine instruction may be different
than memory address

* need to have efficient address mapping
» most of references are for datain memory

— joint solution with HW & SW
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Other Problems Often Solved
with VM @A)

e |f you must want to have many processesin
memory at the same time, how do you keep
track of memory usage?

» How do you prevent one process from
touching another process memory areas?

» What if a process needs more memory than
we have?
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Memory Management Problem

* How much memory for each process?

—isit fixed amount during the process run time
or can it vary during the run time?

» Where should that memory be?
— in acontinuous or discontinuous area?

— isthe location the same during the run time
or can it vary dynamically during the run time?

* How isthat memory managed?
* How isthat memory referenced?
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Partitioning o
» How much physical memory for each
process? S
s L (Staattiset tai
« Static (fixed) partitioning ' kiinteit partitiot)
— amount of physica memory determined at
process creation time
— continuous memory allocation for partition
« Dynamic partitioning (dynaamiset partitiot)
— amount of physical memory given to a process
variesintime
* due to process requirements (of this process)

* dueto system (l.e., other processes) requirements
23.9.2002 Copyright Teemu Kerola 2002 6
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Static Partitioning

Equal size - give everybody the |Fig. 8.13 (a)
same amount | (Fig. 7.14 (a) [Stal99]) |
— fixed size - big enough for everybody

* too much for most
— need more? Can not run!

» Unequal size Fig. 8.13 (b)
_ sizes predetermined (Fig. 7.14 (b) [Stal99)]) |
 Variable size Fig. 8.14 |(Fig. 715 [St@99))|
— Size determined at process creation
time
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Fragmentation

Internal fragmentation (siséinen pirstoutuminen)

— unused memory inside allocated block

— e.g., equal size fixed memory Fig. 8.13 (a)
partitions | (Fig. 7.14 () [Stal9]) |

External fragmentation ' (ulkoinen pirstoutuminen)

— enough free memory, but it is splintered as
many un-allocatable blocks | Fig. 8.13 (b)

— e.g., unequal size partitions [ (Fig. 7.14 () [Stai99]) |
or dynamic fixed size (variable  [Fig g 14
size) memory partitions [ (Fig 7355t |
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Dynamic Partitioning
» Process must be able to run with varying
amounts of main memory

— all of memory spaceis not in physical memory
— need some minimum amount of memory

* New process?

priority) processes

priority) processes

— reduce amount of memory for some (lower

* Not enough memory for some process?
— reduce amount of memory for some (lower

— kick (swap) out some (lower priority) process
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Pascal, Java:

>

&

Textual machine language:

while (....)
X:=Y+Z;

1312: LOAD R1, 2510
ADD R1, 2514
STORE R1, 2600

(addresses relative to 0)

=

Address Mapping «)

(osoitteen muunnos)

Symbolic Assembler:

loop: LOAD R1,Y
ADD R1,Z
STORE R1, X

Execution time;

101312: LOAD R1,102510
ADD R1,102514
ADD R1,102600

(real, actual!)
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Address Mapping o

logical address

Textual machine language:

1312: LOAD R1, 2510 +1000007
Execution time:
101312: LOAD R1,102510 or
101312: LOAD R1, 2510 ?7?

— physical address (constant’.:)\ logical addr

-Want: Rl< Mem[102510] or Mem[2510] ?
- Who makes the mapping? When?

23.9.2002 Copyright Teemu Kerola 2002 1
Address Mapping ¢

» At program load time
— loader (Iataaja)
— static address binding (staattinen

At program execution time Siilbolhlsle
— cpu
— with every instruction
— dynamic address binding (dynaaminen
— swapping osoitteiden sidonta)

— virtual memory

23.9.2002 Copyright Teemu Kerola 2002 12
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Swapping « (heittovaihto)
» Keep all memory areas for all running and
ready-to-run processes in memory

« New process

— find continuous memory partition and swap the
processin

Not enough memory?
— Swap some (lower priority) process out

Some times can swap in only (runnable)
portions of one process

Address map: add base address

23.9.2002 Copyright Teemu Kerola 2002 13

VM Implementation

* Methods

— base and limit registers

— segmentation

— paging

— segmented paging, multilevel paging
» Hardware support

— MMU - Memory Management Unit
* part of processor
* varies with different methods

— Sets limits on what types of virtual memory
(methods) can be implemented using this HW

23.9.2002 Copyright Teemu Kerola 2002 14
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Base and Limit Registers

» Continuous memory partitions
— one or more (4?) per process
— may have separate base and limit registers
* code, data, shared data, etc
* by default, or given explicitly in each mem. ref.
« BASE and LIMIT registersin MMU
— all addresses|ogical in machine instructions
— address mapping for address (x):
 check: x <LIMIT
* physical address. BASE+X

23.9.2002 Copyright Teemu Kerola 2002 15

Segmentation

 Process address space divided into
(relatively large) logical segments
— code, data, shared data, large table, etc
— object, module, etc

» Each logical segment is allocated its own
continuous physical memory segment

* Memory address has two fields

011001 1010110000
segment byte offset (lisays)

23.9.2002 Copyright Teemu Kerola 2002 16
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Segment. Address Mapping o

» Segment table
— maps segment id to physical segment base
address and to segment size
» Physical address
— find entry in segment table
— check: byte offset < segment size
— physical address: base + byte offset
» Problem: variable size segments

— External fragmentation, lots of memory
management

23.9.2002 Copyright Teemu Kerola 2002 17

Paging «
 Process address space divided into
(relatively small) equal size pages

— address space division is not based on logical
entities, only on fixed size chunks designed for
efficient implementation

» Each pageis allocated its own physical
page frame in memory

— any page frame will do!
Internal fragmentation

Memory addresses have two fields

01100110 10110000
page byte offset | (lisays)

23.9.2002 Copyright Teemu Kerola 2002 18
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Paged Address Mapping

o Pagetable
— maps page nr to physical page frame
o Physical address
— find entry in page table (large array in memory)
— get page frame, |.e., page address
— physical address: page address + byte offset

23.9.2002 Copyright Teemu Kerola 2002 19
Paged Address Trandlation
Virtual address Accesstype
1 @)
Pege table ' B Check access
register / ‘ Page table rights
0: 10 rwx r O {rw}
»( 1Qrw)14 (virt. mem.
- T rw sed to
Check for 2 w55 goh,e
valid entry memory
valid entry 14 30 prOteCtlon
Accessrights _ problem)
Page frame Physical address
23.9.2002 Copyright Teemu Kerola 2002 20
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Stop execution

Page Fault a2

Initiate reading Virtual address Access type

page 1 from disk Pegetable 1 1}

Schedulenext  register / —— Check access
processto run rights

0: 10 rwx r O {rw}
O interrupt. )

Page 1 read, Check for | 2 [L W 35
update page table | valid entry:

Make orig. not valid! =
process _
ready-to-run  Schedule orig. process again, Physical address
at the same instruction
23.9.2002 Copyright Teemu Kerola 2002 21

Paging «
» Physical memory partitioning
— discontinuos areas Hg. 815
| (Fig. 7.16 [Stal99)]) |
» Pagetables
— located in memory
— can be very big, and each process has its own
* entry for each page in address space
* Inverted page table
— entry for each pagein memory | (Fig. 7.18[Stal99)) |
— less space, more complex hashed loq Fig: 8.17

23.9.2002 Copyright Teemu Kerola 2002 22
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Address Trandation ¢

MMU doesit for every memory access

— code, data

— more than once per machine instruction!

Can not access page tables in memory every
time - it would be too slow!

— too high cost to pay for virtual memory?

MMU has a“cache’” of most

) (osoitteen-
recent address trandl ations MUUNNOS-
— TLB - Translation Lookaside Buffer ' taulukko)
—99.9% hit ratio?
Copyright Teemu Kerola 2002 23
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Trandglation Lookaside Buffer

Fig. 8.18 [(Fig. 7.9 [Sia99)) |

“Hit” on TLB?

— addresstrandationisin TLB - real fast

“Miss’ on TLB?

— must read page table entry from memory

— takestime

— cpu waitsidle until it is done

Just like normal cache, but for address mapping
— implemented just like cache

— instead of cache line data have physical address

— split TLB? 1 or 2 levels?

Copyright Teemu Kerola 2002 24
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Memory Organisation @

1C3

Memory
CPU instr| [regs page
memjaddrg, | table
TLB e page

page | page
23.9.2002 Copyright Teemu Kerola 2002 25
Physical address 16 ExarnEI)_IEB
0x00B6CSE6 046 -ent ry ©
1; age offset
ReadW 12, 0XABOOC7DA|046| tag page frame
28 32
tag index 0000:
28 4
ABOOC7D
Correct 0111:
;d:g;ﬁg 1000:
found 1001;
‘k = 1010:| [ABOOC7D | |00B6CS8E6
. _ /
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TLB and Cache g

Usually address translation first
and then cache lookup

Fig. 8.19
| (Fig. 7.20 [Stal99])

Cache can be based on virtual addresses
— can do TLB and cache lookup

simultaneously
— faster

|mplementations are very similar

— TLB often fully associative
* optimised for temporal locality (of course!)

Copyright Teemu Kerola 2002 27
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TLB vs. Cache
TLB Miss Cache Miss
+ CPU waitsidling » CPU waitsidling

HW implementation
Invisible to process
Datais copied from
memory to TLB

— from page table data
— from cache?

Delay 4 (or 2 or 8?)
clock cycles

HW implementation
Invisible to process

Datais copied from
memory to cache
* from page data

Delay 4 (or 2 or 8?)
clock cycles

Copyright Teemu Kerola 2002 28
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TLB Misses vs. Page Faults

TLB Miss Page Fault

CPU waitsidling * Processis suspended
and cpu executes
some other process

* HW implementation | |+ SW implementation
» Dataiscopied from || Datais copied from

memory to TLB disk to memory
(orfromcache) ||« Delay
- Delay 1-4 (?) @ 30 ms (?)
clock cycles ‘
23.9.2002 Copyright Teemu K;JIa 2002 ""‘L%“‘“i

Virtual Memory Policies

« Fetch policy (noutopolitiikka)
— demand paging: fetch page only when needed 1st time
— working set: keep al needed pagesin memory
— prefetch: guess and start fetch early
» Placement policy (sijoituspolitiikka)
— any frame for paged VM
* Replacement policy (poistopolitiikka)
— local, consider pagesjust for this process for
replacement
— global, consider also pages for all other processes

— dirty pages must be written to disk (likaiset,
muutetut)

23.9.2002 Copyright Teemu Kerola 2002 30
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Page Replacement Policy ¢

* Implemented in SW

» HW support
— extrabits in each page frame
— M = Modified
— R = Referenced
* set (to 1) with each reference to frame
* reset (to 0) every now and then
—gpecia (privileged) instruction from OS
—automaticaly (E.g., every 10 ms)
— Other counters?

23.9.2002 Copyright Teemu Kerola 2002 31

Page Replacement Policies ¢

i (sivunpoisto-
e OPT - optimal agoritmit)

NRU - not recently used
FIFO - first in first out

(OS]
— 2nd chance Virtual Memory
— clock Management
 Random

LRU - |east recently used
— complex counter needed

NFU - not frequently used

23.9.2002 Copyright Teemu Kerola 2002 32

Chapter 8.3, Virtua Memory 16



Computer Organization 11 23.9.2002

Thrashing

* Too high mpl
» Too few page frames per process
— E.g., only 10007 20007?
— Lessthan its working set
ry * Once aprocessis scheduled, it will

very soon reference apage not in
memory

— page fault

V — process switch

23.9.2002 Copyright Teemu Kerola 2002 33

Trashi ng (ruuhkautuminen)

CPU 1.0 ¢
utilization K
(kayttosuhde) CPU 100% busy
1 Swapping processes!
Higher mpl No real work is done!
= lessphysical
memory (moniajoaste)

er process! : : |
B 4 8 12
mpl (multiprogramming level)

L »
I Lagl

- How much memory per process?
- How much memory is needed?

23.9.2002 Copyright Teemu Kerola 2002 34
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Page Fault Frequency (PFF)
Dynamic Memory Allocation

» Two bounds: L=Lower and U=Upper
» Physical memory split into fixed size pages

o At every page fault
— T=Time since previous page fault
—if T<L then give process more memory
* 1 page frame? 4 page frames?
—if U<T then take some memory away
* 1 page frame?
—if L<T<U then keep current allocation

23.9.2002 Copyright Teemu Kerola 2002 35

Multi-level paging/segmentation
« Segmented paging 01101 01100110 10110000
_ addresslogically split 9™ Page  byteoffsat
into segments and then physically into pages
— protection may be at segment level
* Multiplelevel paging
— large address space may result in very large page tables

— solution: multiple levels of page tables
Fig. 5.43 [HePa96] |

— VM implementation may not utilize them all

— VM implementation may seem to use more levelsthan
there are (e.g., Linux 3 levelson 2-level Intel arch.)

* nr of actual levelsin mem. management macros

23.9.2002 Copyright Teemu Kerola 2002 36
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Address mapping

VM policies

23.9.2002 Copyright Teemu Kerola 2002

VM Summary

How to partition memory?
— Static or dynamic size (amount)

How to allocate memory
— Static or dynamic location

HW help (TLB) for address trandlation
— before or concurrently with cache access?

— fetch, placement, replacement

37

Fig. 5.47 from

-- End of Chapter 8.3:Virtual Memory --
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paging disk (dma)
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