Computer Organization |1

Virtua Memory (VM)

23.9.2002

Ch 8.3

Memory Management
Address Trandlation
Paging

Hardware Support

VM and Cache

Copyright Teemu Kerola 2002

Teemu’' s Cheesecake

Register, on-chip cache, memory, disk, and tape speeds
relative to times locating cheese for the cheese cake you

are baking...

hand

e
N
~/

AN
0.5 sec
(reqgister)

23.9.2002

e

1 sec
(cache)

refridge-
rator moon
I
10 sec 12\da)‘/fs
(memory) (disk)

Copyright Teemu Kerola 2002

Europa
(Jupiter)

4 years
(tape)

2

Chapter 8.3, Virtua Memory

23.9.2002

Computer Organization |1

23.9.2002

(virtuaalimuisti)

Virtual Memory

Problem: How can | make my (main)
memory as big as my disk drive?

» Answer: Virtual memory

— keep only most probably referenced datain

memory, and rest of it in disk
* disk is much bigger and slower than memory

* addressin machine instruction may be different
than memory address

* need to have efficient address mapping
» most of references are for datain memory

— joint solution with HW & SW

Copyright Teemu Kerola 2002 3

23.9.2002

Other Problems Often Solved
with VM @A)

e |f you must want to have many processesin
memory at the same time, how do you keep
track of memory usage?

» How do you prevent one process from
touching another process memory areas?

» What if a process needs more memory than
we have?

Copyright Teemu Kerola 2002 4

Chapter 8.3, Virtua Memory

23.9.2002

Computer Organization 11 23.9.2002

Memory Management Problem

* How much memory for each process?

—isit fixed amount during the process run time
or can it vary during the run time?

» Where should that memory be?
— in acontinuous or discontinuous area?

— isthe location the same during the run time
or can it vary dynamically during the run time?

* How isthat memory managed?
* How isthat memory referenced?

23.9.2002 Copyright Teemu Kerola 2002 5

Partitioning o
» How much physical memory for each
process? S
s L (Staattiset tai
« Static (fixed) partitioning ' kiinteit partitiot)
— amount of physica memory determined at
process creation time
— continuous memory allocation for partition
« Dynamic partitioning (dynaamiset partitiot)
— amount of physical memory given to a process
variesintime
* due to process requirements (of this process)

* dueto system (l.e., other processes) requirements
23.9.2002 Copyright Teemu Kerola 2002 6

Chapter 8.3, Virtua Memory 3

Computer Organization 11 23.9.2002

Static Partitioning

Equal size - give everybody the |Fig. 8.13 (a)
same amount | (Fig. 7.14 (a) [Stal99]) |
— fixed size - big enough for everybody

* too much for most
— need more? Can not run!

» Unequal size Fig. 8.13 (b)
_ sizes predetermined (Fig. 7.14 (b) [Stal99)]) |
 Variable size Fig. 8.14 |(Fig. 715 [St@99))|
— Size determined at process creation
time
23.9.2002 Copyright Teemu Kerola 2002 7
Fragmentation

Internal fragmentation (siséinen pirstoutuminen)

— unused memory inside allocated block

— e.g., equal size fixed memory Fig. 8.13 (a)
partitions | (Fig. 7.14 () [Stal9]) |

External fragmentation ' (ulkoinen pirstoutuminen)

— enough free memory, but it is splintered as
many un-allocatable blocks | Fig. 8.13 (b)

— e.g., unequal size partitions [(Fig. 7.14 () [Stai99]) |
or dynamic fixed size (variable [Fig g 14
size) memory partitions [(Fig 7355t |

23.9.2002 Copyright Teemu Kerola 2002 8

Chapter 8.3, Virtua Memory 4

Computer Organization |1

Dynamic Partitioning
» Process must be able to run with varying
amounts of main memory

— all of memory spaceis not in physical memory
— need some minimum amount of memory

* New process?

priority) processes

priority) processes

— reduce amount of memory for some (lower

* Not enough memory for some process?
— reduce amount of memory for some (lower

— kick (swap) out some (lower priority) process

23.9.2002 Copyright Teemu Kerola 2002 9

Pascal, Java:

>

&

Textual machine language:

while (....)
X:=Y+Z;

1312: LOAD R1, 2510
ADD R1, 2514
STORE R1, 2600

(addresses relative to 0)

=

Address Mapping «)

(osoitteen muunnos)

Symbolic Assembler:

loop: LOAD R1,Y
ADD R1,Z
STORE R1, X

Execution time;

101312: LOAD R1,102510
ADD R1,102514
ADD R1,102600

(real, actual!)

23.9.2002 Copyright Teemu Kerola 2002 10

Chapter 8.3, Virtua Memory

23.9.2002

Computer Organization |1

Address Mapping o

logical address

Textual machine language:

1312: LOAD R1, 2510 +1000007
Execution time:
101312: LOAD R1,102510 or
101312: LOAD R1, 2510 ?7?

— physical address (constant’.:)\ logical addr

-Want: Rl< Mem[102510] or Mem[2510] ?
- Who makes the mapping? When?

23.9.2002 Copyright Teemu Kerola 2002 1
Address Mapping ¢

» At program load time
— loader (Iataaja)
— static address binding (staattinen

At program execution time Siilbolhlsle
— cpu
— with every instruction
— dynamic address binding (dynaaminen
— swapping osoitteiden sidonta)

— virtual memory

23.9.2002 Copyright Teemu Kerola 2002 12

Chapter 8.3, Virtua Memory

23.9.2002

Computer Organization 11 23.9.2002

Swapping « (heittovaihto)
» Keep all memory areas for all running and
ready-to-run processes in memory

« New process

— find continuous memory partition and swap the
processin

Not enough memory?
— Swap some (lower priority) process out

Some times can swap in only (runnable)
portions of one process

Address map: add base address

23.9.2002 Copyright Teemu Kerola 2002 13

VM Implementation

* Methods

— base and limit registers

— segmentation

— paging

— segmented paging, multilevel paging
» Hardware support

— MMU - Memory Management Unit
* part of processor
* varies with different methods

— Sets limits on what types of virtual memory
(methods) can be implemented using this HW

23.9.2002 Copyright Teemu Kerola 2002 14

Chapter 8.3, Virtua Memory 7

Computer Organization 11 23.9.2002

Base and Limit Registers

» Continuous memory partitions
— one or more (4?) per process
— may have separate base and limit registers
* code, data, shared data, etc
* by default, or given explicitly in each mem. ref.
« BASE and LIMIT registersin MMU
— all addresses|ogical in machine instructions
— address mapping for address (x):
 check: x <LIMIT
* physical address. BASE+X

23.9.2002 Copyright Teemu Kerola 2002 15

Segmentation

 Process address space divided into
(relatively large) logical segments
— code, data, shared data, large table, etc
— object, module, etc

» Each logical segment is allocated its own
continuous physical memory segment

* Memory address has two fields

011001 1010110000
segment byte offset (lisays)

23.9.2002 Copyright Teemu Kerola 2002 16

Chapter 8.3, Virtua Memory 8

Computer Organization 11 23.9.2002

Segment. Address Mapping o

» Segment table
— maps segment id to physical segment base
address and to segment size
» Physical address
— find entry in segment table
— check: byte offset < segment size
— physical address: base + byte offset
» Problem: variable size segments

— External fragmentation, lots of memory
management

23.9.2002 Copyright Teemu Kerola 2002 17

Paging «
 Process address space divided into
(relatively small) equal size pages

— address space division is not based on logical
entities, only on fixed size chunks designed for
efficient implementation

» Each pageis allocated its own physical
page frame in memory

— any page frame will do!
Internal fragmentation

Memory addresses have two fields

01100110 10110000
page byte offset | (lisays)

23.9.2002 Copyright Teemu Kerola 2002 18

Chapter 8.3, Virtua Memory 9

Computer Organization 11 23.9.2002

Paged Address Mapping

o Pagetable
— maps page nr to physical page frame
o Physical address
— find entry in page table (large array in memory)
— get page frame, |.e., page address
— physical address: page address + byte offset

23.9.2002 Copyright Teemu Kerola 2002 19
Paged Address Trandlation
Virtual address Accesstype
1 @)
Pege table ' B Check access
register / ‘ Page table rights
0: 10 rwx r O {rw}
»(1Qrw)14 (virt. mem.
- T rw sed to
Check for 2 w55 goh,e
valid entry memory
valid entry 14 30 prOteCtlon
Accessrights _ problem)
Page frame Physical address
23.9.2002 Copyright Teemu Kerola 2002 20

Chapter 8.3, Virtua Memory 10

Computer Organization 11 23.9.2002

Stop execution

Page Fault a2

Initiate reading Virtual address Access type

page 1 from disk Pegetable 1 1}

Schedulenext register / —— Check access
processto run rights

0: 10 rwx r O {rw}
O interrupt.)

Page 1 read, Check for | 2 [L W 35
update page table | valid entry:

Make orig. not valid! =
process _
ready-to-run Schedule orig. process again, Physical address
at the same instruction
23.9.2002 Copyright Teemu Kerola 2002 21

Paging «
» Physical memory partitioning
— discontinuos areas Hg. 815
| (Fig. 7.16 [Stal99)]) |
» Pagetables
— located in memory
— can be very big, and each process has its own
* entry for each page in address space
* Inverted page table
— entry for each pagein memory | (Fig. 7.18[Stal99)) |
— less space, more complex hashed loq Fig: 8.17

23.9.2002 Copyright Teemu Kerola 2002 22

Chapter 8.3, Virtua Memory 11

Computer Organization |1

23.9.2002

Address Trandation ¢

MMU doesit for every memory access

— code, data

— more than once per machine instruction!

Can not access page tables in memory every
time - it would be too slow!

— too high cost to pay for virtual memory?

MMU has a“cache’” of most

) (osoitteen-
recent address trandl ations MUUNNOS-
— TLB - Translation Lookaside Buffer ' taulukko)
—99.9% hit ratio?
Copyright Teemu Kerola 2002 23

23.9.2002

Trandglation Lookaside Buffer

Fig. 8.18 [(Fig. 7.9 [Sia99)) |

“Hit” on TLB?

— addresstrandationisin TLB - real fast

“Miss’ on TLB?

— must read page table entry from memory

— takestime

— cpu waitsidle until it is done

Just like normal cache, but for address mapping
— implemented just like cache

— instead of cache line data have physical address

— split TLB? 1 or 2 levels?

Copyright Teemu Kerola 2002 24

Chapter 8.3, Virtua Memory

23.9.2002

12

Computer Organization |1

Memory Organisation @

1C3

Memory
CPU instr| [regs page
memjaddrg, | table
TLB e page

page | page
23.9.2002 Copyright Teemu Kerola 2002 25
Physical address 16 ExarnEI)_IEB
0x00B6CSE6 046 -ent ry ©
1; age offset
ReadW 12, 0XABOOC7DA|046| tag page frame
28 32
tag index 0000:
28 4
ABOOC7D
Correct 0111:
;d:g;ﬁg 1000:
found 1001;
‘k = 1010:| [ABOOC7D | |00B6CS8E6
. _ /
23.9.2002 Copyright Teemu Kerola 2002 26

Chapter 8.3, Virtua Memory

23.9.2002

13

Computer Organization |1

23.9.2002

TLB and Cache g

Usually address translation first
and then cache lookup

Fig. 8.19
| (Fig. 7.20 [Stal99])

Cache can be based on virtual addresses
— can do TLB and cache lookup

simultaneously
— faster

|mplementations are very similar

— TLB often fully associative
* optimised for temporal locality (of course!)

Copyright Teemu Kerola 2002 27

23.9.2002

TLB vs. Cache
TLB Miss Cache Miss
+ CPU waitsidling » CPU waitsidling

HW implementation
Invisible to process
Datais copied from
memory to TLB

— from page table data
— from cache?

Delay 4 (or 2 or 8?)
clock cycles

HW implementation
Invisible to process

Datais copied from
memory to cache
* from page data

Delay 4 (or 2 or 8?)
clock cycles

Copyright Teemu Kerola 2002 28

Chapter 8.3, Virtua Memory

23.9.2002

14

Computer Organization 11 23.9.2002

TLB Misses vs. Page Faults

TLB Miss Page Fault

CPU waitsidling * Processis suspended
and cpu executes
some other process

* HW implementation | |+ SW implementation
» Dataiscopied from || Datais copied from

memory to TLB disk to memory
(orfromcache) ||« Delay
- Delay 1-4 (?) @ 30 ms (?)
clock cycles ‘
23.9.2002 Copyright Teemu K;JIa 2002 ""‘L%“‘“i

Virtual Memory Policies

« Fetch policy (noutopolitiikka)
— demand paging: fetch page only when needed 1st time
— working set: keep al needed pagesin memory
— prefetch: guess and start fetch early
» Placement policy (sijoituspolitiikka)
— any frame for paged VM
* Replacement policy (poistopolitiikka)
— local, consider pagesjust for this process for
replacement
— global, consider also pages for all other processes

— dirty pages must be written to disk (likaiset,
muutetut)

23.9.2002 Copyright Teemu Kerola 2002 30

Chapter 8.3, Virtua Memory 15

Computer Organization 11 23.9.2002

Page Replacement Policy ¢

* Implemented in SW

» HW support
— extrabits in each page frame
— M = Modified
— R = Referenced
* set (to 1) with each reference to frame
* reset (to 0) every now and then
—gpecia (privileged) instruction from OS
—automaticaly (E.g., every 10 ms)
— Other counters?

23.9.2002 Copyright Teemu Kerola 2002 31

Page Replacement Policies ¢

i (sivunpoisto-
e OPT - optimal agoritmit)

NRU - not recently used
FIFO - first in first out

(OS]
— 2nd chance Virtual Memory
— clock Management
 Random

LRU - |east recently used
— complex counter needed

NFU - not frequently used

23.9.2002 Copyright Teemu Kerola 2002 32

Chapter 8.3, Virtua Memory 16

Computer Organization 11 23.9.2002

Thrashing

* Too high mpl
» Too few page frames per process
— E.g., only 10007 20007?
— Lessthan its working set
ry * Once aprocessis scheduled, it will

very soon reference apage not in
memory

— page fault

V — process switch

23.9.2002 Copyright Teemu Kerola 2002 33

Trashi ng (ruuhkautuminen)

CPU 1.0 ¢
utilization K
(kayttosuhde) CPU 100% busy
1 Swapping processes!
Higher mpl No real work is done!
= lessphysical
memory (moniajoaste)

er process! : : |
B 4 8 12
mpl (multiprogramming level)

L »
I Lagl

- How much memory per process?
- How much memory is needed?

23.9.2002 Copyright Teemu Kerola 2002 34

Chapter 8.3, Virtua Memory 17

Computer Organization 11 23.9.2002

Page Fault Frequency (PFF)
Dynamic Memory Allocation

» Two bounds: L=Lower and U=Upper
» Physical memory split into fixed size pages

o At every page fault
— T=Time since previous page fault
—if T<L then give process more memory
* 1 page frame? 4 page frames?
—if U<T then take some memory away
* 1 page frame?
—if L<T<U then keep current allocation

23.9.2002 Copyright Teemu Kerola 2002 35

Multi-level paging/segmentation
« Segmented paging 01101 01100110 10110000
_ addresslogically split 9™ Page byteoffsat
into segments and then physically into pages
— protection may be at segment level
* Multiplelevel paging
— large address space may result in very large page tables

— solution: multiple levels of page tables
Fig. 5.43 [HePa96] |

— VM implementation may not utilize them all

— VM implementation may seem to use more levelsthan
there are (e.g., Linux 3 levelson 2-level Intel arch.)

* nr of actual levelsin mem. management macros

23.9.2002 Copyright Teemu Kerola 2002 36

Chapter 8.3, Virtua Memory 18

Computer Organization |1

Address mapping

VM policies

23.9.2002 Copyright Teemu Kerola 2002

VM Summary

How to partition memory?
— Static or dynamic size (amount)

How to allocate memory
— Static or dynamic location

HW help (TLB) for address trandlation
— before or concurrently with cache access?

— fetch, placement, replacement

37

Fig. 5.47 from

-- End of Chapter 8.3:Virtual Memory --

Daiapage-tame e | |
i 0 akci®

Hennessy-Peatterson,

“a" Fully assoc,

.

Computer Architecture

- _32entry

Alpha AXP 21064

data TLB

s I

memory hierarchy

Fully assoc, 12 eﬁtry E

8 KB,
direct
mapped,
256 line

instruction TLB ec/
|
8 KB, direct mapped,

(each 32B)

256 line (each 32B)

data cache

instruction cache

| :
U I man memory

|5
2 MB, 64K line (each 32B) o» ==
direct mapped, unified/ .

Q
9

write-back L2 cache

——
)

23.9.2002 Copyright Teemu Kerola 2002

paging disk (dma)

Chapter 8.3, Virtua Memory

23.9.2002

19

