CPU Structure and Function

General Organisation
Registers
Instruction Cycle
Pipelining
Branch Prediction
|nterrupts

26.9.2002 Copyright Teemu Kerola 2002

General CPU Organization w

JAYRE
— does all real work

Registers
— data stored here
Internal CPU Bus

Control

Fig. 12.1

(Fig. 11.1 [Stal99])

Fig. 12.2

(Fig. 11.2 [Stal99])

More in Chapters 16-17

(Ch 14-15 [Stal 99])

— determines who does what when
— driven by clock

— uses control signals (wires) to control what
every circuit isdoing at any given clock cycle

26.9.2002

Copyright Teemu Kerola 2002

Register Organisation «

* Registers make up CPU work space

e User visibleregisters ADD R1,R2R3
— accessible directly viainstructions

e Control and status registers BNeg Loop

— may be accessible indirectly viainstructions

— may be accessible only internally [HW exception
 Internal latches for temporary storage

during instruction execution

— E.g., ALU operand ether from constant in
Instruction or from machine register

26.9.2002 Copyright Teemu Kerola 2002

User Visible Registers ¢

o Variesfrom one architecture to another
o General purpose registers (GPR)
— Data, address, index, PC, condition,
o Dataregisters
— Int, FP, Double, Index
e Addressregisters

e Segment and stack pointers
— only privileged instruction can write?

e Condition codes
— result of some previous ALU operation

26.9.2002 Copyright Teemu Kerola 2002

Control and Status Registers

e PC
— next instruction (not current!)
— part of process state

* |R, Instruction (Decoding) Register
— current instruction

« MAR, Memory Address Register

— current memory address

« MBR, Memory Buffer Register
— current data to/from memory

o PSW, Program Status Word
— what is alowed? What is going on?
— part of process state

26.9.2002 Copyright Teemu Kerola 2002

Fig. 12.7

(Fig. 11.7 [Stal99])

PSW - Program Status Word ¢

o Stateinfo from latest ALU-0p
— Sign, zero?
— Carry (for multiword ALU ops)?
— Overflow?

Interrupts that are enabled/disabled?
Pending interrupts?
CPU execution mode (supervisor, user)?
Stack pointer, page table pointer?

o /O registers?

26.9.2002 Copyright Teemu Kerola 2002

Instruction Cycle

Basic cycle with interrupt handling

Indirect cycle Figs 12.4-5 [(Fig. 11.5-6 [Stal99)])

Data Flow Figs 12.6-8 | (Fig. 11.7-9 [Stal99])
— CPU, Bus, Memory

Data Path Fig 16.5 | (Fig. 14.5 [Stal99])

Fig. 11.4 [Stal99]

— CPU’s“internal databus’ or Fig 3.1 [HePag6]
T data mesh”

— All computation is data transformations
occurring on the data path

— Control signals determine dataflow & action for
each clock cycle

Copyright Teemu Kerola 2002

Pipeline Example [tk

e Laundry Example (David A. Patterson)
e Ann, Brian, Cathy, Dave

each have one load of clothes » w
to wash, dry, and fold ““

e \Washer takes 30 minutes m

e Dryer takes 40 minutes

e “Folder” takes 20 minutes

26.9.2002 Copyright Teemu Kerola 2002

Sequentlal Laundry m

8 9 10 11 night
>

Time

20 70 E‘g—oTo 0730 20 20 30 20 20

Time for one load
Latency

C 1.5 hours per load
0.67 loads per hour

*

(vilve?)

;[Throughput

b

Sequential laundry takes 6 hours for 4 loads
o If they learned pipelining, how long would laundry take?

26.9.2002 Copyright Teemu Kerola 2002

Pi pellned Laundry

6 PM 8 9 10
| Time g
e
30 40 40 40 40 20 Time for one load

» & -

7 | 90 minutes per load
/

‘ m;[\)~ 1.15 loads per hour

7 . Throughput
‘ ‘% Average speed
| A Max speed?
Y ‘ %7 1.5 load per hour

e Pipelined laundry takes 3.5 hours for 4 loads
o At best case, laundry is completed every 40 minutes

26.9.2002 Copyright Teemu Kerola 2002 10

Pipelining Lessons «

Pipelining doesn’t help 6 PM 7 8
latency of single task, but |

. |
It helps throughput of 30 40 40 40 40 20

the entire workload o m?
Pipeline rate limited by & m;[

slowest pipeline stage

Multiple tasks operating é
simultaneously D
Potential speedup

= maximum possible speedup | (nopeutus)
= Number pipe stages

26.9.2002 Copyright Teemu Kerola 2002

Pipelining Lessons

ths of pipe

stages reduces speedup

— Enough electrical current
to run both washer and
dryer ssmultaneously?

— Need to have at |east
2 people present all

the time?

e Timeto “fill” pipeline and
timeto “dran” it reduces

26.9.2002

6|PM 7

8 9

30 40,

40 40 40 20

:(—)

Copyright Teemu Kerola 2002

2-stage Instruction Execution
Pipeline

Fig. 12.9 | (Fig. 11.10 [Stal99])

Good: instruction pre-fetch at the same time
as execution of previous instruction

Bad: execution phaseis
longer, |.e., fetch stage
IS sometimes idle

Bad: Sometimes (jump, branch) wrong
Instruction is fetched

— every 6 instruction?
* Not enough parallelism = more stages?

26.9.2002 Copyright Teemu Kerola 2002

Another Possible
Instruction Execution Pipeline

FE - Fetch instruction

DI - Decode instruction

CO - Calculate operand effective addresses
FO - Fetch operands from memory

El - Execute | nstruction

WO - Write operand (result) to memory

Fig. 12.10 | (Fig. 11.11 [Stal99))

26.9.2002 Copyright Teemu Kerola 2002

Pipeline Speedup ©

No pipeling, 9 instructions 0 » 54 time units

(Fig. 11.11 [Stal99])

— _ _ Fig. 12.10 _ _
6 stage pipeling, 9 instructions » 14 time units

Speedup= 1MEad . =54/14=386 <6!
Time g, (nopeutus)

* Not every Instruction uses every stage
— serial execution actually even faster
— speedup even smaller
— will not affect pipeline speed
— unused stage = CPU idle (execution “bubble’)

26.9.2002 Copyright Teemu Kerola 2002 15

Pipeline Execution Time ¢

* Time to execute oneinstruction, |.e., latency may
be |longer than for non-pipelined machine
— extralatchesto store intermediate results

* Time to execute 1000 instructions (seconds) Is
shorter (better) than that for non-pipelined
machine, |.e., throughput (instructions per second)
for pipelined machine is better (bigger) than that
for non-pipelined machine

— parallel actions speed-up overall work load
|s this good or bad? Why?

% 26.9.2002 Copyright Teemu Kerola 2002

Pipeline Speedup Problems

o Some stages are shorter than the others

* Dependencies between instructions

— control dependency

* E.g., conditional branch decision know only after El
stage

Fig. 12.11 | (Fig. 11.12 [Stal99])

Fig. 12.12-13 | (Fig. 11.13 [Stal99])

26.9.2002 Copyright Teemu Kerola 2002

Pipeline Speedup Problems ¢

Fig. 12.11 | (Fig. 11.12[Stal99]) | v4l ue known
» Dependencies between ;after EI stage
Instructions v
— data dependency MUL R1,R2,R3
e Oneinstruction depends LOAD @A‘rrB(‘Rl)

on data produced by .
some earlier instruction value needed

— structural dependency InCOstage

e Many instructions STORE RLVarX ¥
need the same resource ADD R2R3VarY

at the sametime MUL R3R4R5 V.
e memory bus, ALU, ... ¥.. FO

= memory bus use
26.9.2002 Copyright Teemu Kerola 2002 18

CyCI e Time ©

e’

A
Tmax gate delay in stage
(min) cycletime
delay in latches between stages

(= clock pulse, or clock cycle time)

gate delay in stage |

Cycletimeisthe same for all stages
— time (in clock pulses) to execute the stage

Each stage takes one cycle time to execute

e Longest stage determines min cycle time
— max MHz rate for system clock

26.9.2002 Copyright Teemu Kerola 2002

Pipeline Speedup

n instructions, k stages
n instructions, k stages / T = stage delay = cycletime

Time (pessimistic because of
not pipelined: assuming that each stage
would still have T cycletime)

Time

pipelined: "
k cycles until 1 cyclefor
1st instruction each of the rest
completes (n-1) instructions

26.9.2002 Copyright Teemu Kerola 2002

Pipeline Speedup

n instructions, k stages
n instructions, k stages / T = stage delay = cycletime
Time (pessimistic because of

not pipelined: assuming that each stage
would still have T cycle time)

Time
pipelined:

Speedup
with
K stages:

Fig. 12.14 | (Fig. 11.14 [Stal99])

26.9.2002 Copyright Teemu Kerola 2002

Branch Problem Solutions

* Delayed Branch

— compiler places some useful instructions
(1 or more!) after branch (or jump) Instructions

— these Instructions are amost compl etely

executed when branch decision is known
e execute them always! Fig. 13.7

 hopefully useful work (Fig. 12.7 [Stal99])
e o/w NO-OP

— |ess actual work lost
— can be difficult to do

26.9.2002 Copyright Teemu Kerola 2002

Branch Probl. Solutions (contd)

e Multiple instruction streams

— execute speculatively in both directions

* Problem: we do not know the branch target
address early!

— If one direction splits, continue each way again

— lots of hardware
 gpeculative results (registers!), control

— gpeculative instructions may delay real work

e bus & register contention?
e Need multiple ALUS?

— need to be able to cancel not-taken instruction
streams in pipeline

26.9.2002 Copyright Teemu Kerola 2002

Branch Probl. Solutions (contd)

* Prefetch Branch Target IBM 360/91 (1967)
— prefetch just branch target instruction
— do not execute it, |.e., do only Fl stage
— If branch take, no need to wait for memory

e Loop Buffer

— keep n most recently fetched instructions in
high speed buffer inside CPU

— works for small loops (at most n instructions)

26.9.2002 Copyright Teemu Kerola 2002

Branch Probl. Solutions (contd) «

o Static Branch Prediction
— guess (intelligently) which way branch will go
— gtatic prediction: all taken or all not taken

— gtatic prediction based on opcode

e E.g., because BLE instruction is usually at the end
of loop, guess “taken” for all BLE instructions

26.9.2002 Copyright Teemu Kerola 2002

Branch Probl. Solutions (contd)

e Dynamic branch prediction

— based on previous time this instruction was
executed

— need a CPU “cache’ of addresses of branch

Instructions, and taken/not taken information
e 1 hit

— end of loop always wrong twicel

— extension: prediction based on two previous
time executions of that branch instruction

 need more space (2 bits) Fig. 12.17
(Fig. 11.16 [Stal99])

Copyright Teemu Kerola 2002

Branch Address Prediction ¢

e |t isnot enough to know whether branch is
taken or not

e Must know also branch address to fetch
target instruction

e Branch History Table

— state information to guess whether branch will
be taken or not

— previous branch target address
— stored in CPU “cache” for each branch

26.9.2002 Copyright Teemu Kerola 2002

Branch History Table

e Cached PowerPC 620

— entries only for most recent branches
e Branch instruction address, or tag bits for it
« Branch taken prediction bits (27?)

e Target address (from previous time) or complete
target instruction?

e \WWhy cached

— expensive hardware, not enough space for all
possible branches

— at lookup time check first whether entry for
correct branch instruction

 Index/tag bits of branch instruction address

26.9.2002 Copyright Teemu Kerola 2002

CPU Example: PowerPC

o User Visible Registers

Fig. 12.23

(Fig. 11.22 [Stal99])

— 32 general purpose regs,
o Exception reg (XER), 32 bits

— 32 FP regs, each 64 bits

e FP status & control (FPSCR), 32 bits

each 64

nItS

Fig. 12.24a|(Fig. 11.234)

— branch processing unit registers

e Condition, 32 bits
— 8 fidlds, each 4 hits

Table 12.3
(Thl. 11.3)

Fig. 12.24b | (Fig. 11.23b)

— Identity given in instructions

 Link reg, 64 bits

— E.g., return address
e Count regs, 64 bits

— E.g., loop counter

26.9.2002 Copyright Teemu Kerola 2002

Table12.4
(Thl. 11.4)

CPU Example: PowerPC

e |nterrupts

— Cause
« system condition or event Taple12.5
e Instruction

(Fig. 11.5 [Stal99])

26.9.2002 Copyright Teemu Kerola 2002

CPU Example: PowerPC

 Machine State Register, 64 bits

nIt 49: privileged state or not

26.9.2002 Copyright Teemu Kerola 2002

(Thl. 11.6 [Stal99])

Table 12.6

nit 48: external (1/0) interrupts enabled?

nIts 52& 55: which FP interrupts enabled?

nit 59: data address trand ation on/of f
nit 63: big/little endian mode

o Save/Restore Regs SRRO and SRR1
— temporary data needed for interrupt handling

Power PC Interrupt Invocation

(Thl. 11.6 [Stal99])
Save return PC to SRRO Table 12.6

— current or next instruction at the time of interrupt
Copy relevant areas of MSR to SRR1
Copy additional interrupt info to SRR1
Copy fixed new value into MSR

— different for each interrupt
— address trand ation off, disable interrupts

Copy interrupt handler entry point to PC

— two possible handlers, selection based on bit 57 of
original MSR

26.9.2002 Copyright Teemu Kerola 2002

Power PC Interrupt Return

(Thl. 11.6 [Stal99])
Table 12.6

e Return From Interrupt (rfi) instruction
— privileged

e Rebuild original MSR from SRR1
o Copy return address from SRRO to PC

26.9.2002 Copyright Teemu Kerola 2002

-- End of Chapter 12: CPU Structure --

Acrobat Bea__. _ __._,_,
'@ File Edit Document iew

Al el © stage pipelined version of datapath i (Fig. 6.12)

rs

P |

o FEEd
Address 1 register 1 Read

Pead data 1
Instruction | registar 2
Registers pagd
MmOy
Write data 2
registar

Write
data

Copyright Teemu Kerola 2002

