Computer Organization 11 26.9.2002

CPU Structure and Function
Ch12

General Organisation
Registers
Instruction Cycle
Pipelining
Branch Prediction
Interrupts

26.9.2002 Copyright Teemu Kerola 2002 1

General CPU Organization

 ALU :
Fig. 12.1 | (Fig. 121 [Stal99]) |
— does al real work
» Registers Fig. 12.2 | (Fig. 1.2 [Staloq]) |
— data stored here
* |Internal CPU Bus
e Control More in Chapters 16-17 [(ch 14-15 [Stal99]) |

— determines who does what when

— driven by clock

— uses control signals (wires) to control what
every circuit isdoing at any given clock cycle

26.9.2002 Copyright Teemu Kerola 2002 2

Chapter 12, CPU Structure and Function

Computer Organization |1

26.9.2002

Register Organisation w

Registers make up CPU work space

User visible registers ADD R1,R2R3
— accessible directly viainstructions

Control and status registers BNeq Loop

— may be accessible indirectly viainstructions

— may be accessible only internally 'Hw exception

Internal latches for temporary storage
during instruction execution

— E.g., ALU operand either from constant in
instruction or from machine register

Copyright Teemu Kerola 2002 3

26.9.2002

User Visible Registers

Varies from one architecture to another
General purpose registers (GPR)

— Data, address, index, PC, condition,
Dataregisters

— Int, FP, Double, Index

Address registers

Segment and stack pointers
— only privileged instruction can write?

Condition codes
— result of some previous ALU operation

Copyright Teemu Kerola 2002 4

Chapter 12, CPU Structure and Function

26.9.2002

Computer Organization 11 26.9.2002

Control and Status Registers s

« PC
— next instruction (not current!)
— part of process state
IR, Instruction (Decoding) Register | Fig. 12.7
— current instruction | (Fig. 11.7 [Stal99)]) |
* MAR, Memory Address Register
— current memory address
* MBR, Memory Buffer Register
— current data to/from memory
* PSW, Program Status Word
— what is alowed? What is going on?
— part of process state

26.9.2002 Copyright Teemu Kerola 2002 5

PSW - Program Status Word

« State info from latest ALU-0p
— Sign, zero?
— Carry (for multiword ALU ops)?
— Overflow?

Interrupts that are enabled/disabled?
Pending interrupts?

CPU execution mode (supervisor, user)?
» Stack pointer, page table pointer?

1/O registers?

26.9.2002 Copyright Teemu Kerola 2002 6

Chapter 12, CPU Structure and Function 3

Computer Organization |1

26.9.2002

Instruction Cycle o

» Basic cycle with interrupt handling
* Indirect cycle Figs 12.4-5 | (Fig 1156 [Sta9g]) |
 DataFlow Figs 12.6-8 | (Fig. 11.7-9 [Staog]) |

| Fig. 11.4 [Sta99] |

— CPU, Bus, Memory

o DataPath Fig 16.5 | (Fig. 14.5[Stal99)) |

— CPU’s “internal databus’ or [5531 [HePa9%6
“data mesh” 93 |

— All computation is data transformations
occurring on the data path

— Control signals determine data flow & action for
each clock cycle

Copyright Teemu Kerola 2002 7

26.9.2002

Pipeline Example ~ [iukififia

» Laundry Example (David A. Patterson)

* Ann, Brian, Cathy, Dave
each have one load of clothes :
to wash, dry, and fold "

* Washer takes 30 minutes &=

« Dryer takes 40 minutes —
()
» “Folder” takes 20 minutes .
&
Copyright Teemu Kerola 2002 8

Chapter 12, CPU Structure and Function

26.9.2002

Computer Organization 11 26.9.2002

Sequential Laundry oy

6PM 7 8 9 10 11 night
|

| Time
| | | | | | | | | | | |

30 40 20 30 40 20 30 40 20 30 40 20

Time for one load -
7
SR f Latency (viive?)

== . | 1.5 hours per load |
Sk
- . | 0.67 loads per hour |
? o ?. Throughput
5,
. uential laundry takes 6 hoursfor 4 loads
* If they learned pipelining, how long would laundry take?

26.9.2002 Copyright Teemu Kerola 2002 9

~ o]

’—c('DQ.—:O

Pipelined Laundry ay
6 IPM 7 8 9 10

[Time
e — |
30 ilO '40 40 40 20 Time for one load

Latency

i

| 90 minutes per load |

xwm—|‘

(@) ;[| 1.15 loads per hour |

=, l Throughput
?C’ f Average speed

= 1 Max speed?
Y Sph7 =
1.5 load per hour
* Pipelined laundry takes 3.5 hours for 4 loads J

* At best case, laundry is completed every 40 minutes
26.9.2002 Copyright Teemu Kerola 2002 10

’-*(DQ.*O

Chapter 12, CPU Structure and Function 5

Computer Organization |1

Pipelining Lessons «

* Pipelining doesn’'t help
latency of singletask, but
it helps throughput of
the entire workload

* Pipelinerate limited by
slowest pipeline stage

» Multiple tasks operating
simultaneously

]
KAy — Va4

GIPM 7 8 9
|

30 40 40 40 40 20

Time

» Potentia speedup

= Number pipe stages

26.9.2002

= maximum possible speedup

Copyright Teemu Kerola 2002

(nopeutus)

11

» Unbalanced lengths of pipe
stages reduces speedup

» May need more resources

— Enough electrical current
to run both washer and
dryer simultaneously?

— Need to have at least
2 people present all
the time?
» Timeto “fill” pipeline and
timeto “drain” it reduces
speedup

26.9.2002

Pipelining Lessons

6PM 7 8 9

Time

30 40,40 40 40 20

1
 /
E (]
1 o

Copyright Teemu Kerola 2002

12

Chapter 12, CPU Structure and Function

26.9.2002

Computer Organization |1

2-stage Instruction Execution
Pi pel INe Fig. 12.9

(Fig. 11.10 [Stal99)]) |

Good: instruction pre-fetch at the same time
as execution of previousinstruction

Bad: execution phaseis o

longer, |.e., fetch stage I I I

Issometimesidle

Bad: Sometimes (jump, branch) wrong
instruction is fetched

— every 6" instruction?
Not enough parallelism = more stages?

26.9.2002 Copyright Teemu Kerola 2002 13

Another Possible
| nstruction Execution Pipeline

FE - Fetch instruction

DI - Decode instruction

CO - Calculate operand effective addresses
FO - Fetch operands from memory

El - Execute Instruction

WO - Write operand (result) to memory

Fig. 12.10 | (Fig. 11.11 [Stal99)]) |

26.9.2002 Copyright Teemu Kerola 2002 14

Chapter 12, CPU Structure and Function

26.9.2002

Computer Organization 11 26.9.2002

Pipeline Speedup «

*
No pipeline, 9 instructions 9'6 » 54 time units

(Fig. 11.11 [Stal99)]) |

|
— : : Fig. 12.10 - -
6 stage pipeling, 9 instructions ———— 14 time units

Speedup= M€ =54/14=386 <6!
Time gy, (nopeutus)
» Not every instruction uses every stage
— serial execution actually even faster
— speedup even smaller
— will not affect pipeline speed
— unused stage = CPU idle (execution “bubble”)

26.9.2002 Copyright Teemu Kerola 2002 15

Pipeline Execution Time

» Time to execute oneinstruction, |.e., latency may
be [onger than for non-pipelined machine
— extralatches to store intermediate results

» Time to execute 1000 instructions (seconds) is
shorter (better) than that for non-pipelined
machine, |.e., throughput (instructions per second)
for pipelined machine is better (bigger) than that
for non-pipelined machine
— parald actions speed-up overall work load

* Isthisgood or bad? Why?

26.9.2002 Copyright Teemu Kerola 2002 16

Chapter 12, CPU Structure and Function 8

Computer Organization |1

— control dependency

stage

Pipeline Speedup Problems

« Some stages are shorter than the others
 Dependencies between instructions

* E.g., conditiona branch decision know only after El

Fig. 12.11 | (Fig. 11.12[Stal99]) |

Fig. 12.12-13 | (Fig. 11.13[Stal99)]) |

26.9.2002 Copyright Teemu Kerola 2002 17

Pipeline Speedup Problems ¢

Fig. 12.11

(Fig. 11.12[S@l99)) | value known

» Dependencies between
instructions

— data dependency

* Oneinstruction depends
on data produced by
some earlier instruction

— structura dependency

» Many instructions
need the same resource
at the sametime

* memory bus, ALU, ...

iafter El stage
v
MUL R1,R2,R3
LOAD R6,ArrB(51)
value needed +

.
.t
9

ADD R2R3VayY
MUL R3R4,R5 %
.

Fl

.
i

F
memory bus use

26.9.2002 Copyright Teemu Kerola 2002 18

Chapter 12, CPU Structure and Function

26.9.2002

Computer Organization 11 26.9.2002

CycleTime g

r=max[ri]+d =r,+d >>d

overhead?

Tmax gate delay in stage
(min) cycletime

delay in latches between stages

(= clock pulse, or clock cycletime)
gate delay in stage i

» Cycletimeisthe samefor all stages
— time (in clock pulses) to execute the stage
» Each stage takes one cycle time to execute

» Longest stage determines min cycle time
— max MHz rate for system clock

26.9.2002 Copyright Teemu Kerola 2002 19

Pipeline Speedup o

n instructions, k stages

ninstructions, k stages T = stage delay = cycletime
Time T =nkr (pessimistic because of
not pipelined: *1 assuming that each stage

would still have T cycletime)

;‘ggﬁned: T, =[k+(n-1)7

k cycles until 1 cyclefor
1st instruction each of therest
completes (n-1) instructions

26.9.2002 Copyright Teemu Kerola 2002 20

Chapter 12, CPU Structure and Function 10

Computer Organization 11 26.9.2002

Pipeline Speedup o

n instructions, k stages
ninstructions, k stages / T = stage delay = cycletime

Time T =nkr (pessimistic because of
not pipelined: (*1 assuming that each stage

would still have T cycletime)

mrrnes. T =lk+(n-D)]r

pipelined:
Speedup (s _ Iy _ nkr _ nk
with S == = =
k stages: Tk [k+(n—1)]r [k+(n_1)]

Fig. 12.14 [(Fig. 1214 [stal99)) |

26.9.2002 Copyright Teemu Kerola 2002 21

Branch Problem Solutions

» Delayed Branch

— compiler places some useful instructions
(1 or more!) after branch (or jump) instructions

— these instructions are almost compl etely
executed when branch decision is known

* execute them aways! Fig. 13.7
* hopefully useful work (Fig. 12.7 [Stal99]) |
* o/lw NO-OP

— less actual work lost
— can bedifficult to do

26.9.2002 Copyright Teemu Kerola 2002 22

Chapter 12, CPU Structure and Function 11

Computer Organization 11 26.9.2002

Branch Probl. Solutions (contd) «

« Multipleinstruction streams

— execute speculatively in both directions

* Problem: we do not know the branch target
address early!

— if one direction splits, continue each way again
— lots of hardware
* speculative results (registers!), control
— gpeculative instructions may delay real work
* bus & register contention?
* Need multiple ALUS?
— need to be able to cancel not-taken instruction
streamsin pipeline

26.9.2002 Copyright Teemu Kerola 2002 23

Branch Probl. Solutions (contd)

 Prefetch Branch Target IBM 360/91 (1967)
— prefetch just branch target instruction
— do not execute it, |.e., do only Fl stage
— if branch take, no need to wait for memory

» Loop Buffer

— keep n most recently fetched instructions in
high speed buffer inside CPU

—works for small loops (at most n instructions)

26.9.2002 Copyright Teemu Kerola 2002 24

Chapter 12, CPU Structure and Function 12

Computer Organization |1

Branch Probl. Solutions (contd) «

 Static Branch Prediction
— guess (intelligently) which way branch will go
— static prediction: al taken or al not taken

— static prediction based on opcode

* E.g., because BLE instruction is usually at the end
of loop, guess “taken” for all BLE instructions

26.9.2002 Copyright Teemu Kerola 2002 25

Branch Probl. Solutions (contd)

» Dynamic branch prediction

— based on previous time thisinstruction was
executed

— need aCPU “cache” of addresses of branch
instructions, and taken/not taken information
e 1 bit
— end of loop always wrong twice!

— extension: prediction based on two previous
time executions of that branch instruction

* need more space (2 bits) Fig. 12.17
(Fig. 11.16 [Stal99])
26.9.2002 Copyright Teemu Kerola 2002 26

Chapter 12, CPU Structure and Function

26.9.2002

13

Computer Organization 11 26.9.2002

Branch Address Prediction ¢

* |t isnot enough to know whether branch is
taken or not

* Must know also branch address to fetch
target instruction

» Branch History Table

— state information to guess whether branch will
be taken or not

— previous branch target address
— stored in CPU “cache” for each branch

26.9.2002 Copyright Teemu Kerola 2002 27

Branch History Table

» Cached PowerPC 620

— entries only for most recent branches
 Branch instruction address, or tag bits for it
 Branch taken prediction bits (27?)

» Target address (from previous time) or complete
target instruction?

» Why cached
— expensive hardware, not enough space for all
possible branches

— at lookup time check first whether entry for
correct branch instruction
* Index/tag bits of branch instruction address

26.9.2002 Copyright Teemu Kerola 2002 28

Chapter 12, CPU Structure and Function 14

Computer Organization |1

CPU Example: PowerPC

o User Visible Registers|Fig. 12.23

(Fig. 11.22 [Stal99)]) |

— 32 general purpose regs, each 64 bits

* Exception reg (XER), 32 bits| Fig. 12.24a

(Fig. 11.233) |

— 32 FP regs, each 64 bits

» FP status & control (FPSCR), 32 bits
— branch processing unit registers

Table 12.3

(Thl. 11.3)

* Condition, 32 hits

Fig. 12.24b

— 8fields, each 4 bits
—identity given in instructions
* Link reg, 64 bits
—E.g., return address
» Count regs, 64 bits
—E.g., loop counter

26.9.2002 Copyright Teemu Kerola 2002

(Fig. 11.23b)

Table12.4

(Thl. 11.4)

29

 Interrupts
— Cause

CPU Example: PowerPC

* system condition or event

Table12.5

* instruction

(Fig. 115 [Stal99)) |

26.9.2002 Copyright Teemu Kerola 2002

30

Chapter 12, CPU Structure and Function

26.9.2002

15

Computer Organization 11 26.9.2002

CPU Example: PowerPC

(Tbl. 11.6 [Stal99)]) |

» Machine State Register, 64 bits Table 12.6
— bit 48: externa (1/0) interrupts enabled?
— bit 49: privileged state or not
— bits 52& 55: which FP interrupts enabled?
— bit 59: data address translation on/off
— bit 63: big/little endian mode
» Save/Restore Regs SRRO and SRR1
— temporary data needed for interrupt handling

26.9.2002 Copyright Teemu Kerola 2002 31

Power PC Interrupt Invocation

(Tbl. 11.6 [Stal99)]) |
» Save return PC to SRRO Table 12.6
— current or next instruction at the time of interrupt

Copy relevant areas of MSR to SRR1
Copy additional interrupt info to SRR1

Copy fixed new value into MSR

— different for each interrupt

— address trangdlation off, disable interrupts
Copy interrupt handler entry point to PC

— two possible handlers, selection based on bit 57 of
original MSR

26.9.2002 Copyright Teemu Kerola 2002 32

Chapter 12, CPU Structure and Function 16

Computer Organization |1

Power PC Interrupt Return

(Tbl. 11.6 [Stal99)]) |
Table 12.6

 Return From Interrupt (rfi) instruction
— privileged

» Rebuild original MSR from SRR1

» Copy return address from SRRO to PC

26.9.2002 Copyright Teemu Kerola 2002 33

-- End of Chapter 12: CPU Structure --

T File Edit Document ie

5 stage pipelined version of datapath ~ (Fig. 6.12)
o =

~1
Lol oo ML Lve] (Patterson-Hennessy, Computer Org & Design, 2nd Ed, 1998)

26.9.2002 Copyright Teemu Kerola 2002 34

Chapter 12, CPU Structure and Function

26.9.2002

17

