| nstruction Sets

Characteristics

: Operands
r Operations
Addressing

Instruction Formats

26/09/2001 Copyright Teemu Kerola 2001

| Nstruction Set (késkykanta)

e Collection of Instructions that CPU
understands

e Only interface to CPU from outside

 CPU executesaprogram < CPU executes
given instructions “one at atime”

— fetch-execute cycle

Fig. 9.1

26/09/2001 Copyright Teemu Kerola 2001

Machine Instruction

Fig. 9.1

Opcode
— What should | do? Math? Move? Jump?

Source operand references

— Where is the data to work on? Reg? Memory?
Result operand reference

— Where should | put the result? Reg? Memory?

Next instruction reference
— Where is the next instruction? Default? Jump?

26/09/2001 Copyright Teemu Kerola 2001

Instruction Representation

e Bit presentation:
— binary program

o Assembly language

— symbolic program

0x2465A080

4

Opéode, operands

A

LOAD R1,=0x6678

Syrﬁbolic opcode

o Symbolic assembly language
LOAD R1,TotalSum

Fig. 9.11

T

\V4 rtuél or
physical
address?

Symbolli c value?

26/09/2001 Copyright Teemu Kerola 2001

Instruction Set Design)

Operation types (operaatiotyyppi)
— How many? What type? Simple? Complex?
Data types (tietotyyppi)

— Just afew? Many?

| nstruction format (kaskyn muoto)
— fixed length? Varying length? Nr of operands?

Number of addressable registers
— too many = too long instructions?

— too few = too hard to optimise code?
Addressing (tiedon osoitus)
— What modes to use to address data and when?

26/09/2001 Copyright Teemu Kerola 2001

Good Instruction Set

Good target to compiler

— Easy to compile?

— Possible to compile code that runs fast?
— Easy to compile code that runs fast?

* Allowsfast execution of programs

— How many meaningless instructions per
second? MIPS? GFL OPS?

— How fast does my program run?
o Solve linear system of 1000 variables?
o Set of data base queries?
e Connect a phone call in reasonable time?

26/09/2001 Copyright Teemu Kerola 2001

Good Instruction Set (contd)

e Beautiful & Aesthetic

— Orthogonal (ortogonaalinen)
e Simple, no special registers, no special cases, any
data type or addressing mode can be used with any
Instruction

— Complete (taydellinen)
o Lots of operations, good for all applications
— Regular (séanndllinen)
o Specific instruction field has always same meaning
— Streamlined (virtaviivainen)
 Easy to define what resources are used

26/09/2001 Copyright Teemu Kerola 2001

Good Instruction Set (contd)

e Easy to Implement
— 18 months vs. 36 months?

— Who will be 1% in market? Who will get
development monies back and who will not?

e Scalabi

Ity (skaalautuva)

— Speed up clock speed 10X, does it work?

— Doub

e address length, does design extend?

e E.0., 32 bits= 64 bits= 128 hits?

26/09/2001

Copyright Teemu Kerola 2001

Number of Operands?

3? ADD ABC Mem(A) -« mem(B) + mem(C)

— Normal case nOW ADD R1 R2, R3 rl r2+r3

27 ADD RLR2 r1 - r1+r2
— 1 operand and result the same

17? ADD A
.. acc — acctmem(A)
— 1 operand and result in implicit accumulator

07?

— All operandsand [ADD 2R

result in implicit stack gg

26/09/2001 Copyright Teemu Kerola 2001

Instruction Set Architecture (1SA)

Basic Classes

e Accumulator

e Stack

o General Purpose Register
— only one type of registers, good for all

— 2 or 3 operands

L oad/Store tgﬁg 23’ ;

— only load/store instructions ADD R1.R2R3
acCess memory STORE R1,A

— 3 operand AL U instructions

26/09/2001 Copyright Teemu Kerola 2001

Big vs. Little Endian

 How are multi-byte values stored

0x1200:
/ 0x1200 0x1201 0x1202 0x1203

Word address \ '\ //"

Store 0x11223344 ?? Byte addresses

Big-Endian: mostsign. 4| 17 | ox22 | 0x33 | Ox44
byte has smallest address

0x1200 0x1201 0x1202 0x1203

Little-Endian: least sign.
= 0x44 | Ox33 | 0x22 | Ox11
byte has smallest address || . .

26/09/2001 Copyright Teemu Kerola 2001

Big vs. Little Endian

o Address of multi-byte dataitemsisthe same
In both representations

e Only internal byte order varies

e Must decide one way or the other
— Math circuits must know which presentation

used
e Little-Endian may be faster

— Must consider when moving data via network
* Power-PC: bi-endian - both modes at use

— can change It per process basis

— kernel mode selected separately

26/09/2001 Copyright Teemu Kerola 2001

Data (Operands, Result) Location

e Register acc r2, r8

— closg, fast register stack 4, f15
— limited number of them

— need to load/store values from/to memory
sometimes (often)

* Big problem! 50% of compiler time to decide
o register allocation problem

memory stack
* Memory (hwregshave ~ 0x349670

— far away mem addresses)
— only possibility for large data sets
e Vectors, arrays, sets, tables, objects, ...

26/09/2001 Copyright Teemu Kerola 2001

Allgned Data

2 byte (16-bit) half-word has byte address: 0010...10010
4 byte (32-bit) word has byte address: 0010...10100
8 byte (64-bit) doubleword has byte address. 0010...11000

« Aligned data
— faster memory access

11| 22 | 33| 44

» 32-bit data loaded as one memory load

 Non-aligned data 11 22

— saves mem, more bus trafficl | 33 | 44

« 32-bit non-aligned data reguires 2 memory |loads
(each 4 bytes) and combining data into one 32-bit
dataitem

26/09/2001 Copyright Teemu Kerola 2001

Data TypeS (8)

Address 16b, 32b, 64b, 128b?

nteger 16b, 32b, 64b?

-loating point | 32b, 64b, 80b?

Decimal 18 digits (9 bytes) packed decimal ?

Character 1byte=8b IRA = ASCII, EBCDIC?
String finite, arbitrary length?

Logical data 1 bit (Boolean value, bit field)?
Vector, array, record,

26/09/2001 Copyright Teemu Kerola 2001

Size of Operand

1 word, 32 bits Int, float, addr
2 words, 64 bits double float, addr
4 words, 128 hbits addr

oyte (8 bits) char

oytes short int
DI t logical values

26/09/2001 Copyright Teemu Kerola 2001

Pentium |l Data Types
* General datatypes
8-bit byte
oIt word
oIt doubleword
— 64-bit quadword

Not aligned
Little Endian

Specific data types
Numerical datatypes Table 9.2
Figure 9.4

26/09/2001 Copyright Teemu Kerola 2001

Operatl on TypeS Table 9.3

Data transfer

— CPU - memory

ALU operations
— INT, FLOAT, BOOLEAN, SHIFT, CONVERSION

/O
— read from device, start 1/O operation

Transfer of control
— jump, branch, call, return, IRET, NOP

System control

— HALT, SYSENTER, SY SEXIT, ... Table 9.4

— CPUID returns current HW configuration
e sizeof L1 & L2 caches, etc

26/09/2001 Copyright Teemu Kerola 2001

Data References

e Whereisdata?

— In memory

— Inregisters

— In Instruction itself
 How to refer to data?

— various addressing modes

— multi-phase data access
* how is data location determined (addressing mode)
e compute data address (register? effective address?)
e access data

26/09/2001 Copyright Teemu Kerola 2001

26/09/2001 Copyright Teemu Kerola 2001

Addressing Modes (Ch 10)
Fig. 10.1
Table. 10.1

mmediate 'Dataininstruction
Direct Memory address of data in instruction

- Address of memory address of data
ndirect [ininstruction (pointer)

REYISEr Datain register (best case?)

Register Indirect |RegisierRasimenory
address (pointer)

Displacement Addr = reg value + constant
Stack Dataisstack pointed by some register

26/09/2001 Copyright Teemu Kerola 2001

Displacement Address
o Effectiveaddress=(R1) + A

el N\

Contents of R1 Constant from instruction
e Constant is often small (8 bits, 16 bits?)

 Many uses

Base register address CALL Summation(BX)
Array index ADDF F2, F2, Table(R5)
Record field MUL F4, F6, Salary(R8)

Stack references STORE F2, -4(FP)

Copyright Teemu Kerola 2001

More Addressing Modes

size of
operand

\

Autolncrement EA=(R,R <« (R)+S
— E.g., R pointer to an array
Autodecrement R - (R)-S EA=(R)
— E.g., R pointer to an array
Autoincrement deferred
EA=Mem(R),R - (R)+S
— E.g., R pointer to an array of pointers
Scaled EA= A+(R)+(R)*S
— E.g., item (R;, R)) in 2-dimensional array A[l,]]

26/09/2001 Copyright Teemu Kerola 2001 23

Pentium |1 Addressing Modes

e |mmediate
— 1, 2, 4 bytes
* Register operand
— 1, 2, 4, 8 byte registers

— not all registers with every instruction

e Operandsin Memory Fig. 10.2

— compute effective address and combine with
segment register to get linear address (virtual
address)

Table 10.2

26/09/2001 Copyright Teemu Kerola 2001

| nstruction Format

e How to represent instructions in memory?

 How long instruction
— Descriptive or dense? Code size?

e Fast toload?
— In many parts?
— One operand description at atime?

o Fast to parse (l.e., split into logical
components)?
— All instruction same size & same format?
— Very few formats?

26/09/2001 Copyright Teemu Kerola 2001

Instruction Format (contd)

 How many addressing modes?
— Fewer is better, but harder to compileto
 How many operands?

— 3 gives you more flexibility, but takes more
space

 How many registers?
— 16 regs — need 4 bitsto name it
— 256 regs —» need 8 bitsto name it
— need at least 16-32 for easy register allocation

— How many registers, that can be referenced in
one instruction vs. referenced overall?

26/09/2001 Copyright Teemu Kerola 2001

Instruction Format (contd)

 How many register sets?
— A way to use more registers without forcing
long instructions for naming them
— Oneregister set for each subroutine call?

— One for indexing, one for data?

* Address range, number of bitsin
displacement

— more Is better, but it takes space

o Address granularity
— byte is better, but word address is shorter

26/09/2001 Copyright Teemu Kerola 2001

Pentium |l Instruction Set

CISC - Complex Instruction Set Computer
At most one memory address
“Everything” Is optional

“Nothing” i1sfixed

Difficult to parse

— all latter fields and their interpretation depend
on earlier fields

Fig. 10.8

26/09/2001 Copyright Teemu Kerola 2001

Pentium |1 Instruction

Prefix Bytes w

Instruction prefix (optional)
— LOCK - exclusive use of shared memory

Fig. 10.8 (a)

— REP - repeat instruction for string characters

Segment override (optional)
— override default segment register

— default isimplicit, no need to store it every instruction
Address size (optional)
— use the other (16 or 32 bit) address size

Operand size (optional)
— use the other (16 or 32 bit) operand size

26/09/2001 Copyright Teemu Kerola 2001

Pentium |l Instruction Fields ¢

e Opcode

— gpecific bit for byte size data
 Mod r/m (optional)

— datainreg (8) or in mem?

— which addressing mode of 247

Fig. 10.8 (b)

— can also specify opcode further for some opcodes

e SIB (optional) — Scale/Index/Base
extrafield needed for some addressing modes
scale for scaled indexing
Index register
base register

26/09/2001 Copyright Teemu Kerola 2001

Pentium |l Instruction Fields

(contd) ¢

* Displacement (optional)
— for certain addressing modes
— 1, 2, or 4 bytes

e Immediate (optional)
— for certain addressing modes
— 1, 2, or 4 bytes

26/09/2001 Copyright Teemu Kerola 2001

Fig. 10.8 (b)

PowerPC Instruction Format

RISC - Reduced Instruction Set Computer
Fixed length, just afew formats Fig. 10.9
Only load/store instructions access memory
Only 2 addressing modes for data

32 general purpose registers can be used
everywhere

Fixed data size
— NO string ops
Simple branches
— CR-field determines which register to compare

— L-bit determines whether a subroutine call
— A-bit determines if branch is absolute or PC-relative

26/09/2001 Copyright Teemu Kerola 2001

& Fig2_6.ps - GSview
File Edt Options “iew Orentation kMedia Help
File: Fig2_B.ps 414, 435pt Page: "1" 1 of 1

Memorny indirect

Register deferred
11%

43%

Immediate _ 17%
39%

=
L
?
=
|
+5
|
+)
=
=
£

32
Displacement
40

20% 30% 40%
Frequency of the addressing mode

FIGURE 2.6 Summary of use of memory addressing modes (including immediates).

Kl e
(Hennnessy-Patterson, Computer Architecture, 2nd Ed, 1996)

26/09/2001 Copyright Teemu Kerola 2001

