Computer Organization |1

19/09/2001

Virtual Memory (VM)
Ch7.3

Memory Management

Other Problems Often Solved
with VM @
« If you must want to have many processesin

memory at the same time, how do you keep
track of memory usage?

« How do you prevent one process from

Address Translation touching another process memory areas?
Eﬁa?:jr\]/gare Support * What if a process needs more memory than
we have?
VM and Cache
19/09/2001 Copyright Teemu Kerola 2001 1 19/09/2001 Copyright Teemu Kerola 2001 4
Teemu’s Cheesecake

Register, on-chip cache, memory, disk, and tape speeds
relative to times locating cheese for the cheese cake you

Memory Management Problem

» How much memory for each process?

are baking... Europa —isit fixed amount during the process run time
refridge- (Jupiter) or can it vary during the run time?
hand e moon . » Where should that memory be?
%ﬁ % 7 — inacontinuous or discontinuous area?
‘\9 | —isthe Ipcati on the same duri ng therunti me
\/ \/ ’ or can it vary dynamically during the run time?
055ec (cache) |10 sec o | TR * How issthat memory managed?
(register) (memor) sy | (tape) « How isthat memory referenced?
19/09/2001 Copyright Teemu Kerola 2001 2 19/09/2001 Copyright Teemu Kerola2001 5
Virtua Memory (virtuaalimuist) Partitioning o

Ch7.3

¢ Problem: How can | make my (main)
memory as big as my disk drive?
e Answer: Virtua memory
— keep only most probably referenced datain
memory, and rest of it in disk
« disk ismuch bigger and slower than memory

« address in machine instruction may be different
than memory address

« need to have efficient address mapping
« most of references are for datain memory
— joint solution with HW & SW

19/09/2001 Copyright Teemu Kerola 2001 3

How much physical memory for each
process? T
. . L (staattiset tai

Static (fixed) partitioning | kiintezt partitiot)
—amount of physical memory determined at

process creation time
— continuous memory allocation for partition
» Dynamic partitioning (dynaamiset partitiot)
— amount of physical memory given to a process

variesin time
* due to process requirements (of this process)

« dueto system (l.e., other processes) requirements
19/09/2001 Copyright Teemu Kerola 2001 6

Chapter 7.3, Virtua Memory

Computer Organization |1

19/09/2001

Static Partitioning
Equal size - give everybody the same
amount
— fixed size - big enough for everybody

* too much for most Fig. 7.14

— need more? Can not run!

— internal fragmentation (sisdinen pirstoutuminen)
* Unequal size

— external fragmentation | (ulkoinen pirstoutuminen)

» Variablesize

— externa fragmentation

Address Mapping

logical address

Textual machine language:

1312: LOAD R1, 2510

+100000?
Execution time:
101312: LOAD R1,102510 or
101312: LOAD R1, 2510 7

— physical address (constant?)

-Want: Rle— Mem[102510] or Mem[2510] ?
- Who makes the mapping? When?

19/09/2001 Copyright Teemu Kerola 2001 7 19/09/2001 Copyright Teemu Kerola 2001 10
Dynamic Partitioning o Address Mapping o
¢ Process must b_e able to run with different « At program load time
amounts of main memory loader (Eezn)
—all of isnot in physical - :
of memory spaceisnot in physical memory _ static address binding iz
* New process? « At proaram execution time osoitteiden sidonta)
— reduce amount of memory for some (lower brog
priority) processes - CPU . ‘
« Not enough memory for some process? - ‘(;V'th e\ferggwui' 03_ (dynesrrinen
— reduce amount of memory for some (lower - ynamp resshincing os)cl,meidm sidonta)
P — swapping
priority) processes)
— kick (swap) out some (lower priority) process = virtual memory
19/09/2001 Copyright Teemu Kerola 2001 8 19/09/2001 Copyright Teemu Kerola 2001 1

Address M appl Ng @ (0soitteen muunnos)

Pascal, Java:

Symbolic Assembler:

while (..) / loop: LOAD RL,Y
X :=Y+Z; ADD R1, Z

STORE R1, X

Textual machine language:

1312: LOAD R1, 2510 || Execution time:
ADD R1, 2514
STORE R1, 2600 || 101312: LOAD R1,102510

ADD R1,102514

(addresses relative to 0) ADD R1,102600
% (real, actual!)
19/09/2001 Copyright Teemu Kerola 2001 9

19/09/2001 Copyright Teemu Kerola 2001 12

Swapping « (heittovaihto)
» Keep al memory areas for all running and
ready-to-run processes in memory
* New process

— find continuous memory partition and swap the
processin

» Not enough memory?
— Swap some (lower priority) process out

» Some times can swap in only (runnable)
portions of one process

* Address map: add base address

Chapter 7.3, Virtua Memory

Computer Organization |1

19/09/2001

VM Implementation e Segmentation Address Mapping
¢ Methods
— base and limit registers * Segment table
— segmentation — maps segment id to physical segment base
— paging address and to segment size
— segmented paging

e Hardware support
—MMU - Memory Management Unit
* part of processor
« varies with different methods

— Sets limits on what types of virtual memory
(methods) can be implemented using this HW

19/09/2001 Copyright Teemu Kerola 2001 13

« Physical address:
— find entry in segment table
— check: byte offset < segment size
— physical address: base + byte offset

19/09/2001 Copyright Teemu Kerola 2001 16

Base and Limit Registers »
« Continuous memory partitions
— one or more (4?) per process
— may have separate base and limit registers
« code, data, shared data, etc
« by default, or given explicitly in each mem. ref.
« BASE and LIMIT registersin MMU
— all addresses |ogical in machine instructions
— address mapping for address (x):
e check: X <LIMIT

Paging
Process address space divided into
(relatively small) equal size pages
— address space division is not based on logical
entities, only on fixed size chunks
Each pageis allocated its own physical
page frame in memory
— any page frame will do!
Internal fragmentation

Memory addresses have two fields

« physical address. BASE+x 01100110 10110000
) page byteoffset | (lisdys)
19/09/2001 Copyright Teemu Kerola 2001 14 19/09/2001 Copyright Teemu Kerola 2001 17
Segmentation ¢ :
© Paged Address Mapping

* Process address space divided into
(relatively large) logical segments

— code, data, shared data, large table, etc
Each logical segment is allocated its own
continuous physical memory segment
External fragmentation
Memory address have two fields

011001 1010110000
segment byte offset (lisdys)

19/09/2001 Copyright Teemu Kerola 2001 15

» Pagetable

— maps page nr to physical page frame
 Physical address:

— find entry in page table

— physical address: page address + byte offset

19/09/2001 Copyright Teemu Kerola 2001 18

Chapter 7.3, Virtua Memory

Computer Organization 11 19/09/2001

Paged Address Trandation Address Trandlation
Virtual address Access type * MMU doesit for every memory access
Pece table 1(30 — code, data
ra% oer Page table Check access — more than once per machine instruction!
510 mx :'%hfsrw} * Can not access page tables in memory every
4 16rwﬁ4i time - it would be too slow!
Check for z . r;"’ ‘;’5 — too high cost to pay for virtual memory?
vaidentry| / « MMU hasa*“cache’ of most (cenitearr
validentry ghts / recent address translations mUUNNoS:
Page frame Physical address — TLB - Translation Lookaside Buffer |taultkko)
—99.9% hit ratio?
19/09/2001 Copyright Teemu Kerola 2001 19 19/09/2001 Copyright Teemu Kerola 2001 22
Pege fat et Page Fault o Trandlation Lookaside Buffer ¢
Stop execution . -
13 i1 ’)
Initiate reading Virtual address Access type * "Hit" on TLB" o
page 1 from disk —— 1 (30 ” — addresstrandation isin TLB - real fast
Schedulenext register Page table (?hﬁck areess * “Miss’ on TLB?
process to run rights — must read page table entry from memory
0:" 0 _rwx rO0{rw})
_ 1 fw)AT4 —takestime
Page 1 read, Check for | 2 [T ™w 55 \ — cpu waitsidle until it is done
updete page teble validentry: | =2 « Just like normal cache, but for address
hE ST, not valid! mapping
process . i))
ready-to-run Schedule orig. process again, Physical address — implemented just like cache
at the same instruction

19/09/2001

— instead of cache line data have physical address

Copyright Teemu Kerola 2001

20 19/09/2001 Copyright Teemu Kerola 2001 23
Paging Memory Organisation
. . . Memory
* Physical memory partitioning CPUIG
— discontinuos areas mem, e
* Pagetables
— each process hasits own At
—located in memory [Bus “‘\',“:r'~;., ——— < .’ I |
— can be very big ,’ .
« entry for each page in address space Disk &
« Inverted page table IHI I'H HII'LLL
— entry for each pagein memory | Fig. 7.18 Faabg:g page | page | page | page
— less space, more complex hashed lookup
19/09/2001 Copyright Teemu Kerola 2001 21 19/09/2001 Copyright Teemu Kerola 2001 24

Chapter 7.3, Virtua Memory

Computer Organization |1

19/09/2001

Physica address T B Exampl e e
OxO0BGCBEG 046 +—
page offset

ReadW 12, 0xABOOC7DA tag page frame
28 32
tag index
28 4
ABOOC7D
Correct 0111;
address 1000:
mapping :
found 100%:) | 1
L- 1010 [AB00C7D || [ooB6CEES |
19/09/2001 Copyright Teemu Kerola 2001 25

TLB Misses vs. Page Faults
TLB Miss Page Fault

e CPU waitsidling * Process is suspended

and cpu executes
some other process

e SW implementation
e Dataiscopied from

¢ HW implementation
e Datais copied from

memory to TLB disk to memory
* Delay 4(?)
clock cycles
19/09/2001 Copyright Teemu Kerola 2001 —g

TLB and Cache 6)

» Usually address trandation first

and then cache lookup

» Cache can be based on virtual addresses

—can do TLB and cache lookup simultaneously
— faster

 Implementations are very similar

Virtual Memory Policies s
 Fetch policy (noutopolitiikka)
— demand paging: fetch page only when needed 1st time
— working set: keep all needed pages in memory
— prefetch: guess and start fetch early
* Placement policy
— any frame for paged VM
« Replacement policy (poistopolitiikka)
— local, consider pagesjust for this process for

(sijoituspolitiikka)

— TLB often fully associative rfpgemem_d a tor al oh
R . . — global, consider also pagesfor all other processes
optimised for temporal locality (of course!) _ dirty pages must be written to disk (likaiset,
muutetut)
19/09/2001 Copyright Teemu Kerola 2001 26 19/09/2001 Copyright Teemu Kerola 2001 29
TLB vs. Cache Page Replacement Policy
TLB Miss Cache Miss * Implemented in SW
e CPU waitsidling e CPU waitsidling « HW support
¢« HW Impl ementation « HW Implementatlon —extrabitsin each pageframe
* Invisibleto process * Invisible to process —M = Modified
» Dataiscopied from » Dataiscopied from — R = Referenced

memory to TLB memory to cache
— from page table data » from page data
» Delay 4 (or 2 or 8?) » Delay 4 (or 2 or 8?)
clock cycles clock cycles
19/09/2001 Copyright Teemu Kerola 2001 27

« set (to 1) with each reference to frame
* reset (to 0) every now and then
—specia (privileged) instruction from OS
—automaticaly (E.g., every 10 ms)
— Other counters?

19/09/2001 Copyright Teemu Kerola 2001 30

Chapter 7.3, Virtua Memory

Computer Organization |1

19/09/2001

Page Replacement Policies ¢

e OPT - optimal (Z\Sg:ﬁ?;ﬁ;}

¢ NRU - not recently used

e FIFO - firstin first out o8
— 2nd chance Virtua Memory
— clock Management

« Random

¢ LRU - least recently used
— complex counter needed

¢ NFU - not frequently used

19/09/2001 Copyright Teemu Kerola 2001 31

Page Fault Frequency (PFF)
Dynamic Memory Allocation

e Two bounds: L=Lower and U=Upper

e At every page fault
— T=Time since previous page fault
—if T<L then give more memory
« 1 page frame? 4 page frames?

« 1 page frame?
—if L<T<U then keep current allocation

19/09/2001

Copyright Teemu Kerola 2001

« Physical memory split into fixed size pages

—if U<T then take some memory away

Thrashing
 Too high mpl
» Too few page frames per process
— E.g., only 1000? 2000?
— Less than its working set
» Once aprocessis scheduled, it will
very soon reference a page not in

VM Summary

How to partition memory?
— Static or dynamic size (amount)
* How to allocate memory
— Static or dynamic location
« Address mapping
* HW help (TLB) for address trandation

memory — before or concurrently with cache access?
— page fault * VM policies
— process switch — fetch, placement, replacement
19/09/2001 Copyright Teemu Kerola 2001 32 19/09/2001 Copyright Teemu Kerola 2001 35
] -- End of Chapter 7.3:Virtua Memory -- \
Trashi ng (ruuhkautuminen) 5 €
Fig. 5.47 from - =R ‘
I Hennessy-Patterson, . s Fully assoc
CPU 10 t Computer Architecture | * 32 entry
utilization & Alpha AXP 21064 data'”I'LB
(kayttésuhde) CPU 100% busy memory hierarchy 8KB,
swapping prope&esi i et direct
Higher mpl No real work is done! Fully assoc, ry o]
= less physica - instruction TLB 256 line
memory (moniajoaste) 8 KB, direct mapped, (each 32B)
per process! ; 3 o — 256 line (each 32B) data cache
)) instruction cache |
mpl (multiprogramming level) | = main memory
- How much memory per process? el e 39/
Iy per p ‘ direct mapped, unified

- How much memory is needed?

19/09/2001 Copyright Teemu Kerola 2001 33

write-back L2 cache : N -

19/09/2001 Copyright Teemu Kerola 2001

paging disk (dma)

Chapter 7.3, Virtua Memory

