Computer Organization |1

Virtual Memory (VM)
Ch7.3

19/09/2001

Memory Management
Address Trandlation
Paging

Hardware Support

VM and Cache

Copyright Teemu Kerola 2001

Teemu’' s Cheesecake

Register, on-chip cache, memory, disk, and tape speeds
relative to times locating cheese for the cheese cake you

are baking...

hand

e
N
~/

AN
0.5 sec
(reqgister)

19/09/2001

e

1 sec
(cache)

refridge-
rator moon
I
10 sec 12\da)‘/fs
(memory) (disk)

Copyright Teemu Kerola 2001

Europa
(Jupiter)

4 years
(tape)

2

Chapter 7.3, Virtua Memory

19/09/2001

Computer Organization 11 19/09/2001

Virtual Memory (virtuaalimuist)
Ch7.3

Problem: How can | make my (main)
memory as big as my disk drive?
» Answer: Virtual memory

— keep only most probably referenced datain
memory, and rest of it in disk
* disk is much bigger and slower than memory

* addressin machine instruction may be different
than memory address

* need to have efficient address mapping
» most of references are for datain memory

— joint solution with HW & SW

19/09/2001 Copyright Teemu Kerola 2001 3

Other Problems Often Solved
with VM ?)

* If you must want to have many processesin
memory at the same time, how do you keep
track of memory usage?

» How do you prevent one process from
touching another process memory areas?

» What if a process needs more memory than
we have?

19/09/2001 Copyright Teemu Kerola 2001 4

Chapter 7.3, Virtua Memory

Computer Organization 11 19/09/2001

Memory Management Problem

* How much memory for each process?
—isit fixed amount during the process run time
or can it vary during the run time?

» Where should that memory be?
— in acontinuous or discontinuous area?

— isthe location the same during the run time
or can it vary dynamically during the run time?

* How isthat memory managed?
* How isthat memory referenced?

19/09/2001 Copyright Teemu Kerola 2001 5

Partitioning
» How much physical memory for each
process? S
- o (Staattiset tai
« Static (fixed) partitioning ' kiinteit partitiot)
— amount of physica memory determined at
process creation time

— continuous memory allocation for partition

« Dynamic partitioning (dynaamiset partitiot)
— amount of physical memory given to a process
variesintime

* due to process requirements (of this process)

* dueto system (l.e., other processes) requirements
19/09/2001 Copyright Teemu Kerola 2001 6

Chapter 7.3, Virtua Memory

Computer Organization 11 19/09/2001

Static Partitioning
» Equal size - give everybody the same
amount
— fixed size - big enough for everybody
* too much for most Fig. 7.14
— need more? Can not run!

— interna fragmentation (sissinen pirstoutuminen)

* Unequal size
— external fragmentation | (ulkoinen pirstoutuminen)
» Variable size Fig. 7.15

— externa fragmentation

19/09/2001 Copyright Teemu Kerola 2001 7

Dynamic Partitioning
* Process must be able to run with different
amounts of main memory
— all of memory spaceisnot in physical memory
* New process?

— reduce amount of memory for some (lower
priority) processes

* Not enough memory for some process?

— reduce amount of memory for some (lower
priority) processes

— kick (swap) out some (lower priority) process

19/09/2001 Copyright Teemu Kerola 2001 8

Chapter 7.3, Virtua Memory 4

Computer Organization |1

Address Mapping «

Pascal, Java:

while (...)

(osoitteen muunnos)

Symbolic Assembler:
= ¥
/ loop: LOAD R1,Y
ADD

X:=Y+Z; R1 Z

Textual machine language:

STORE R1, X

1312: LOAD R1, 2510 || Execution time:
ADD R1, 2514
STORE R1, 26001 101312: LOAD R1,102510
ADD R1,102514
(addresses relative to 0) ADD R1,102600
% (real, actual!)
19/09/2001 Copyright Teemu Kerola 2001 9
Address Mapping

logical address

Textual machine language:

-Want: Rl< Mem[102510] or
- Who makes the mapping? When?

19/09/2001

1312: LOAD R1, 2510 +100000?
Execution time:

101312: LOAD R1,102510 or
101312: LOAD R1, 2510 ?7?

- physical address (constant?)
Mem[2510] ?

Copyright Teemu Kerola 2001 10

Chapter 7.3, Virtua Memory

19/09/2001

Computer Organization 11 19/09/2001

Address Mapping ¢
» At program load time
— loader (lataaja)
— static address binding (staatti r:jen)
L itteiden sidont
o At program execution time osoittelden sdonta)
—cpu
— with every instruction
— dynamic address binding (dynaaminen
- osoitteiden sidonta)
— swapping
— virtual memory
19/09/2001 Copyright Teemu Kerola 2001 11

Swapping (heittovaihto)
Keep all memory areas for al running and
ready-to-run processes in memory

New process

— find continuous memory partition and swap the
processin

Not enough memory?

— Swap some (lower priority) process out
Some times can swap in only (runnable)
portions of one process

» Address map: add base address

19/09/2001 Copyright Teemu Kerola 2001 12

Chapter 7.3, Virtua Memory 6

Computer Organization 11 19/09/2001

VM Implementation

* Methods
— base and limit registers
— segmentation
— paging
— segmented paging
» Hardware support

— MMU - Memory Management Unit
* part of processor
« varies with different methods

— Sets limits on what types of virtual memory
(methods) can be implemented using this HW

19/09/2001 Copyright Teemu Kerola 2001 13

Base and Limit Registers

 Continuous memory partitions
— one or more (4?) per process
— may have separate base and limit registers
* code, data, shared data, etc
* by default, or given explicitly in each mem. ref.
e BASE and LIMIT registersin MMU
— all addresses |ogical in machine instructions
— address mapping for address (x):
 check: x <LIMIT
* physical address. BASE+x

19/09/2001 Copyright Teemu Kerola 2001 14

Chapter 7.3, Virtua Memory 7

Computer Organization 11 19/09/2001

Segmentation

* Process address space divided into
(relatively large) logical segments
— code, data, shared data, large table, etc

» Eachlogical segment isallocated its own
continuous physical memory segment

» External fragmentation
» Memory address have two fields

011001 1010110000
segment byte offset (lisdys)

19/09/2001 Copyright Teemu Kerola 2001 15

Segmentation Address Mapping

» Segment table
— maps segment id to physical segment base
address and to segment size
» Physical address:
— find entry in segment table
— check: byte offset < segment size
— physical address: base + byte offset

19/09/2001 Copyright Teemu Kerola 2001 16

Chapter 7.3, Virtua Memory 8

Computer Organization 11 19/09/2001

Paging
* Process address space divided into
(relatively small) equal size pages
— address space division is hot based on logical
entities, only on fixed size chunks
» Each pageis allocated its own physical

page frame in memory
— any page frame will do!

* Internal fragmentation

» Memory addresses have two fields
01100110 10110000
page byte offset | (lisays)

19/09/2001 Copyright Teemu Kerola 2001 17

Paged Address Mapping

» Pagetable
— maps page nr to physical page frame
e Physical address:
— find entry in page table
— physical address: page address + byte offset

19/09/2001 Copyright Teemu Kerola 2001 18

Chapter 7.3, Virtua Memory 9

Computer Organization |1

Paged Address Trandlation w)

Virtual address Accesstype
1 (r
Pagetable } !’

register Page table

Check access

R rights
0: 10 rwx r O {rw}
»(1Qrw14
Check for 2 . W59
valid entry -4
Vvaid entry / 14 30
Access rights _
Page frame Physical address
19/09/2001 Copyright Teemu Kerola 2001 19
, Page Fault
Stop execution
Initiate reading Virtual address Accesstype
page 1 from disk 1 . 1'
Pegetable f B Check access
Schedule next '
process to run = / . Pege table rights
0:" |0 _rwx r O{rw}
VO interrupt 1wy

Page 1 read, Check for | 2 1w 55
update page table | valid entry:

Make orig. not valid! =
process :
ready-to-run Schedule orig. process again, Physical address

at the same instruction

19/09/2001 Copyright Teemu Kerola 2001 20

Chapter 7.3, Virtua Memory

19/09/2001

10

Computer Organization |1

19/09/2001

Paging

Physical memory partitioning
— discontinuos areas
Page tables
— each process has its own
— located in memory
— can bevery hig

* entry for each page in address space
Inverted page table
— entry for each pagein memory | Fig. 7.18
— less space, more complex hashed lookup

Fig. 7.16

Copyright Teemu Kerola 2001 21

19/09/2001

Address Trangdation ¢

MMU doesit for every memory access

— code, data

— more than once per machine instruction!

Can not access page tables in memory every
time - it would be too slow!

— too high cost to pay for virtual memory?
MMU has a*“ cache” of most (osoitteen
recent address trandations MUUNNOS-

— TLB - Translation Lookaside Buffer taulukko)

—99.9% hit ratio?

Copyright Teemu Kerola 2001 22

Chapter 7.3, Virtua Memory

19/09/2001

11

Computer Organization |1

Trandlation Lookaside Buffer

e “Hit” on TLB? Fig. 7.19
— addresstrandation isin TLB - readl fast
e “Miss” on TLB?
— must read page table entry from memory
— takestime
— cpu waitsidleuntil it is done
 Just like normal cache, but for address
mapping
— implemented just like cache
— instead of cache line data have physical address

19/09/2001 Copyright Teemu Kerola 2001 23

Memory Organisation ¢

Memory
CPU instr | | regs ?ge
mem addry [table
TLB <« page
+C3 ’

page | page

19/09/2001 Copyright Teemu Kerola 2001 24

Chapter 7.3, Virtua Memory

19/09/2001

12

Computer Organization 11 19/09/2001

Physical address T B Example ®)

0x00B6CS8E6 046 <\
1. age offset
ReadW 12, 0XABOOC7DA|(046| tag page frame
(28 32
. 0000:
tag index

4

ABOOC7D

Correct 0111:

?nd:gﬁg 1000:

found 1001:
k “— 1010:| | ABOOC7D 0OOB6CS8E®6

//

19/09/2001 Copyright Teemu Kerola 2001 25

TLB and Cache g

» Usually addresstranglation first
and then cache lookup Fg. 7.20
» Cache can be based on virtual addresses
— can do TLB and cache lookup simultaneously
— faster
 Implementations are very similar

— TLB often fully associative
» optimised for temporal locality (of course!)

19/09/2001 Copyright Teemu Kerola 2001 26

Chapter 7.3, Virtua Memory 13

Computer Organization |1

TLB vs. Cache
TLB Miss Cache Miss
CPU waitsidling » CPU waitsidling

HW implementation
Invisible to process
Datais copied from

HW implementation
Invisible to process
Datais copied from

memory to TLB memory to cache
— from page table data « from page data
» Delay 4 (or 2or 8?) » Delay 4 (or 2 or 8?)
clock cycles clock cycles
19/09/2001 Copyright Teemu Kerola 2001 27

TLB Misses vs. Page Faults

TLB Miss

Page Fault

CPU waitsidling

HW implementation

Datais copied from
memory to TLB

Delay 4 (?)

clock cycles

» Processis suspended
and cpu executes
some other process

e SW implementation

» Datais copied from
disk to memory

» Delay
30 ms (?)

19/09/2001

Copyright Teemu Kerola 2001

Chapter 7.3, Virtua Memory

19/09/2001

14

Computer Organization 11 19/09/2001

Virtual Memory Policies g

« Fetch policy (noutopolitiikka)
— demand paging: fetch page only when needed 1st time
— working set: keep all needed pagesin memory
— prefetch: guess and start fetch early
» Placement policy (sijoituspolitiikka)
— any frame for paged VM
* Replacement policy (poistopolitiikka)
— local, consider pagesjust for this process for
replacement
— global, consider also pages for all other processes

— dirty pages must be written to disk (likaiset,
muutetut)

19/09/2001 Copyright Teemu Kerola 2001 29

Page Replacement Policy

* Implemented in SW

* HW support
— extrabits in each page frame
— M = Modified
— R = Referenced
* set (to 1) with each reference to frame
* reset (to 0) every now and then
— special (privileged) instruction from OS
—automaticaly (E.g., every 10 ms)
— Other counters?

19/09/2001 Copyright Teemu Kerola 2001 30

Chapter 7.3, Virtua Memory 15

Computer Organization |1

Page Replacement Policies ¢
 OPT - optimal algoritmit)
NRU - not recently used

FIFO - first in first out

(O]
— 2nd chance Virtual Memory
 Random

LRU - least recently used
— complex counter needed

* NFU - not frequently used

19/09/2001 Copyright Teemu Kerola 2001 31

(sivunpoisto-

Thrashing

* Too high mpl

» Too few page frames per process
— E.g., only 10007 2000?
— Lessthan its working set

» Once aprocessis scheduled, it will

very soon reference a page not in
memory

— page fault

L/ — process switch

19/09/2001 Copyright Teemu Kerola 2001 32

Chapter 7.3, Virtua Memory

19/09/2001

16

Computer Organization 11 19/09/2001

TraSh| ng (ruuhkautuminen)
CPU 1.0 ¢
utilization K
(kayttosuhde) CPU 100% busy
1 swapping processes!
Higher mpl No real work is done!
= less physical _
memory (moniajoaste)
per process! : : | —>
4 8 12

mpl (multiprogramming level)

- How much memory per process?
- How much memory is needed?

19/09/2001 Copyright Teemu Kerola 2001 33

Page Fault Frequency (PFF)
Dynamic Memory Allocation

* Two bounds: L=Lower and U=Upper
» Physical memory split into fixed size pages

» At every page fault
— T=Time since previous page fault
—if T<L then give more memory
* 1 page frame? 4 page frames?
—if U<T then take some memory away
* 1 page frame?
—if L<T<U then keep current allocation

19/09/2001 Copyright Teemu Kerola 2001 34

Chapter 7.3, Virtua Memory 17

Computer Organization |1

Address mapping

VM policies

19/09/2001 Copyright Teemu Kerola 2001

VM Summary

How to partition memory?
— Static or dynamic size (amount)

How to allocate memory
— Static or dynamic location

HW help (TLB) for address trandlation
— before or concurrently with cache access?

— fetch, placement, replacement

35

Fig. 5.47 from

-- End of Chapter 7.3:Virtual Memory --

Daiapage-tame e | |
i 0 akci®

Hennessy-Peatterson,

“a" Fully assoc,

.

Computer Architecture

- _32entry

Alpha AXP 21064

data TLB

s I

memory hierarchy

Fully assoc, 12 eﬁtry E

8 KB,
direct
mapped,
256 line

instruction TLB /
|
8 KB, direct mapped, ~

(each 32B)

256 line (each 32B)

data cache

instruction cache

| :
Yo I man memory

|5
2 MB, 64K line (each 32B) o» ==
direct mapped, unified/ .

Q
9

write-back L2 cache

——
)

19/09/2001 Copyright Teemu Kerola 2001

paging disk (dma)

Chapter 7.3, Virtua Memory

19/09/2001

18

