
110/10/2001 Copyright Teemu Kerola 2001

Micro-programmed Control
Ch 15

Micro-instructions
Micro-programmed

Control Unit
Sequencing
Execution

Characteristics

210/10/2001 Copyright Teemu Kerola 2001

Hardwired Control (4)

• Complex
• Fast
• Difficult to design
• Difficult to modify

– Lots of optimization done at implementation
phase

310/10/2001 Copyright Teemu Kerola 2001

Micro-programmed Control (3)

• Implement “execution engine” inside CPU
– execute one micro-instruction at a time

• What to do now?
– micro-instruction

• control signals

– stored in micro-instruction control memory
• micro-program, firmware

• What to do next?
– micro-instruction program counter

• default (?): next micro-instruction
• jumps or branches?

410/10/2001 Copyright Teemu Kerola 2001

Machine Instructions
vs. Micro-instructions

Memory

execution
unit

CPU

LOAD
ADD
MULT

Machine
instructions
define
a program

Micro-
instructions
define
machine
instructions
(processor
architecture!)

Memop R2,A1
ALU-op R1,R2
jump fetchcontrol

memory

510/10/2001 Copyright Teemu Kerola 2001

Machine Instructions
vs. Micro-instructions (2)

• Machine instruction fetch-execute cycle
produces machine instructions to be
executed at CPU

• Micro-instruction fetch-execute cycle
produces control signals for data path

610/10/2001 Copyright Teemu Kerola 2001

Micro-program (4)

• Stored in control memory
• ROM, PROM, EPROM
• One “subroutine” for each machine

instruction
– one or more micro-instructions

• Defines architecture
– change instruction set?
⇒ reload control memory

Fig. 15.2

710/10/2001 Copyright Teemu Kerola 2001

Hardwired vs. Micro-program
Control

Initial
represent.:

Sequencing
control:
Logic
represent.:

Implem.:

Finite
state

diagram
Explicit
next state
function

Logic
equations

PLA

Micro-
program

Micro-
program
counter

Truth
tables

ROM

Pure hardwired Pure micro-programmed

810/10/2001 Copyright Teemu Kerola 2001

Microcode (3)

• Horizontal micro-code
– control signals directly in micro-code
– all control signals always there
– lots of signals ⇒ many bits in micro-instruction

• Vertical micro-code
– each action encoded densely
– actions need to be decoded to signals at execution time
– takes less space but may be slower

• Each micro-instruction is also a conditional
branch?

Fig. 15.1 (a)

Fig. 15.1 (b)

910/10/2001 Copyright Teemu Kerola 2001

Micro-programmed
Control Unit (4)

• Control Address Register
– “micro-program PC”

• Control Memory
• Control Buffer Register

– current micro-instruction
• control signals
• next address control

• Sequencing logic
– select next value for Control Address Reg

Fig. 15.4

1010/10/2001 Copyright Teemu Kerola 2001

Micro-programming (3)

• Simple design
• Flexible

–adapt to changes in organization, timing,
technology

–make changes late in design cycle, or even in
the field

• Very powerful instruction sets
–use bigger control memory if needed
–easy to have complex instruction sets

• is this good?

1110/10/2001 Copyright Teemu Kerola 2001

Micro-programming (2)

• Generality
– multiple instruction sets on same machine
– tailor instruction set to application?

• Compatibility
– easy to be backward compatible in one family
– many organizations, same instruction set

1210/10/2001 Copyright Teemu Kerola 2001

Micro-programming (2)

• Costly to implement
– need tools:

• micro-program development environment
• micro-program compiler

• Slow
– micro-instruction interpreted at execution time
– interpretation is internal to CPU
– interpret one instruction at a time

1310/10/2001 Copyright Teemu Kerola 2001

RISC vs. Micro-programming (8)

• Simple instructions can execute at very high clock rate
• Compilers can produce micro-instructions

– machine dependent optimization
• Use only simple instructions and addressing mode
• Keep “micro-code” in RAM instead of ROM
• no micro-instruction interpretation logic needed
• Fast access to “micro-code” in RAM via caching
• Skip instruction interpretation of a micro-program and

simply compile directly into lowest language of machine?

• ⇒ Compile to “micro-code” and use hardwired control
for RISC

1410/10/2001 Copyright Teemu Kerola 2001

Micro-program Sequencing (3)

• Two address format
– default next micro-instruction address

• waste of space most of the time?

– conditional branch address
• One address format

– (Conditional) branch address
• Variable format

– only branch micro-instructions have addresses
– waste of time many times?

Fig. 15.6

Fig. 15.7

1510/10/2001 Copyright Teemu Kerola 2001

Micro-instruction Explicit
Address Generation

• Addresses explicitly present
– Two-field

• select one of them

– Unconditional branch
• jump to this one

– Conditional branch
• select this one or default

1610/10/2001 Copyright Teemu Kerola 2001

Micro-instruction Implicit
Address Generation

• Addresses not explicitly present
– Mapping

• map opcode in machine instruction into micro-
instruction address

– Addition
• higher order bits directly from opcode
• lower order bits based on current status and tag bits,

or fields in current microinstruction

– Residual Control
• return from micro-program subroutine

Fig. 15.9

1710/10/2001 Copyright Teemu Kerola 2001

Micro-instruction Encoding

• Usually a compromise between pure
horizontal and vertical formats
– optimize on space with encoding multiple

signals into a set of fields
• each field defines control signals for certain separate

actions
• mutually exclusive actions are encoded into the

same field
– make design simpler by not using maximum

encoding

Fig. 15.11

1810/10/2001 Copyright Teemu Kerola 2001

Micro-instruction Encoding (2)

• Functional encoding
– each field controls some function

• load accumulator
• load ALU operands
• compute next PC

• Resource encoding
– each field controls some resource

• ALU
• memory

1910/10/2001 Copyright Teemu Kerola 2001

Example Micro-instruction Sets
for a Simple Machine (3)
• Micro-instruction types

– 3 register transfers, 2 mem ops, 5 ALU ops, 3 seq. ops
• Vertical format

– 3 bits for type, 3 bits for operation
– 2 bits for reg select (max 4 regs)

• Horizontal format
– 2 bits for reg transfers (3 ops + “none”)
– 2 bits for mem ops (2 ops + “none”)
– 2 bits for seq. ops (3 ops + “none”)
– 3 bits for ALU ops (5 ops + “none”)
– 2 bits for reg select + 8 bits for constant

Fig. 15.12

type operation reg

Fig. 15.12 (a)

Fig. 15.12 (b)

2010/10/2001 Copyright Teemu Kerola 2001

LSI-11 Single Board Processor

2110/10/2001 Copyright Teemu Kerola 2001

LSI-11 (PDP-11) (5)

• Three-chip single board processor
– data chip

• 26 8-bit regs
– 8 16-bit general purpose regs,
– PWS, MAR, MBR, ...

• 8-bit ALU
– (at least) 2 passes needed for 16-bit reg ops

– control chip
– control store chip

• 22 bit wide control mem for micro-instructions
– connected by micro-instruction bus

Fig. 15.14

Fig. 15.13

2210/10/2001 Copyright Teemu Kerola 2001

LSI-11 Micro-instruction Set (2)

• Implements PDP-11 instruction set
architecture for LSI-11 hardware
– e.g., PDP-11 16 bit ALU vs. LSI-11 8-bit ALU

• 22 bit wide, extremely vertical set
– 4 bits for special functions
– 1 bit for testing interrupts
– 1 bit for “micro-subroutine return”
– 16 bits for variable format micro-ops

• jump, cond. branch, literal ops, reg ops
• ALU, logical, general, I/O ops

Fig. 15.15

Table 15.5

2310/10/2001 Copyright Teemu Kerola 2001

-- End of Chapter 15 --
-- Micro-programmed Control --

(Fig. 16.10)
http://infopad.EECS.Berkeley.EDU/CIC/die_photos/pentium.gif

2410/10/2001 Copyright Teemu Kerola 2001

2510/10/2001 Copyright Teemu Kerola 2001

Summary (10)

• How clock signals cause instruction executions?
• Low level stuff

– gates, basic circuits, registers, memory

• Cache
• Virtual memory & TLB
• ALU, int & FP arithmetic's
• Instruction sets
• CPU structure & pipelining
• Branch prediction, limitations, hazards, issue
• RISC & superscalar processor
• Hardwired & micro-controlled control

2610/10/2001 Copyright Teemu Kerola 2001

Want to Know More?
• Read the text book completely
• 58070-8 Computer Architecture (4 cr)

Computer Architecture
(Tietokonearkkitehtuurit)
Computer Architecture
(Tietokonearkkitehtuurit)

Comp. Org. II
(TiKRa)
Comp. Org. II
(TiKRa)

Conc. Systems (Rio)
Data Struct. (TiRa)
Compilers (OKK)
Oper. Systems (KJx)
Data Comm. (TiLix)

...

Conc. Systems (Rio)
Data Struct. (TiRa)
Compilers (OKK)
Oper. Systems (KJx)
Data Comm. (TiLix)

...

2710/10/2001 Copyright Teemu Kerola 2001

-- The End --

Cache-coherent
non-uniform
memory access
(CC-NUMA)
machine

(Fig. 16.10)

