erscalar Processors

Limitations, Hazards

=~ |nstruction Issue Policy
St Lot "Q;.[
Register Renaming
Branch Prediction

10/10/2001 Copyright Teemu Kerola 2001

Superscalar Processing)

Basic idea: more than one instruction completion
per cycle
Aimed at speeding up scalar processing

— use many pipelines and :
not just more pipeline phases Fig. 13.2

Many instructions in execution phase

simultaneously

— need paralelism also in earlier & later phases

— may not execute (completely) in given o Fig. 13.1
Multiple pipelines

— guestion: when can instruction be executed?
Fetch many Instructions at the same time

— memory access must not be bottleneck
10/10/2001 Copyright Teemu Kerola 2001

- Why couldn’t we execute this
Instruction right now? Fig. 133

e (True) Data Dependency

load r4, salary(ro)
A
mul r2,r4, rl0

* Procedural or Control Dependency
— even more costlier than with normal
pipeline

— now may waste more than one instruction!
Resource Conflict :

. : S (resurssi-
— thereis no available circuit right now konflikti)
— memory buffer, FP adder, register file port

Usual solution: circuits to detect problem
and stall pipeline when needed

: 10/10/2001 Copyright Teemu Kerola 2001

(datariippuvuus)

(kontrolli-
riippuvuus)

New dependency for superscalar
case? 8)

 Name dependency (nimiriippuvuus)
— two Instructions use the same data item

e register or in memory
no value passed from one instruction to another
Instructions have all their correct data available

each individual result isthe one intended
overal result is not the one intended
two cases. Output Dependency & Antidependency

(Kirjoitusriippuvuus?) (antiriippuvuus)

o exampleson next 2 slides

what If there are aliases?
e E.g., two virtual addresses, same physical address
10/10/2001 Copyright Teemu Kerola 2001

Output Dependency? o

e Some earlier instruction has not yet finished
writing from the same location that we want

to writeto

— execution time semantics determined by the
original order of machine read ,rl, sum
Instructions add \r2,rl,r3

add rl,r4,r5
e Need to preserve order

Want to havesumof r4dandr5inrl
after all these three instructions were
executed

10/10/2001 Copyright Teemu Kerola 2001

Antl dependency (1)

Some earlier instruction has not yet finished reading from
the same location that we want to write to
Need to preserve order

mv r2’,(r1
add rl1,r4, r5

Want to have original value of rl1inr2

10/10/2001 Copyright Teemu Kerola 2001

Machine Parallelism ¢

 |nstruction-level parallelism
— How much parallelism is there
— Theoretical maximum

e Machine parallelism

— How much parallelism is achieved by any specific
machine or architecture?

— At most as much as instruction-level parallelism
 dependencies?
» physical resources?
 not optimized (stupid) design?

10/10/2001 Copyright Teemu Kerola 2001

Superscalar Processor «

 |nstruction dispatch

Fig. 13.6

— get next available executable instruction from

INstruction stream
e \Window of execution

— dll Instructions that are considered to be 1ssued

e |nstruction issue

— alow Instruction to start execution

— execution and completion phase should continue

now with no stalls
— If any stalls needed, do them before issue

 |nstruction reorder and commit (retiring)
— hopefully all system state changes here!

— |ast chance to change order or abandon results

10/10/2001 Copyright Teemu Kerola 2001

|nstruction Dispatch ¢,

Fig. 13.6

 \Whenever there are both
— avallable dots in window of execution

— ready instructions from prefetch or branch
prediction buffer

e instructions that do not need to stall at all during
execution

o all dependencies do not need to be solved yet

e must know that all
dependencies are
solved by the time

"datain R4 is not yet
there, but it will be therein

Al d three cycleswhen it is
astall would oceur Eseeded by this instruction”

10/10/2001 Copyright Teemu Kerola 2001

Window of Execution

Fig. 13.6

e Bigger Is better

— easer to find a good candidate that can be
Issued right now

— more work to figure out all dependencies

— too small value will limit machine parallelism
significantly
e E.g., 6" instruction could be issued,
but only 4 next ones are even considered

10/10/2001 Copyright Teemu Kerola 2001

| Nstruction Issue g Fig. 13.6

o Select next instruction(s) for execution
e Check first everything so that execution can
proceed with no stalls (stopping) to the end
— resource conflicts
— data dependencies
— control dependencies
— output dependencies
— antidependencies
o Simpler instruction execution pipelines
— no need to check for dependencies

.,;‘ 10/10/2001 Copyright Teemu Kerola 2001

| nstruction Issue Policies ¢

* Instruction fetch policy

— constraints on how many instructions are
considered to be dispatched at atime

e E.g., 2instructions fetched and decoded at atime
= both must be dispatched before next 2 fetched

* |nstruction execution policy

— constraints on which order dispatched
Instructions may start execution

e Completion policy
— constraints the order of completions

10/10/2001 Copyright Teemu Kerola 2001

Example 1 of Issue Policy ¢

* |n-order issue with in-order completion

— same as purely sequential execution
no instruction window needed
Instruction issued only in original order
e many can be issued at the same time

Fig. 13.4 (3)

Instructions completed only in original order
e many can be completed at the same time

check before issue;

e resource conflicts, data & control dependencies
e execution time, so that completions occur in order:

walit long enough that earlier instructions will

complete first

— Pentium 11: out-of-order middle execution for micro-

ops (uops)
10/10/2001 Copyright Teemu Kerola 2001

Example 2 of Issue Policy

 |n-order issue with out-of-order completion
— Issuein original order Fig. 13.4 (b)
e many can be issued at the same time
no instruction window needed

allow executions complete before those of earlier
Instructions

check before issue:
 resource conflicts, data & control dependencies

 output dependencies. wait long enough to solve
them

10/10/2001 Copyright Teemu Kerola 2001

Example 3 of Issue Policy

e Qut-of-order I1ssue with out-of-order completion
— Issuein any ordgr | Fig. 13.4 (0
e many can beissued at the same time
— Instruction window for dynamic instruction scheduling

— allow executions complete before those of earlier
Instructions

— Check before issue:
e resource conflicts, data & control dependencies

 output dependencies. walit for earlier instructions to
write their results before we overwrite them

e antidependencies: wait for earlier instructions issued
later to pick up arguments before overwriting them

10/10/2001 Copyright Teemu Kerola 2001

Get Rid of Name Dependencies

* Problem: independent data stored in |ocations with
the same name

— often a storage conflict: same register used for two
different purposes

— results in wait stages (pipeline stalls, “bubbles’)
e Cure: register renaming

— actual registers may be different than named registers

— actual registers allocated dynamically to named
registers
— alocate them so that name dependencies are avoided

Cost:

U CIGEVRIEE
— circuitsto allocate and keep track of actual registers

10/10/2001 Copyright Teemu Kerola 2001

Regl ster Renami Ng @

Output dependency: |3 can not R3'=R3 + R5"
| complete before | 1 has completed first: <R4:—R3 e ’

| Antidependency: 13 can not complete R3=R5 + 1-

| before 12 has read value from R3: ' ’

— R7:=R3 + R4;
Rename datain register R3

to actual hardware registers R3b:=R3a+ Rba

s RS, [RGe R4b:=R3b + 1
Rename also other registers: R3c=R5a+ 1

R4b, R5a, R7b
: R7b:=R3c + R4b
No name dependencies now:

* Drawback: need more registers
— Pentium Il 40 extraregs + 16 normal regs

Why R3a & R3b?

?;:'; 10/10/2001 Copyright Teemu Kerola 2001

Superscalar mplementation

Fetch strategy Fig. 13.6
— prefetch, branch prediction

Dependency check logic

Forwarding circuits (shortcuts) to transfer
dependency data directly instead viaregisters or

memory (to get data accessible earlier)
Multiple functional units (pipelines)

Effective memory hierarchy to service many
memory accesses simultaneously

Logic to Issue multiple instruction simultaneously
Logic to commit instruction in correct order

% 10/10/2001 Copyright Teemu Kerola 2001

Overall Gain from Superscalar
|mplementation

» Seetheeffect of ... Fig. 13.5
renaming = right graph
Issue window size = color of vertical bar
out-of-order issue = “base” machine

duplicated
e data cache access = “+ld/st”
e ALU = “ALU”"
 both = “both”

e Max speed-up about 4

10/10/2001 Copyright Teemu Kerola 2001

10/10/2001 Copyright Teemu Kerola 2001

Exampl e:
PowerPC 601 Architecture ¢

e General RISC organization
— Instruction formats | Fig. 10.9
— 3 execution units Fig. 13.10

e Logical view

Fig. 13.11

— 4 Instruction window for issue

— each execution unit picks up next onefor it
whenever there 1sroom for new 1nstruction

— Integer instructions issued only when 1st
(dispatch buffer 0) in queue

10/10/2001 Copyright Teemu Kerola 2001

PowerPC 601 Pipelines «

* |nstruction pipelines Fig. 13.12
— all state changesin final “Write Back” phase

— up to 3 instruction can be dispatched at the
same time, and i1ssued right after that in each
pipeline if no dependencies exist

 dependencies solved by stalls

— AL U ops place their result in one of 8 condition
code field in condition register
 up to 8 separate conditions active concurrently

.,;‘ 10/10/2001 Copyright Teemu Kerola 2001

PowerPC 601 Branches

e Zero cycle branches

— branch target addresses computed already In
lower dispatch buffers

 before dispatch or issue!

— Easy: unconditional branches (jumps) or branch
on already resolved condition code field

— otherwise
o conditional branch backward: guess taken
o conditional branch forward: guess not taken

o If speculation ends up wrong, cancel conditional
Instructions in pipeline before write-back

o speculate only on one branch at atime

10/10/2001 Copyright Teemu Kerola 2001

PowerPC 601 Example

e Conditional branch example

Original C code
Assembly code

Fig. 13.13 (a)

Fig. 13.13 (b)

e predict branch not taken

Correct branch prediction [F19-13.14(a)

Incorrect branch prediction |[Fig-13.14(b)

10/10/2001 Copyright Teemu Kerola 2001

PowerPC 620 Architecture

e 6 execution units Fig. 4.25

e Up to 4 instructions dispatched simultaneoudsly

* Reservation stations to store dispatched
Instructions and their arguments | [HePa96] Fig. 4.49
— kind of rename registers also!

10/10/2001 Copyright Teemu Kerola 2001

PowerPC 620 Rename Registers

* Rename registersto store results not yet
committed [HePag96] Fig. 4.49
— normal uncompleted and speculative instructions
— 8int and 12 FP extrarename registers
 In same register file as normal registers
— results copied to normal registers at commit

— Information on what to do at commit is in completion
unit in reorder buffers
 |nstruction completes (commits) from completion
unit reorder buffer once all previous instructions
are committed

— max 4 Instructions can commit at atime

10/10/2001 Copyright Teemu Kerola 2001

PowerPC 620 Speculation

e Speculation on branches
— 256-entry branch target buffer
o two-way set-associative
— 2048-entry branch history table
 used when branch target buffer misses
— gpeculation on max 4 unresolved branches

10/10/2001 Copyright Teemu Kerola 2001

10/10/2001 Copyright Teemu Kerola 2001

Intel Pentium |1 speculation

512-entry branch target buffer

— 4-bit prediction state, 4-way set-associative
Static prediction

— used before dynamic will work

— forward not taken, backward branches taken
|n-order-completion for 40 uops (micro-
operations) limits speculation

RSB — 4 entry Return Stack Buffer

10/10/2001 Copyright Teemu Kerola 2001

Emnch correclion

Recrder butler inlor malion

Dipalch unil
wilh B-eniny
I in=lruclion queus

Campletion
unii with
rearder buller

In=lruction
In=truclion deepaich
cache buzes

Ragiler nos.

In=truclion
opeaiion
GF ocppandbisez | buses

FF opeand buses

XELD XELN

GP resull bu=es

FF re=sull bu=e=s

v

Re=ull =l=us buzes

FIGURE 4.49 Tha PowaerPC 620 hag gix different functional units, each with iz own regervation statlons and a 16-
entry reorder buffar, contalnad In the Instructlon complatlon unkt.

(Hennessy-Patterson, Computer Architecture, 2nd Ed, 1996)

10/10/2001 Copyright Teemu Kerola 2001

