Computer Organization 11 10/10/2001

New dependency for superscalar
Superscalar Processors P Casé/v © P
Ch 13 « Name dependency (nimiriippuvuus)
— two ingtructions use the same dataitem
Limitations, Hazards * register or in memory

i ] — no vaue passed from one instruction to another
Instruction Issue Policy — instructions have al their correct data available
Register Renaming — each individufs\l result isthe.oneintended
o — overall result is not the one intended
Branch Prediction — two cases: Output Dependency & Antidependency
(kirjoitusriippuvuus?)  (antirii ppuvuus)
« examples on next 2 slides

— what if there are aliases?
« E.g., two virtual addresses, same physical address

10/10/2001 Copyright Teemu Kerola 2001 1 10/10/2001 Copyright Teemu Kerola 2001 4
Superscaar Processing
P 9o Output Dependency? o
» Basic idea: more than one instruction completion
per cycle , . + Some earlier instruction has not yet finished
» Aimed at speeding up scalar processing iting f th location that t
_ use many pipdlines and writing from the same location we wan

not just more pipeline phases to writeto

* Many instructions in execution phase — execution time semantics determined by the
simultaneously

original order of machine read ,rl, sum
— need parallelism ?Jso inI ea;li?r_ & I_ater phases instructions add (er r1,r3
— may not execute (completely) in given o Fig. 13.1 add rl,r4,r5
. Multiple pipdines * Need to preserve order
— question: when can instruction be executed? Want to have sum of r4 and r5in r1
 Fetch many instructions at the sametime g(t::ue:gh% threeinstructions were
— memory access must not be bottleneck
10/10/2001 Copyright Teemu Kerola 2001 2 10/10/2001 Copyright Teemu Kerola 2001 5

Why couldn’t we execute this ,
instruction right now? Antidependency o

* (True) Data Dependency

load r4, sdary(r6)
(datarii ppuvuus) ~a

mul 12,14, r10 Some earlier instruction has not yet finished reading from
the same location that we want to write to
 Procedural or Control Dependency (Kontrolli- Need to preserve order
— even more costlier than with normal rippuvuus)
pipeline
— now may waste more than one instruction! mv  r2,rl
* Resource Conflict Tt add  rl,r4,15
— thereisno available circuit right now konflikti)

— memory buffer, FP adder, register file port

 Usual solution: circuits to detect problem
and stall pipeline when needed

10/10/2001 Copyright Teemu Kerola 2001 3 10/10/2001

Want to have original value of r1inr2

Copyright Teemu Kerola 2001 6

Ch 13, Superscalar Processors 1



Computer Organization |1

10/10/2001

Machine Paralelism

* Instruction-level paralelism
— How much paralelismis there
— Theoretica maximum

* Machine parallelism

— How much parallelism is achieved by any specific
machine or architecture?

— At most as much asinstruction-level paralelism
« dependencies?
« physical resources?
* not optimized (stupid) design?

10/10/2001 Copyright Teemu Kerola 2001 7

Window of Execution
 Bigger is better

— easier to find a good candidate that can be
issued right now
— morework to figure out al dependencies
—too small value will limit machine parallelism
significantly
« E.g., 6 instruction could be issued,
but only 4 next ones are even considered

10/10/2001 Copyright Teemu Kerola 2001 10

Superscalar Processor
* Instruction dispatch

— get next available executable instruction from
instruction stream

« Window of execution

— dl instructions that are considered to be issued
« Instruction issue

— dlow instruction to start execution

— execution and completion phase should continue
now with no stalls

— if any stalls needed, do them before issue
« Instruction reorder and commit (retiring)
— hopefully al system state changes here!
— last chance to change order or abandon results
10/10/2001 Copyright Teemu Kerola 2001 8

Instruction Issue ¢

* Select next instruction(s) for execution
» Check first everything so that execution can
proceed with no stalls (stopping) to the end
— resource conflicts
— data dependencies
— control dependencies
— output dependencies
— antidependencies
« Simpler instruction execution pipelines
— no need to check for dependencies

10/10/2001 Copyright Teemu Kerola 2001 11

Instruction Dispatch ¢, Fos)
* Whenever there are both m

— available slots in window of execution

— ready instructions from prefetch or branch
prediction buffer

« instructions that do not need to stall at all during
execution

« al dependencies do not need to be solved yet

« must know that all
dependencies are
solved by the time
astall would occur

"datain R4 is not yet
there, but it will be therein
three cycleswheniitis
needed by thisinstruction”

10/10/2001 Copyright Teemu Kerola 2001 9

Instruction Issue Policies

* Instruction fetch palicy

— constraints on how many instructions are
considered to be dispatched at atime

* E.g., 2instructions fetched and decoded at atime
= both must be dispatched before next 2 fetched

* Instruction execution policy

— constraints on which order dispatched
instructions may start execution

» Completion policy
— constraints the order of completions

10/10/2001 Copyright Teemu Kerola 2001 12

Ch 13, Superscalar Processors




Computer Organization |1

10/10/2001

Example 1 of Issue Palicy «

* In-order issue with in-order completion

— same as purely sequentia execution
— no instruction window needed
— instruction issued only in original order
* many can be issued at the same time
— instructions completed only in original order
« many can be completed at the same time
— check before issue:
« resource conflicts, data & control dependencies

« execution time, so that completions occur in order:
wait long enough that earlier instructions will

complete first
— Pentium |1: out-of-order middle execution for micro-
ops (uops)
10/10/2001 p ( p )Copyrigtheanu Kerola2001 13

Get Rid of Name Dependencies ¢
« Problem: independent data stored in locations with
the same name
— often a storage conflict: same register used for two
different purposes
— resultsin wait stages (pipeline stalls, “ bubbles’)
« Cure: register renaming
— actual registers may be different than named registers
— actual registers allocated dynamically to named
registers
— alocate them so that name dependencies are avoided
* Cost:

— more registers
— circuits to alocate and keep track of actual registers
10/10/2001 Copyright Teemu Kerola 2001 16

Example 2 of Issue Policy «

* In-order issue with out-of-order completion
— issuein original order B
g. 13.4 (b)
» many can beissued at the same time _
— no ingtruction window needed

— allow executions complete before those of earlier
instructions

— check before issue:
« resource conflicts, data& control dependencies

* output dependencies: wait long enough to solve
them

10/10/2001 Copyright Teemu Kerola 2001 14

Register Renaming
Output dependency: |3 can not — b
complete before 11 has completed first: cgz_gg : ?_5' E:g
Antidependency: 13 can not complete - .
before 12 has read value from R3: R3:=R5+1; (13)
R7:=R3 + R4; (14)

Rename dataiin register R3
to actual hardware registers R3b:=R3a+ R5a (12)

Rename ;gc? o't?r?et;' rFégicsters RA4b:=R3b + 1 (12)
R4b, R5a, R7b R3c:=R5a+ 1 (13)
- R7b:=R3c + R4b (14)

| No name dependencies now: |

 Drawback: need more registers
— Pentium |1: 40 extraregs + 16 normal regs
¢ Why R3a& R3b?

10/10/2001 Copyright Teemu Kerola 2001 17

Example 3 of Issue Palicy ¢

* Out-of-order issue with out-of-order completion
— issuein any order :
Fig. 13.4 (c
1“9‘63;% « many can be issued at the same time
9"’:@9" — instruction window for dynamic instruction scheduling

X
e — alow executions complete before those of earlier
instructions

— Check before issue:
« resource conflicts, data & control dependencies

« output dependencies: wait for earlier instructions to
write their results before we overwrite them

« antidependencies: wait for earlier instructions issued
later to pick up arguments before overwriting them

10/10/2001 Copyright Teemu Kerola 2001 15

Superscalar |mplementation ¢,
 Fetch strategy

— prefetch, branch prediction
« Dependency check logic
¢ Forwarding circuits (shortcuts) to transfer

dependency data directly instead viaregisters or
memory (to get data accessible earlier)

¢ Multiple functional units (pipelines)

« Effective memory hierarchy to service many
memory accesses simultaneously

« Logic to issue multiple instruction simultaneously
» Logic to commit instruction in correct order

10/10/2001 Copyright Teemu Kerola 2001 18

Ch 13, Superscalar Processors




Computer Organization |1

10/10/2001

—issuewindow size = color of vertical bar
— out-of-order issue = “base” machine

— duplicated
« data cache access = “+ld/st”
*ALU = "“ALU"
* both = “both”

» Max speed-up about 4

10/10/2001

Copyright Teemu Kerola 2001 19

Overal Gain from Superscalar N
Up PowerPC 601 Pipelines «
I mplementation
« Seethe effect of ... « Instruction pipelines
—renaming = right graph

—al state changesin final “Write Back” phase

— up to 3instruction can be dispatched at the
sametime, and issued right after that in each
pipdineif no dependencies exist

« dependencies solved by stalls

— ALU ops place their result in one of 8 condition

code field in condition register
 up to 8 separate conditions active concurrently

10/10/2001

Copyright Teemu Kerola 2001 22

10/10/2001 Copyright Teemu Kerola 2001 20

PowerPC 601 Branches «
 Zero cycle branches
— branch target addresses computed already in
lower dispatch buffers
* before dispatch or issue!
— Easy: unconditional branches (jumps) or branch
on aready resolved condition code field
— otherwise
« conditional branch backward: guess taken
« conditional branch forward: guess not taken

« if speculation ends up wrong, cancel conditional
instructionsin pipeline before write-back
« speculate only on one branch at atime
10/10/2001

Copyright Teemu Kerola2001 23

Example:
PowerPC 601 Architecture
» General RISC organization

— instruction formats
— 3 execution units Fig. 13.10

* Logical view

— 4 instruction window for issue
— each execution unit picks up next one for it
whenever there is room for new instruction

— integer instructions issued only when 1st
(dispatch buffer 0) in queue

10/10/2001 Copyright Teemu Kerola 2001 21

PowerPC 601 Example
 Conditiona branch example
— Original C code
— Assembly code
« predict branch not taken
— Correct branch prediction

— Incorrect branch prediction

Fig. 13.14 (b)

10/10/2001 Copyright Teemu Kerola 2001 24

Ch 13, Superscalar Processors




Computer Organization |1

10/10/2001

PowerPC 620 Architecture
« 6 execution units
» Up to 4 instructions dispatched simultaneously
» Reservation stations to store dispatched
instructions and their arguments
— kind of rename registers also!
10/10/2001 Copyright Teemu Kerola 2001 25 10/10/2001 Copyright Teemu Kerola 2001 28
PowerPC 620 Rename Registers o Intel Pentium |1 speculation
¢ Rename registers to store results not yet
comited P61 g 45
_|[HePad6] Fig. 4.49 * 512-entry branch target buffer
— normal uncompleted and speculative instructions i - L
_ 8int and 12 FP extrarename registers - 4_b|t pred_l ctl_ on state, 4-way set-associative
« in sameregister file as normal registers + Static predlctlon o
— results copied to normal registers at commit — used before dynamic will work
— information on what to do at commit isin completion — forward not taken, backward branches taken
Lnkt i reortier buffers . . « In-order-completion for 40 uops (micro-
« Instruction completes (commits) from completion operations) limits speculation
unit reorder buffer once al previousinstructions « RSB — 4 entry Return Stack Buffer
are committed - = =
— max 4 instructions can commit at atime
10/10/2001 Copyright Teemu Kerola 2001 26 10/10/2001 Copyright Teemu Kerola 2001 29
PowerPC 620 Speculation - End of Chapter 13: Superscalar --
* Speculation on branches
— 256-entry branch target buffer
* two-way set-associative
— 2048-entry branch history table
« used when branch target buffer misses
— gpeculation on max 4 unresolved branches
(Fig. 4.49)
(Hennessy-Patterson, Computer Architecture, 2nd Ed, 1996)
10/10/2001 Copyright Teemu Kerola 2001 27 10/10/2001 Copyright Teemu Kerola 2001 30

Ch 13, Superscalar Processors




